
Data-Efficient Policy Selection for Navigation in Partial Maps via
Subgoal-Based Abstraction

Abhishek Paudel and Gregory J. Stein

Abstract— We present a novel approach for fast and reliable
policy selection for navigation in partial maps. Leveraging
the recent learning-augmented model-based Learning over
Subgoals Planning (LSP) abstraction to plan, our robot reuses
data collected during navigation to evaluate how well other
alternative policies could have performed via a procedure we
call offline alt-policy replay. Costs from offline alt-policy replay
constrain policy selection among the LSP-based policies during
deployment, allowing for improvements in convergence speed,
cumulative regret and average navigation cost. With only lim-
ited prior knowledge about the nature of unseen environments,
we achieve at least 67% and as much as 96% improvements
on cumulative regret over the baseline bandit approach in our
experiments in simulated maze and office-like environments.

I. INTRODUCTION

We enable a robot to quickly identify the best performing
policy from a set of policies when it is deployed in partially-
mapped environments to navigate to an unseen goal. Goal-
directed navigation in partially-mapped environments is an
important capability for autonomous robots. A robot tasked
with navigating to a faraway goal in an unknown office
building will need to build the map as it travels, plan
through unknown regions of the map, and decide how to
act once that space is revealed. Efficient navigation in such
scenarios requires that the robot be able to reason about
the impacts of its actions far into the future, commonly
known as the long-horizon planning problem, which can
be formulated as a Partially-Observable Markov Decision
Process (POMDP) [1]. Solving such POMDPs is computa-
tionally intractable, and therefore many existing approaches
for planning in such scenarios leverage learning to guide the
robot’s behavior [2]–[7].

When navigating through a partial map, learning often
relies on sensor observations collected onboard the robot
(e.g., images and laser scans) to make predictions about the
goodness of the robot’s actions, thus guiding its behavior
towards actions that would have resulted in effective per-
formance in its training environments. However, in general,
the robot may have access to a family of such learning-
informed policies, each trained in a different environment,
and must select one from these to guide its behavior during
deployment. After planning with one of these policies, the
robot must use this policy’s cumulative performance to
determine whether it should select that policy again, or
switch to another in hopes of reducing navigation cost: an
instance of model selection applied to policy selection.

Abhishek Paudel and Gregory J. Stein are with Department of Com-
puter Science at George Mason University, Fairfax, Virginia, USA.
({apaudel4, gjstein}@gmu.edu)

Fig. 1. Overview of our approach for data-efficient policy selection
for navigation in partial maps. Our approach relies upon offline alt-
policy replay, a procedure to compute lower bounds of navigation costs
for alternate policies after deployment, bounds used to constrain selection.

Model selection approaches [8]–[15] aim to identify the
best performing models from a set of pre-defined behaviors
by deploying each policy multiple times and evaluating their
performance. Bandit algorithms [11]–[13], for example, trade
off between exploitation (choosing the learning-informed
policy that has performed best so far) and exploration to
pick another policy that could improve performance. Upper
Confidence Bound (UCB) Bandits [11] compute statistical
bounds on potential performance for each available policy
based on the observed performance of each and how often
they have been deployed. However, bandit algorithms are of-
ten black-box, and so tightening these bounds often requires
the robot to go through multiple planning attempts and incur
poor behavior before such policies can be ruled out. Owing
to the expense associated with lengthy (and poor-performing)
navigation trials, data efficiency is critical for such selection
approaches to be practically useful.

Instead, we reuse data collected during a trial to evaluate
how well other alternative policies could have performed and
use this evaluation to tighten the bounds on policy selection:
a procedure we call offline alt-policy replay, illustrated in
Fig. 1. Based on the information collected during each of
its trials, the robot, without collecting additional informa-
tion from the environment, replays how each of its other
alternative policies could have performed. Our offline alt-
policy replay approach makes an optimistic assumption about
space not seen during the navigation trial (i.e., that the robot
will spend only a minimal amount of time in unseen space)
allowing us to compute a strict lower bound on the possible
performance of each policy. This information constrains ban-
dit selection—exploration should never select a policy that
could not have improved performance during deployment so
far—and improves data efficiency of selection.

ar
X

iv
:2

30
4.

