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Abstract— Localization is a fundamental task in robotics for
autonomous navigation. Existing localization methods rely on
a single input data modality or train several computational
models to process different modalities. This leads to stringent
computational requirements and sub-optimal results that fail
to capitalize on the complementary information in other data
streams. This paper proposes UnLoc, a novel unified neural
modeling approach for localization with multi-sensor input in
all weather conditions. Our multi-stream network can handle
LiDAR, Camera and RADAR inputs for localization on de-
mand, i.e., it can work with one or more input sensors, making it
robust to sensor failure. UnLoc uses 3D sparse convolutions and
cylindrical partitioning of the space to process LiDAR frames
and implements ResNet blocks with a slot attention-based
feature filtering module for the Radar and image modalities.
We introduce a unique learnable modality encoding scheme to
distinguish between the input sensor data. Our method is exten-
sively evaluated on Oxford Radar RobotCar, ApolloSouthBay
and Perth-WA datasets. The results ascertain the efficacy of
our technique.

I. INTRODUCTION

Vehicle localization in outdoor environment is an essen-
tial task in robotics, especially in the autonomous driving
domain. To achieve self-autonomy in urban outdoor envi-
ronment, a vehicle must be able to precisely localize itself.
Current outdoor localization systems rely on the Global
Navigation Satellite System (GNSS). However, the lack of
accuracy and signal blockage in densely populated regions
for GNNS make it an inadequate technology for autonomous
vehicles. Creating an offline map of the environment and
using query frames during online navigation provides a vi-
able alternate solution to the problem. Conventional methods
in this direction [1], [2] employ frame registration for lo-
calization. However, this leads to impractical computational
requirements. More recently, deep learning techniques have
shown great promise in addressing the issue [3].

Among the deep learning methods, 3D point cloud
regression-based approaches, e.g., [3], [4], can directly pre-
dict six degrees of freedom (6DoF) poses to localize vehicles.
Point clouds provide depth information of the scene and 360◦
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field of view (FoV), which are helpful for precise local-
ization. However, LiDAR data is also inherently prone to
high level of noise in rainy and foggy weather. Moreover, its
unstructured nature demands complex and computationally
expensive modeling when outdoor localization completely
relies on the LiDAR data.

In the related literature, processing RGB camera images
with deep learning is also considered suitable for localiza-
tion. Currently, techniques such as PoseNet and its vari-
ants [5], [6] use a single or a series of image frames to
predict 6DoF poses. Whereas image modality offers detailed
spatial information, it is easily influenced by environmental
variations, such as sunlight, rain, fog etc., which is detri-
mental for localization. Comparatively, Radar data is largely
insensitive to various weather conditions, e.g., darkness, fog,
snow and sunlight. Leveraging that, Cen et al. [7] extracted
features from Radar scans and then applied scan matching
to predict ego-motion. Radarloc [8] is a recent deep learning
localization method that predicts global poses from Radar
data. Nevertheless, Radar data does not have precise 3D
information and is noisy, which compromises the overall
localization performance.

For the applications like self-driving vehicles, robust out-
door localization is only possible by leveraging complemen-
tary characteristics of different data modalities. In this work,
we present a multi-sensor localization approach, shown in
Fig. 1, that learns a unified neural model, called UnLoc,
for point cloud, Radar and image data, to achieve precise
6DoF localization. The proposed model uses sparse 3D
convolutions to process cylindrical representations of point
clouds, while 2D convolutions and slot attention-based fea-
ture filtering are used to process Radar and image modalities.
We also introduce a learnable modality encoding technique
to optimally discriminate between different data modalities
for their on demand use. Our method allows the use of a
single or any combination of modalities during inference.
This makes our method robust to sensor failure.

Our network is trained on six sensor inputs for three
different modalities. Due to the unique universal nature of
our method, we also devise a technique to generate common
ground-truth for different sensor data streams, which enables
effective training of our model. Our method is an adaptive
deep-learning technique that can be used in challenging real-
world environments. We establish the performance of our
approach on three publicly available datasets: Oxford Radar
RobotCar [9], Appolo-Southbay [10], and Perth-WA [3]. We
also conduct a thorough ablation study to analyze the effects
of using various sensor inputs with our model. We establish
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Fig. 1. Architecture of the proposed UnLoc. Top stream of layers of our network processes 3D point cloud data. It transforms the input into a cylindrical
representation which is processed by sparse 3D convolution blocks, CB and CBD (see Fig. 2), to extract point cloud features. These features are passed
through 3DMax and 3DAvg layers to compute the feature vectors. Middle stream of the network processes images to extract features with ResNet blocks,
which are further processed by our fine tuning and a transformer based features filtering module. Bottom stream processes Radar modality and has the
same architecture as the middle stream, except with an additional 2D Conv layer. Feature vectors for each modality are encoded by our learnable modality
encoding scheme which passes the features to a Regression Module for 6DoF poses prediction.

strong localization results on all the datasets, outperforming
the existing methods on each modality and further improving
the performance by processing multi-modality input.