01
09

4v
2 

 [
cs

.R
O

] 
 1

 A
ug

 2
02

3



Our offline alt-policy replay approach depends upon hav-
ing a planning strategy for which an accurate bound on
its would-be performance can be determined via only the
limited information collected during the robot’s trials so
far. Not all planning strategies are amenable to such replay,
including model-free approaches trained via deep reinforce-
ment learning [16], [17], which can be brittle to changes in
their inputs [18]–[20]. It is a key insight of this work that
the recent model-based, learning-augmented Learning over
Subgoals Planning (LSP) of Stein et al. [2] is well-suited
for this purpose. Under the LSP abstraction, learning is used
only to make robot-pose-agnostic predictions about statistics
of unseen space: e.g., the likelihood that a particular region
of space will lead to the unseen goal. Since its approach to
learning is robust to changes in the robot’s location, offline
replay of LSP policies yields accurate lower bounds on cost
that can be used to constrain bandit-like selection.

In this paper, we develop a procedure for data-efficient
policy selection called offline alt-policy replay, which lever-
ages the information collected during navigation to evaluate
how well other alternative policies could have performed and
thereby constrain bandit-like selection of a set of Learn-
ing over Subgoals Planners [2]. Our robot is deployed in
simulated maze and office-like environments with multiple
learning-informed policies: each relies on the Learning over
Subgoals Planning abstraction and is trained in a different
environment. We demonstrate that our approach is able to
quickly reduce the average navigation cost within much
fewer trials compared to baseline UCB bandit approach
which generally takes longer to converge and has higher
cumulative regret than our approach. Our results validate that
our approach reliably performs better than the UCB bandit
and is often able to perform selection much more quickly.

II. RELATED WORK

Planning under Uncertainty POMDPs [1], [21] pro-
vide is a general framework to represent navigation and
exploration under uncertainty [22], [23]. However, they
are computationally intractable to solve, and so learning
is used for planning [2]–[7]. Deep reinforcement learning
approaches are also widely used for planning in partially-
mapped environments [24]–[26], but they are often limited
to short-horizon planning.

Model Selection Online model selection approaches in
reinforcement learning [8], [9], [27], [28] generalize bandits
and aim to identify best models from a set of available
models. Bandit algorithms [11]–[13], which are often black-
box, trade off between exploitation and exploration requiring
the robot to go through multiple trials with poor behavior
before identifying a better policy.

Runtime Monitoring So-called runtime monitoring
approaches aim to evaluate the deployment-time reliability
of learning-guided robot behavior [16], [29]–[31] to decide
whether one should continue using learning or resort to
backup strategies in case of degraded performance. Most
such approaches, however, focus on tackling issues associ-
ated with shortcomings of local perception or aim to monitor

performance in terms of the underlying learned model’s raw
predictions as opposed to the overall task performance [30],
[31], thus limiting their effectiveness in evaluating the good-
ness of long-horizon behavior.

III. PROBLEM FORMULATION

A. Goal-directed Navigation in Partial Maps

Our robot is placed in a partially-mapped environment and
tasked to reach a point-goal in unseen space in minimum
expected distance. We formulate this problem as a Partially
Observable Markov Decision Process (POMDP) [1]. The
belief state bt captures the partially-observed map and the
robot’s pose at time t. The robot is equipped with a planar
laser scanner, and so it is capable of reliably mapping its
surroundings in places it has already seen and determin-
ing its location with high precision, a subset of POMDPs
recently coined as a Locally Observable Markov Decision
Process [32]. Robot behavior is guided by a policy π that
specifies the action the robot should take from the belief bt,
stored as a partial occupancy map mt and the set of visual
observations collected by the robot. During deployment,
performance is measured as the average distance traveled
to reach the goal across a number of trials; a trial is a single
traversal from start to goal in a previously-unseen map.

B. Policy Selection during Deployment

We consider that the robot has access to a set of policies
P = {π1, π2, · · · , πN}, and its objective is to pick the policy
that minimizes the expected cost during deployment,

π∗ = argmin
π∈P

E[C(π)] (1)

where E[C(π)] is the expected cost of policy C(π) during
deployment. However, in general we will not have direct
access to the expected cost and must instead estimate it
during deployment via execution of multiple trials.