II. RELATED WORK

Localization is essential for autonomous driving [11], [12].
In the existing literature, different input data modalities, such
as point cloud, image, and Radar data, distinguish different
localization methods. Conventional point cloud matching
techniques employ registration methods [1], [13]. On the
other hand, recent point cloud deep learning-based tech-
niques associate input frames to a point cloud map for 6DoF
pose estimation [4], [10], [14], [15]. Among the mentioned
methods, PointLoc [4], Slice [3] and L3Net [10] compress
the map into a neural 6DoF pose predictor for vehicles. The
PointLoc [4] exploits PointNet framework to predict poses
while Slice [3] uses transformer architecture [16]. In general,
directly predicting 6DoF pose from a point cloud frame is
challenging because the unstructured LiDAR representation
conflicts with the high precision demands of the task. There-
fore, other methods, e.g., [5], [6] often augment their neural
models to handle the data complexity.

Some works also devise camera-based deep learning local-
ization methods. For instance, PoseNet [5] is the pioneering
technique that utilizes camera images to predict 6DoF poses.
Likewise, the recent variants [6], [17] of PoseNet regress
poses using a single or multiple images, exploiting geometric
loss and modeling poses with Bayesian Neural Network
(BNN) to enhance the performance. Walch et al. [18] em-
ployed LSTMs for matching geometric features to improve
the pose precision. Retrieval-based learning approaches, e.g.,
CamNet [19], RelocNet [20], and Camera Relocalization
CNN [21], use agents that have previously visited the exact
location. However, the above approaches are restricted in
performance due to the demerits of the visual sensors.

Contemporary localization strategies also explore the
Radar data modality. For example, Barnes et al. [22] pro-
posed a deep correlative scan matching technique based
on learned feature embedding and a self-supervised module
for Radar odometry system. Later, the authors developed a
deep key point detector and metric localizer [23] for Radar
odometry estimation. Cen et al. [7] extracted features from
Radar scans and then applied scan matching to predict ego
motion. RadarLoc [8] is the latest method that predicts
global absolute poses with respect to the world coordinate
system employing Radar data. Compared to camera and
LiDAR, radar is not as sensitive to the weather conditions
and provides 360◦ FoV of a scene. However, it lacks precise
3D information when compared to the LiDAR data.

The methods mentioned above mainly rely on a single sen-
sor data modality. However, outdoor localization, especially
for autonomous driving, requires the precision and robustness
that is hard to achieve with a single modality. Still, localiza-
tion through multiple sensors (Radar, camera and LiDAR)
in outdoor environments is currently a largely unexplored
direction. In this work, we fill this gap by devising a universal
localization neural model that leverages point cloud, Radar
and/or camera input on demand, to provide robust and precise
6DoF pose predictions.

III. METHODOLOGY

We propose a multi-sensors localization method that can
leverage point cloud, Radar and/or image modalities on
demand. Our approach uses three parallel streams for these
modalities in the early stages of the model, see Fig. 1. It ap-
plies sparse 3D convolutions on the LiDAR data and employs
ResNet blocks followed by a slot attention-based feature
filtering for the Radar and image modalities. Moreover, it
employs a learnable modality encoding that learns to identify
the input sensor data stream for optimal performance. The



Fig. 2. Sparse 3D convolution block without down-sampling (CB) and
with down-sampling (CBD, using an extra 3D convolution with stride 2).

architecture for the Radar and image data streams are largely
similar, except for an additional 2D convolution layer to
process the Radar data. Our technique computes a feature
vector for each data modality and applies modality encoding
to that. The individual data streams get projected onto their
respective feature spaces that have similar dimensionality
across modalities. The data features eventually get processes
by a regression module to predict the 6DoF pose. Our model
is trained on six sensor inputs: LiDAR (left and right),
camera (left, rear and right), and Radar. For inference, it
accepts any single input or any combination of the input
modalities. Our method is designed for localization in out-
door environment, particularly for self-driving vehicles. Due
to its multi-modality nature, it is well-suited to different
weather conditions and is robust to sensor failures. Each
component of our framework is explained in detail below.