C. Limits of Black Box Policy Selection for Planning in a
Partial Map

Black box policy selection methods—e.g., many bandit
algorithms—aim to select policies by balancing minimization
of the average cost observed so far and exploration, so as to
occasionally select policies that have the potential to improve
performance. For trial k + 1, the Upper Confidence Bound
(UCB)1 [11], [33] bandit algorithm selects the next policy
π(k+1) according to

π(k+1) = argmin
π∈P

[
C̄k(π)− c

√
ln k

nk(π)

]
(2)

where C̄k(π) is the average cost over trials 1–k in which
policy π was selected, nk(π) is the number of times policy
π was selected (up to trial k), and c > 0 is a parameter
controlling the balance between exploration and exploitation.

1Eq. (2) uses a lower confidence bound (LCB) instead of a UCB, since
our performance estimates are represented as costs instead of rewards and
is therefore minimized. As such, we use the more common term UCB to
mean the approach in general rather than the upper bound itself.



However, for navigation under uncertainty, each trial is
expensive to execute, and the results of these trials depend
on the environment map and so often have high variance.
Policy selection via Eq. (2) is therefore often problematically
slow to converge, limiting the utility of this approach in
practice. Narrowing the confidence bounds on the expected
performance of each policy requires deploying them, often
multiple times, and therefore the robot would potentially
need to go through repeated attempts of poor performing
behavior before such policies can be ruled out. Instead, we
aim to improve the data efficiency of selection via a white-
box selection strategy that uses offline alt-policy replay to
compute bounds on how well each policy could have done in
the trials so far, and uses these bounds to constrain selection.

IV. OVERVIEW: DATA-EFFICIENT POLICY SELECTION
VIA OFFLINE ALT-POLICY REPLAY

If we are to accelerate policy selection, we must be able to
quickly tighten the bounds on expected performance for each
policy, prioritizing selection of the most promising policies
with fewer trials. As such, we seek to constrain policy
selection by determining how well an alternative policy could
have performed if it had instead been in charge. While we
cannot re-deploy the robot to repeat the same trial with
another policy, information collected during the trial can be
used to scrutinize alternative behaviors and determine a lower
bound on their performance even without deployment.

We seek to use deployment-time offline alt-policy replay to
compute a lower bound on the performance of policies that
did not control the robot’s behavior during the trial. Using
the information collected by policy π during its trial, we
can replay how every other alternative policy π′ ∈ P \ π
could have performed. Our offline alt-policy replay makes
optimistic assumptions about space not seen during the
navigation trial (i.e., that the robot will only spend a minimal
amount of time in unseen space), allowing us to compute a
strict lower bound on the mean performance of each policy so
far (see Sec. VII-C, VII-D). We use this lower bound on the
mean C̄ lb to constrain UCB bandit selection, so that policies
that could not have improved performance are not selected.
Our Constrained UCB Bandit algorithm selects according to

π(k+1) = argmin
π∈P

[
max

(
C̄ lb

k(π), C̄k(π)− c

√
ln k

nk(π)

)]
(3)

Intuitively, Eq. (3) always picks the tighter (i.e., higher) of
the lower bounds between (i) C̄ lb

k , the lower bound computed
via offline alt-policy replay, and (ii) bound computed by UCB
algorithm as shown in Eq. (2) and then minimizes over this
bound to pick a policy for next trial.

V. OFFLINE POLICY REPLAY REQUIRES A PLANNING
APPROACH ROBUST TO VANTAGE POINT CHANGE

Scrutinizing alternative behavior to determine the lower
bound on cost Clb

k(π) needed for selection via our constrained
UCB bandit algorithm, Eq. (3), requires that we can perform
offline alt-policy replay of robot behavior under an alternative
policy without actually deploying the robot. In general,

replaying a policy offline requires an ability to generate
observations from poses the robot may not have visited,
which for many learning-informed planning strategies in this
domain will not accurately reflect how the policy would
have behaved if it had been in control of the robot. Many
approaches to vision-informed navigation under uncertainty,
particularly those relying on deep reinforcement learning [7],
[17], require observations (images) from poses and vantage
points not visited during the original trial and can be brittle
to even small changes [18], and so replay of such policies is
unlikely to yield an accurate lower bound on cost. As such,
we instead require an approach to planning that is robust to
changes in viewpoint and a kind of policy that is robust to
minor changes in robot pose and corresponding observations,
and can reliably reach the goal even in environments where
learning informs poor behavior.