A. 3D Features Extraction

We propose a sparse 3D convolution localization block to
process the point cloud data, see Fig. 1. This block extracts
3D geometric features from LiDAR data, which are partic-
ularly relevant for localization in the outdoor environment.
The 3D convolution using voxelization is known for it effi-
cacy to process LiDAR data [24]. However, voxel processing
using 3D convolution is computationally expensive. Hence,
we devise a lightweight sparse 3D convolutional method
utilizing cylindrical partitioning. Our approach uses a series
of sparse 3D convolutional sub-blocks for processing point
cloud data, followed by Max-pooling and Average pooling
layers. Details of this process are provided below.

1) 3D Cylindrical Partition and Features: Outdoor Li-
DAR point cloud has the attribute of changing density, with
nearby regions having substantially higher point densities
than the far regions. Hence, cylindrical coordinate system is
well-suited to partition LiDAR data, which evenly distributes
the points across various partitions by providing larger vol-
umes for the far-off points. The top-left corner in Fig. 1
illustrates the workflow of our partitioning, followed by point
feature processing. First, the (X,Y, Z) coordinates of points
are converted to (R, θ, and z) for a cylindrical grid repre-
sentation, where R, θ are the radius and height, respectively.
Then, a cylindrical partitioning is performed to generate
voxels having largely uniform point distribution. The farther
regions have larger voxels compared to the nearby regions.
Next, the cylindrical grid representation is passed through
an MLP-based module with linear layers to obtain cylinder

Fig. 3. Radar sensor output in polar form (Left) and after transformation
to Cartesian coordinates (Right).

features. These features are further processed using Unique
indices and Scatter-Max layers to obtain maximum magni-
tude features. Finally, we get the 3D cylinder representations
with size ∈ RD×H×W×L, where D is the feature dimension,
and H,W,L respectively represent the height, width, and
length of the cylinder. Our 3D Sparse convolution module
subsequently processes this representation.

2) 3D Sparse Convolution: To process the cylindrical
representation, we had two options: conventional 3D con-
volution or sparse 3D convolution. We choose the latter for
memory and computational efficiency. Inspired by Cylin-
der3D [24], we create two asymmetric types of 3D sparse
convolution modules, without down-sampling (CB) and with
down-sampling (CBD), as shown in Fig. 2. Both convolution
blocks have two sparse convolution streams with stride 1.
The first stream has kernel (1, 3, 3) followed by kernel
(3, 1, 3) and the second stream has the same kernels in the
reverse order. The output of both streams is added. In the
convolution with down-sampling (CBD), an additional 3D
convolution with kernel (3, 3, 3) and stride 2 is applied for
downsampling. We employ one CB and four CBD modules
in series with 32, 64, 128, 256, 512 output channels. This
block’s output features size is B, 512, 30, 23, 8, representing
batch size B, the feature dimensionality, and cylinder height,
width and length, respectively.

3) 3D Max-pooling and Average Pooling: To aggregate
the information, we use max- and average-pooling tech-
niques. The pooling layers compute maximum and average
feature values along the spatial/cylindrical dimensions. These
layers generate outputs of size RB×512, which are concate-
nated to generate the final feature vector of size RB×1024 for
further processing, which is discussed in Sec. III-C.

B. 2D Features Extraction

Here, we explain the 2D feature extraction blocks for
image and Radar modalities. The architecture for both blocks
in our framework is largely identical, except for an additional
2D convolution layer used for the Radar modality, see Fig. 1.
This additional layer broadcasts channel size from one to
three for later processing. We also transform the polar scan-
ning Radar outputs into Cartesian coordinates as grey-scale
images ∈ RH×W , as shown in Fig. 3. This transformation
helps in localization performance. The architecture for our
feature extraction blocks includes a ResNet module, a fine-
tuning module and a slot attention-based features filtering
module. These components are discussed below in detail.



1) ResNet Blocks: The primary responsibility of this
module is to extract useful local features from Radar and
camera modalities. The state-of-the-art camera-based local-
ization methods [25], [17], [26] utilize a pre-trained ResNet
model [27] as a features extractor. The aforementioned ap-
proaches typically involve selecting layers from a significant
portion of the pre-trained model, resulting in computationally
demanding models. Our framework focuses solely on the ten
initial blocks of the pre-trained ResNet-152 model, thereby
considerably reducing the computational cost. The input to
this module is in RB×D×H×W , where B is the batch size,
D is the input channel size and (H,W ) are the height
and width of the input. The input values for D,H,W are
3, 512 and 512, respectively. The output of this module is in
RB×512×(H/8)×(W/8).

2) Fine-tuning Module: The features extracted in Sec III-
B.1 are fine-tuned for localization task in this module. Also,
this module makes the features more suitable for the subse-
quent slot attention-based filtering. In the fine tuning module,
the input is passed through a series of 2D convolutional lay-
ers, and is augmented with positional information channel-
wise. The resultant features map is flattened along the spatial
dimensions and fed into a linear layer for further processing.
The positional encoding in this module is learnable with the
encoding tensor of size RB×(H/32)×(W/32)×1024. The final
output size of this module is B × (HW/1024)× 1024.

3) Slot Attention-based Features Filtering: Two types of
distortions can considerably affect the localization perfor-
mance. One results from the angular and range errors of the
sensors, while the other from the foreground moving objects,
e.g., bikes, buses, trucks and pedestrians in the outdoor scene.
To minimize these distortions, state-of-the-art methods apply
feature filtering techniques. For instance, Barnes et al. [22]
designed a UNet-type architecture to predict distraction-free
Radar odometry. Radarloc [8], AtLoc [25] and PointLoc [4]
apply attention-based encoder and decoder techniques to fil-
ter out these noises. However, these methods fail to leverage
object-centric features in the scene for this purpose, and they
are also not easily tailored to multiple modalities. To this end,
we design a unique slot attention [28] based feature filtering
module to leverage object-centric features with Radar and
image modalities. Slot attention is the key component of our
module, whose architectural details are given in Fig. 1. Its
primary function is to project the N input features to K
output vectors, which represent slots - we chose K = 20 in
our framework.

In this module, the slots are randomly initialized, and
they improve iteratively during the training phase. The slots
contest for input features through softmax-based attention
throughout each iteration, and then use a gated recurrent
unit (GRU) to update their representation. Similar to a trans-
former, “key”, “query”, and “value” vectors are used in the
slot attention mechanism. Their computations is denoted by
k(·), q(·), and v(·), respectively in the text to follow. These
vectors are kept learnable in our slot attention to map the
inputs and slots with a channel size D. The size of the affinity
matrix for slot attention is N ×K as compared to N ×N

for the multi-head attention (MHA) utilized in conventional
transformer architectures, where N >> K. This makes slot
attention much more efficient then MHA. The slot attention
output in RB×20×1024 is passed through an MLP and a
normal layer for feature refinement. The size of the feature
vector generated here is ∈ RB×1024.

Concretely, a single iteration of the employed slot attention
performs the following computation.

α =
1√
C
k(input) · q(slots)⊺ ∈ RN×K , (1)

Γi, j =
eΛi,j∑
s e

Λs,j
, (2)

β = W ⊺ · v(input) ∈ RK×D, (3)

W =
Γi, j∑N
s=1 Γs, j

. (4)

In the above, α, Γ, and β respectively represent the attention
coefficient matrix, normalized attention over the slots, and
the slot update for further processing by the GRU. Finally,
a GRU with as many hidden units as the dimensionality of
the slots is used to update the slot. The update is based on
a previous slot state and the signal β.

C. Modality Encoding

Inspired by the transformer’s positional encoding tech-
nique, we propose modality encoding and incorporate it in
our network to identify the sensor modality. Unlike pre-fixed
‘cosine’ and ‘sine’ positional encoding, we learn the modal-
ity encoding for optimal performance. Since our framework
supports three modalities, i.e., image, Radar and point cloud,
we randomly initialize three modality encoding vectors with
the same size as the feature vectors. These vectors are learned
during the training phase and are added to the feature vectors
to detect the sensor modalities. Experiments showed that this
modality encoding works well during inference time.

D. Regression Module

The feature vectors encoded in the earlier stages of
the model are passed to a Regression Module which is
responsible to predict the 6DoF pose for localization. It
comprises two common fully connected (FC) layers at the
top, preceded by two parts of four FC layers - see Fig. 1. The
network has a dicephalous architecture to precisely predict
the translation and rotation parameters for the 6DoF pose.
The channel output sizes in each division of the FC layers are
1024, 512, 256, 3. The initialization of the layers is set with
Xavier uniform distribution and ReLU activation is used. To
reduce the variations between rotation and translation values,
the rotation branch of this module is normalized.

E. Training Loss Computation

We utilize ℓ1-loss for rotation and translation, which we
found more suitable for our network due to the various
types of input data. We combine the rotation and translation
losses to compute the loss for each input data with learnable
balancing factors α and β, as shown in Eq. (5). During the
training phase, we forward pass inputs from all six sensors



Fig. 4. Schematics for common ground-truth generation for the different types of input sensors namely, Radar, Camera and LiDAR which operate at 4,
16 and 20 frames per second respectively.

and combine the loss for each input to compute the net loss
for the network, see Eq. (6). Finally, the net loss is back
propagated in the network for optimization.