VI. PRELIMINARIES: THE LEARNING OVER SUBGOALS
MODEL-BASED PLANNING ABSTRACTION

It is a key insight that the Learning over Subgoals Plan-
ning (LSP) of Stein et al. [2] is well-suited for offline alt-
policy replay while being suitable for long horizon planning
in partially-mapped environments. LSP is a high level plan-
ning framework in which navigation in a partially-mapped
environment is formulated as a Partially Observable Markov
Decision Process (POMDP). In this abstraction, subgoals
represent the robot’s high-level actions of navigating to a
frontier: i.e. a boundary between free and unseen region
in the map. Each action at corresponding to a subgoal has
three properties associated with it: likelihood that the subgoal
leads to the goal PS(at), expected cost of reaching the
goal via the subgoal RS(at), and expected cost of failure
or exploration in case the subgoal doesn’t lead to the goal
RE(at). A neural network, parameterized by θ, is trained via
supervised learning to estimate the subgoal properties Rθ =
{PS,θ, RS,θ, RE,θ} based on image observations centered at
the subgoal. A factored form of Bellman equation shown in
Eq. (4) is used to calculate the expected cost of each action,

Qθ(bt, at) = D(bt, at) + PS,θ(at)RS,θ(at)

+ (1− PS,θ(at))

[
RE,θ(at) + min

a∈A(bt)\at

Qθ(bt, a)

]
(4)

where D(bt, at) is the known cost of navigating to a frontier.
The robot’s policy is then to minimize expected cost:

πθ(bt) = argmin
a∈A(bt)

Qθ(bt, a) (5)

Since learning is used only to make robot-pose-agnostic
predictions of subgoal properties using panoramic image
oriented so as to face the subgoal, LSP is robust to changes in
the robot’s location and corresponding image observations,
and is therefore suitable for offline alt-policy replay.

A. Planning via Learning over Subgoals Planning

At each time step, the robot selects a high-level action
at via Eq. (4) that specifies the subgoal towards which the
robot will navigate. Upon selecting a high-level action, the



robot computes a cost grid over the observed map via A∗ [34]
and selects a low-level (short-horizon) motion primitive that
makes the most progress towards the subgoal. The robot
(i) executes this primitive action, (ii) updates the partial
map via laser scanner observations, (iii) recomputes the
subgoals (and, if necessary the subgoal properties PS , RS ,
and RE from panoramic images collected onboard the robot),
and finally (iv) replans via Eq. (4). As planning via LSP
continually seeks out unexplored space until the goal is
reached, it is guaranteed to reach the goal if a feasible path
exists, even when learning informs poor behavior.

B. Network Architecture and Training
The neural network takes as input a 128 × 512 RGB

panoramic image centered on a subgoal, the relative subgoal
location and the relative goal location. Our neural network
architecture and training procedure closely follow that of
Bradley et al. [35]. The input image is encoded by first
passing through 4 convolutional layers and then concate-
nated with the features representing the relative locations of
subgoal and goal. These concatenated features go through
9 convolutional layers and then 5 fully connected layers to
output 3 subgoal properties: PS , RS , and RE .

To generate training data, we conduct hundreds of trials
in previously unseen maps in which the robot navigates
from start to goal via a non-learned heuristic-driven planner,
collecting images of the environment at each step. The target
labels for PS , RS , and RE corresponding to these images for
observed subgoals are computed using the underlying known
map. Labels for PS correspond to whether or not a path to
goal exists via a subgoal. Labels for the costs correspond
to the travel distance to reach the goal through unknown
space if the goal can be reached via a subgoal (for RS) and
to a heuristic cost approximating the distance robot would
need to travel before meeting a dead end if the goal cannot
be reached via a subgoal (for RE). Further details on data
collection and training can be found in [2], [35].