L = ∥t− t′∥eα + α+ ∥r − r′∥eβ + β. (5)

Lnet = LL1 + LL2 + LC1 + LC2 + LC3 + LR. (6)

In Eq. (5), t and t′ indicate ground-truth and predicted
translation, whereas r and r′ denote the respective rotations.
In Eq. (6), Lnet, LL1, LL2, LC1, LC2, LC3, LR are the net
loss, LiDAR left, LiDAR right, camera left, camera right,
camera rear, and Radar sensor losses, respectively.

IV. EXPERIMENTS
We evaluate the proposed method for the localization task

on benchmark datasets and compare it with state-of-the-art
techniques. To ensure a fair comparison, we choose popular
existing methods based on the availability of source code
by the original authors. We present results on three major
localization datasets: Oxford Radar RobotCar [9], Apollo-
SouthBay [10] and Perth-WA [3]. Our results establish
the effectiveness of the proposed model for point cloud,
image and Radar modality, both individually and collectively.
Prior to presenting the results for each dataset, we discuss
implementation details in the section below.
A. Implementation Details

To ensure fair benchmarking, we adopt uniform configu-
rations for our method across the Oxford Radar RobotCar,
Apollo-SouthBay and Perth-WA datasets. We apply batch
sizes of 6 and 1 for training and testing, respectively. We use
Adam optimizer with a learning rate of 0.0001 and weight
decay 0.0005. At the outset, the model is trained on Oxford
Radar RobotCar for multi-modalities and then fine-tuned on
the Apollo-SouthBay dataset and Perth-WA dataset for point
cloud modality. The model is trained for 40 epochs on all
three datasets. For all experiments, NVIDIA GeForce RTX
3090 GPU with 24 GB memory is used. The experiments
are conducted using PyTorch 1.8.0 on Ubuntu 18.04 OS.

B. Results on Oxford Radar RobotCar

Dataset details: The Oxford Radar RobotCar [9] is an
extension of their previous dataset [32] that includes three
different modalities: RGB camera images, Radar data, and
point clouds from six sensors: left, right, and rear cameras; a

Navtech CTS350-XFMCW Radar scanner; and left and right
Velodyne HDL-32E LiDAR. NovAtel SPAN-CPT ALIGN
inertial (INS) and GPS navigation systems are used to collect
the ground-truth poses for this dataset. It covers a total of
280km of urban area, including more than 30 sequences, each
captured over 9km. This dataset is large and challenging for
localization due to the presence of a variety of foreground
objects, such as people and cars. We use the same training
and test sequences as Radarloc [8] for our experiments on
this dataset.

Common Ground-truth Generation for multi-sensors:
Our approach has the unique ability to leverage all three
data modalities provided by the dataset. However, the frame
rates for Radar (4Hz), LiDAR (20Hz), and camera (16Hz)
data have a large disparity between them, which leads to
timestamp misalignment between the modality sensors and
the ground-truth. To generate a unified ground-truth for all
the data sensors at a given time, we synchronize the Radar
timestamps with the ground-truth poses using interpolation
between GPS/INS measurements and the Radar timestamps.
This step of ours provides ground-truth pose for each Radar
frame. We then compute the position information for each
frame for all modality sensors based on their timestamps. To
acquire the corresponding frame for each remaining sensor,
we search for the closest frame position corresponding to
each Radar frame using the minimum Euclidean distance
with KDTree search [33]. Each Radar frame and its corre-
sponding closest searched frame share the same ground-truth.
Missing GPS/INS data is handled by interpolating values
from visual odometry data provided by the Radar RobotCar.
In this way, we calculate single ground-truth pose for each
frame of all modality sensors. The process is also illustrated
in Fig. 4.

Performance: We present the experimental results in Table I
where we use individual data modalities to compare with the
approaches of the respective modalities. Due to the universal
nature of our method, we are able to compare with Radar,
camera, and LiDAR-based deep localization methods. Our
technique outperforms all the existing methods by a consider-
able margin, which is clear from the respective sections of the
table. For the point cloud modality, our approach surpasses
the best performer PointLoc [4] by reducing the errors for



TABLE I
MEAN TRANSLATION (METERS) AND ROTATION (DEG.) ERRORS ON THE RADAR ROBOTCAR DATASET[9] COMPARED TO RADAR SLAM[29],

ADAPTED ATLOC[25], RADARLOC[8], ATLOC[25], MAPNET[17], POSENET[5], DCP[30], VLAD[31] AND POINTLOC[4] .

Radar Camera LiDAR

Sq
Radar Adapted RadarLoc UnLoc AtLoc MapNet PoseNet UnLoc DCP PointNet PointLoc UnLoc
SLAM AtLoc Ours Ours VLAD Ours

6 49.8, 5.2° 15.9, 4.2° 8.4, 3.4° 2.92, 1.26° 15.4, 3.4° 32.2, 5.4° 51.1, 6.4° 2.91, 1.27° 18.5, 2.1° 28.9, 5.2° 14.4, 2.8° 1.71, 0.68°
7 24.7, 3.4° 13.2, 3.8° 5.1, 2.9° 2.82, 1.68° 39.7, 8.3° 47.8, 5.4° 80.3, 6.5° 2.83, 1.69° 02.8, 1.7° 17.6, 3.9° 08.5, 1.8° 1.67, 0.68°
8 26.1, 1.6° 14.2, 2.9° 6.6, 3.1° 2.85, 1.21° 31.7, 4.3° 51.9, 7.7° 111, 12.8° 2.85, 1.20° 16.4, 2.3° 23.6, 5.9° 09.5, 2.1° 1.57, 0.61°
9 39.8, 5.7° 15.7, 3.2° 6.5, 2.9° 2.84, 1.49° 47.1, 9.4° 14.9, 2.8° 45.5, 4.0° 2.83, 1.50° 13.6, 1.9° 13.7, 2.6° 11.5, 2.0° 1.51, 0.35°

10 17.8, 1.7° 13.2, 1.9° 5.3, 1.8° 2.67, 2.04° 10.4, 1.3° - - 2.68, 2.05° - - 08.4, 1.4° 1.57, 0.51°
Av 31.7, 3.5° 14.4, 3.2° 6.4, 2.8° 2.82, 1.53° 28.8, 5.3° 36.7, 5.4° 72.0, 7.4° 2.82, 1.54° 15.8, 2.1° 20.8, 4.4° 10.5, 2.0° 1.61, 0.57°

TABLE II
ABLATION STUDY ON TEST SEQUENCES OF OXFORD RADAR ROBOTCAR. MEAN TRANSLATION (METERS) AND ROTATION (DEG.) ERRORS ARE

REPORTED FOR THE 3 MODALITIES SEPARATELY AND IN COMBINATIONS. L1/L2, C1/C2/C3 & R STAND FOR LIDAR LEFT/RIGHT, CAMERA

LEFT/RIGHT/REAR & RADAR. WE REPORT RESULTS FOR C1 ONLY SINCE ALL THREE CAMERAS GIVE APPROXIMATELY SIMILAR ACCURACY.

Seq L1 L2 C1 R L1, C1, R L2, C2, R L1, L2, R All
6 1.75, 0.77° 1.71, 0.68° 2.91, 1.27° 2.92, 1.26° 1.68, 0.64° 1.62, 0.59° 1.50, 0.58° 1.49, 0.57°
7 1.69, 0.61° 1.67, 0.68° 2.83, 1.69° 2.82, 1.68° 1.63, 0.52° 1.60,0.61° 1.47, 0.50° 1.46, 0.49°
8 1.58, 0.65° 1.57, 0.61° 2.85, 1.20° 2.85, 1.21° 1.52, 0.59° 1.51, 0.57° 1.38, 0.55° 1.37, 0.54°
9 1.55, 0.37° 1.51, 0.35° 2.83, 1.50° 2.84, 1.49° 1.49, 0.36° 1.47, 0.35° 1.34, 0.33° 1.33, 0.32°
10 1.52, 0.56° 1.57, 0.51° 2.68, 2.05° 2.67, 2.04° 1.47, 0.56° 1.52, 0.48° 1.38, 0.50° 1.36, 0.48°

Avg 1.62, 0.59° 1.61, 0.57° 2.82, 1.54° 2.82, 1.53° 1.56, 0.53° 1.54, 0.52° 1.42, 0.49° 1.40, 0.48°

translation and rotation nearly by 5× and 3×, respectively.
The results confirm that our encoding and sparse 3D con-
volutional modules are effective components for localization
with point clouds. Table I also ascertains that our method
is much more accurate than the camera and Radar-based
methods. Our technique outperforms RadarLoc [8] by a more
than 4× error reduction in translation and rotation estimates.
We conjecture that the strong performance of our approach
has two main sources. Firstly, for each modality, our network
is carefully designed with the state-of-the-art representation
learning components. Secondly, our model is able to leverage
the complementary information from different modalities
during the learning stage to better train each individual
modality network. For each modality, the inference stage is
able to take guidance from learned positional encoding for
optimal performance.
Ablation studies: To investigate the influence of different
blocks of our technique, we conduct ablation studies and
summarize the results in Table II. For the experiments, we
kept the architecture for each block the same but turned
on/off the image, Radar, and point cloud modality blocks to
determine the impact on the localization results. First, we test
our framework with a single modality and turned off the other
two modality blocks. Table II reports the full results of these
experiments in the first four columns, which can be compared
with the results in Table I. Among the single modalities,
our approach already achieves the best overall performance.
To further analyse the performance of our network, we test
different combinations of the blocks in our method using
three sensors at a time. From Table II, it is clear that the
localization performance of our technique improves by using
different data modalities. In this case, the best performance
is achieved with a combination of left Lidar, right Lidar and
Radar, resulting in 1.42m and 0.49◦ errors for translation and

rotation, respectively. Finally, we utilized all six data streams
in our technique. The last column of the table shows that this
results in the overall best performance for our technique.
This ascertains that each data modality is able to contribute
to improve the performance, and that our network is able to
leverage the complementary data information effectively.