VII. APPROACH: OFFLINE ALT-POLICY REPLAY VIA
LEARNING OVER SUBGOALS

Our approach leverages information collected during a trial
to perform offline replay of policies. During offline alt-policy
replay, we make optimistic or simply-connected assumptions
about the unseen space to compute an approximate lower
bound cost for these policies which is then used to constrain
UCB bandit to accelerate policy selection.

A. Information Collection during a Trial
During a trial (a single navigation from start to goal), we

record information needed for the offline replay of other
policies. For a trial k, the policy π(k) determines behavior,
producing a record Zk that includes a list of tuples (Xt, It)
where Xt = (xt, yt, ϕt) is the robot pose at time t and
It is a panoramic image collected by the robot at time t.
The record Zk also includes the partially-known occupancy
grid map mfinal obtained after reaching the goal. The record
Zk = {(Xt, It)t∈1···M ,mfinal} is then used to perform offline
replay of robot behavior guided by every other policy.

B. Offline Alt-Policy Replay Overview

Upon completion of a trial (e.g., trial k), the robot seeks to
replay behavior of all other LSP-policies π′ ∈ P \ π(k) using
the record Zk it collected during the trial. Offline alt-policy
replay proceeds similarly to online planning via LSP, as
described in Sec. VI-A: at every replay time step τ , the robot
updates its map using a simulated laser scan, computed by
ray-casting into the 2D partial map mfinal, and subsequently
recomputes the available subgoals, each corresponding to a
boundary between free and unknown space.

To compute the subgoal properties PS , RS , RE associated
with exploration into a particular region of unseen space, the
robot requires panoramic images to be fed into its neural
network (Sec. VI-B). Though images will not be available
at every point in the environment during offline alt-policy
replay, subgoal properties are instead estimated from nearby
images stored in Zk. Specifically, we find the pose Xnearest
from Zk nearest to the current (replay) pose Xτ that can
see the subgoal of interest and then use its associated image
Inearest to estimate the subgoal properties. Using the estimated
subgoal properties, the robot selects a high-level action via
Eq. (4), executes a low-level motion primitive to navigate
towards the selected subgoal-action, and this process repeats.
Critically, if we replay the deployed policy π(k) using its own
record Zk, we recover its behavior exactly.

C. Computing an Approximate Lower Bound Cost

As the robot navigates to goal during offline alt-policy
replay, it might attempt to enter space not seen by the robot
planning with policy π(k) and thus unknown in the partial
map mfinal. Since this space is not known, we cannot know
precisely what will happen in this unseen space and so we
instead make conservative assumptions about what could
happen: we assume that the robot either (i) reaches the goal
in the shortest possible distance through unseen space or (ii)
is immediately turned around and must pursue a different
route to the goal. Based on what we know about unseen
space—e.g., whether or not the environment is known to
be simply-connected or the likelihood that there exists an
undiscovered shortcut to the goal—we can make different
assumptions and use them to compute lower bounds on
the cost. Here (and visualized in Fig. 2) we discuss these
different assumptions, their implications, and when each is
appropriate.

Optimistic Cost Lower Bound If we have no prior
information about the structure of unseen space, we make
an optimistic assumption about unseen space: that all unseen
space is free and could therefore provide a potential route to
the goal. Under this assumption, whenever the actions from
offline-replayed policy leads the robot to leave known space
(via a subgoal s′), we assume the robot could have reached
the goal via the shortest possible path in mfinal that passes
through s′. Fig. 2(b) shows two examples of such alternative
paths. Upon attempting to leave known space, we compute
the optimistic path cost, mask that particular frontier (so that
the robot must continue exploration through known space),
and proceed with navigation. We generate such optimistic



Fig. 2. Lower Bound Cost Approximation: (a) Policy π guides the robot
in a trial. (b) During offline alt-policy replay, policy π′ attempts to leave
known space via subgoal s′ to try to reach goal with proposed path ua. The
minimum of such paths obtained during replay gives the optimistic lower
bound of policy π′. (c) With simply-connected assumption, the lower bound
is the net distance travelled under policy π′ during offline replay.

path costs every time the offline-replayed robot attempts
to leave known space. The shortest of these paths is the
optimistic lower bound cost C lb,opt

k (π′) for a replayed policy
π′ in trial k.