C. Results on the Apollo-SouthBay Dataset

Dataset: ApolloSouthBay [10] is a comprehensive local-
ization dataset collected in San Francisco, USA, utilizing
an IMU-based system to record the ground-truth poses for
the LiDAR frames. The dataset is captured in residential,
urban, downtown area and highways. The dataset includes six
routes: BaylandsToSeafood, ColumbiaPark, SanJoseDown-
town, SunnyvaleBigLoop, Highway237 and MathildaAVE.
All these routes provide separate training and test sets.

Performance: The outcomes of our experiments on this
dataset are presented in Table III. For benchmarking, we fine-
tune our model on the training sets and assess our model on
all six routes of the test set. We employ RMSE as the evaluat-
ing metric by following [10] and compare our approach with
the state-of-the-art localization methods, Levinson et al. [34],
Wan et al. [35], L3-net [10] and Slice3D [3]. In the Table,
we report average values on all six routes. Levinson et al.,
Slice3D [3] and L3-net [10]are single modality methods,
whereas Wan et al. [35] is a fusion model that integrates
multiple sensors including a GPS. The results of compared
methods are taken directly from the literature. Our method
outperforms all techniques by achieving the lowest average
errors across the six routes. We avoid reporting results of
individual routes for brevity, however, note that our method
achieves the best performance on each individual route as
well.



TABLE III
RESULTS ON APOLLO-SOUTHBAY DATASET. THE VALUES REPRESENT RMSE FOR ROTATION (DEG) AND TRANSLATION (CM). OUR METHOD

ACHIEVES THE LOWEST AVERAGE ERRORS FOR THREE ROUTES.

Methods Y aw Roll P itch Rot X Y Z Trans
Levinson et al. [34] - - - - 11.9 9.3 4.6 8.9
Wan et al. [35] 3.8◦ - - - 5.0 3.6 2.6 3.7
L3-net [36] 1.6◦ - - - 5.0 3.6 2.7 3.8
Slice3D [3] 3.2◦ 6.7◦ 7.3◦ 6.4◦ 2.4 3.3 3.1 2.9
UnLoc (Ours) 2.8◦ 1.3◦ 1.4◦ 1.83◦ 3.1 2.7 2.6 2.8

TABLE IV
RESULTS ON PERTH-WA DATASET. THE VALUES REPRESENT THE ABSOLUTE MEAN ERROR FOR ROTATION (DEGREES) AND TRANSLATION (METERS).

OUR METHOD HAS THE LEAST ERROR IN ALL CASES.

Methods Y aw Roll P itch Rot X Y Z Trans
PointLoc [4] 0.26◦ 1.96◦ 0.15◦ 0.75◦ 29.70 37.49 7.80 25.00
Slice3D (baseline) [3] 0.32◦ 2.42◦ 0.27◦ 1.00◦ 14.20 17.05 8.50 13.25
Slice3D (pre-trained) [3] 0.17◦ 1.52◦ 0.10◦ 0.59◦ 6.26 06.55 2.86 5.23
UnLoc (Ours) 0.12◦ 1.13◦ 0.23◦ 0.49◦ 2.11 01.91 1.13 1.72

D. Results on Perth-WA dataset

Dataset: Perth-WA dataset [3] is captured in the Central
Business District (CBD), Perth, Western Australia. The
dataset comprises a LiDAR map of 4km2 with 6DoF ground-
truth per frame. The scenes include commercial structures,
residential areas, food streets, complex routes, hospital build-
ings etc. The data is collected in three different two-hour
sessions under various weather conditions. We apply the
same split for training and testing sets as in [3]. The training
set comprises 20K frames of sparse and dense point clouds,
and another 2.2K frames are used as the test set. The dataset
is available online on IEEE data portal [37]

Performance: We evaluate the performance of our approach
against recent point cloud-based localization approaches:
PointLoc [4], Slice3D baseline and pretrained models of [3],
as shown in Table IV. To conduct this experiment, we fine-
tune our framework on the training set and evaluate it on
the test set. In line with Pointloc [4], we use the Mean
Absolute Error of poses for analyzing the performance.
Our localization approach outperforms all the methods for
angular and translational mean error values. These results
show that our proposed approach facilitates more effective
point cloud feature learning, making it a preferred choice for
outdoor localization using LiDAR frames.

V. CONCLUSION
This paper presents a novel localization framework for

multi-sensors along with a deep neural network architecture
that processes LiDAR, Radar and/or camera inputs on de-
mand. The proposed network employs 3D sparse convolution
and cylindrical partition to process LiDAR frames, and
implements ResNet blocks with fine-tuning layers and a
slot attention-based feature filtering module for the Radar
and image modalities. It also introduces a novel learnable
modality encoding technique to identify the type of input
data modality. The network is trained on six inputs from
three sensor types and can process either a single or multiple
sensor inputs at inference. This makes our method robust to

sensor failure. Our method is useful for self-driving vehicles
that need precise localization regardless of the weather
conditions. We benchmark our method on three benchmark
datasets and achieve state of the art results.
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[15] R. Dubé, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Ca-
dena, “Segmap: 3d segment mapping using data-driven descriptors,”
arXiv preprint arXiv:1804.09557, 2018.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv
preprint arXiv:1706.03762, 2017.

[17] S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz, “Geometry-
aware learning of maps for camera localization,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 2616–2625.

[18] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and
D. Cremers, “Image-based localization using lstms for structured fea-
ture correlation,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 627–637.

[19] M. Ding, Z. Wang, J. Sun, J. Shi, and P. Luo, “Camnet: Coarse-to-fine
retrieval for camera re-localization,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 2871–2880.

[20] V. Balntas, S. Li, and V. Prisacariu, “Relocnet: Continuous metric
learning relocalisation using neural nets,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 751–
767.

[21] Z. Laskar, I. Melekhov, S. Kalia, and J. Kannala, “Camera relocaliza-
tion by computing pairwise relative poses using convolutional neural
network,” in Proceedings of the IEEE International Conference on
Computer Vision Workshops, 2017, pp. 929–938.

[22] D. Barnes, R. Weston, and I. Posner, “Masking by moving: Learning
distraction-free radar odometry from pose information,” arXiv preprint
arXiv:1909.03752, 2019.

[23] D. Barnes and I. Posner, “Under the radar: Learning to predict robust
keypoints for odometry estimation and metric localisation in radar,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 9484–9490.

[24] X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and
D. Lin, “Cylindrical and asymmetrical 3d convolution networks for
lidar segmentation,” arXiv preprint arXiv:2011.10033, 2020.

[25] B. Wang, C. Chen, C. X. Lu, P. Zhao, N. Trigoni, and A. Markham,
“Atloc: Attention guided camera localization,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 06, 2020, pp.
10 393–10 401.

[26] Z. Huang, Y. Xu, J. Shi, X. Zhou, H. Bao, and G. Zhang, “Prior guided
dropout for robust visual localization in dynamic environments,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 2791–2800.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[28] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran,
G. Heigold, J. Uszkoreit, A. Dosovitskiy, and T. Kipf, “Object-
centric learning with slot attention,” Advances in Neural Information
Processing Systems, vol. 33, pp. 11 525–11 538, 2020.

[29] Z. Hong, Y. Petillot, and S. Wang, “Radarslam: Radar based large-scale
slam in all weathers,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 5164–5170.

[30] Y. Wang and J. M. Solomon, “Deep closest point: Learning represen-
tations for point cloud registration,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2019, pp. 3523–3532.

[31] M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud based
retrieval for large-scale place recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp.
4470–4479.

[32] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year,
1000km: The Oxford RobotCar Dataset,” The International Journal
of Robotics Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017. [Online].
Available: http://dx.doi.org/10.1177/0278364916679498

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] J. Levinson and S. Thrun, “Robust vehicle localization in urban
environments using probabilistic maps,” in 2010 IEEE international
conference on robotics and automation. IEEE, 2010, pp. 4372–4378.

[35] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song,
“Robust and precise vehicle localization based on multi-sensor fusion
in diverse city scenes,” in 2018 IEEE international conference on
robotics and automation (ICRA). IEEE, 2018, pp. 4670–4677.

[36] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards
learning based lidar localization for autonomous driving,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 6389–6398.

[37] M. Ibrahim, N. Akhtar, S. Anwar, M. Wise, and A. Mian, “Perth-wa
localization dataset in 3d point cloud maps,” 2023. [Online].
Available: https://dx.doi.org/10.21227/s2p2-2e66

http://dx.doi.org/10.1177/0278364916679498
https://dx.doi.org/10.21227/s2p2-2e66