Simply-Connected Cost Lower Bound If we were
to know in advance that the environments were simply-
connected, we could come up with a tighter lower bound on
the cost, since the shortest path to the goal should exist within
known space in mfinal and routes that leave observed space
will not reach the goal. During offline-replayed navigation,
whenever the robot attempts to leave known space, the
boundary through which it aims to leave is masked as an
obstacle before it is allowed to do so, forcing it to turn back
and seek an alternate route to the goal, Fig. 2(c). The total
distance traveled to reach the goal is the simply-connected
lower bound cost C lb,s.c.

k (π′) for a replayed policy π′.
Weighted Approximate Cost Lower Bound In many

environments, the optimistic lower bound is not particularly
tight, and so does not help to accelerate selection, yet if the
environment is not known to be simply connected, the simply
connected lower bound may be too high and not a lower
bound on cost. Often, we can use our prior understanding of
an environment to determine the likelihood that alternative
shortcuts to the goal could exist in space the robot did not see
during its trial. We introduce a parameter pshort that denotes
the likelihood of the existence of a shorter path to goal.
This parameter is used to compute a third approximate lower
bound, defined as the weighted sum of the optimistic and
simply-connected bounds:

C lb,wgt

k,p (π
′) = pshortC

lb,opt

k (π′) + (1− pshort)C
lb,s.c.
k (π′) (6)

While the weighted approximate lower bound cost may not
strictly be a lower bound, and so may violate guarantees of
asymptotic regret bounds afforded by UCB bandit selection,
we will show that this approximate lower bound cost helps
to achieve good empirical performance (Sec. VIII-B).

D. Combining Observed and Replayed Lower Bound Costs

As trials proceed, we compute an approximate lower
bound on the mean C̄ lb, that combines both averaged perfor-
mance C̄k(π) of policy π until trial k and the mean replayed
lower bound C̄ lb,rep, the average cost computed from offline

Fig. 3. The Simulated Environments. Robot-view panoramic images
from simulation environments (top two rows) and samples of maps from
(a) maze (b) office-like environments. All our experiments are conducted in
simulated environments rendered using the Unity game engine.

alt-policy replay via one of the lower bounds defined in
Sec. VII-C:

C̄ lb
k(π) =

nk(π)C̄k(π) + nrep

k (π)C̄
lb,rep

nk(π) + nrep

k (π)
(7)

where nk(π) and nrep

k (π) are the number of times each policy
has been deployed and offline-replayed, respectively.

Constrained policy selection based on modified UCB
bandit formulation discussed in Sec. IV leverages this lower
bound C̄ lb

k(π) to quickly identify the best-performing policy.

VIII. EXPERIMENTAL RESULTS

We perform experiments in simulated maze and office-
like environments (Fig. 3), evaluating our constrained policy
selection approach, Const-UCB, Eq. (3) against baseline
UCB bandit selection, Eq. (2). We conduct 200 deployments,
each consists of 100 navigation trials, each in a distinct,
procedurally-generated map not yet seen by the robot. At the
outset of each deployment, the robot starts with a randomly
selected policy. The policy for subsequent trials is selected
via our Const-UCB approach or the UCB bandit. Both our
Const-UCB approach and the baseline UCB bandit approach
use an exploration parameter c = 100 in all experiments,
empirically chosen on a held out test set to achieve good
performance on the baseline UCB bandit approach. We note
that the results are not particularly sensitive to changes in
c. We additionally show results of deploying each policy
individually in the absence of policy selection to illustrate the
necessity of deployment-time selection for good performance
across environments.

A. Maze-centric Results

Our simulated maze environments consist of randomly
generated simply-connected mazes in which the robot needs
to navigate from start to unseen goal. Each generated map is
unique with randomized start and goal poses. To study the
versatility and effectiveness of our approach, we design three
variations of the maze environments and train an LSP-based
policy (Sec. VI) in each. Shown in Fig. 3, the three maze
environment variations are as follows:



Deployment Environment Maze-Green Maze-Gray Maze-Random

Num of Trials (k) k = 10 k = 40 k = 100 k = 10 k = 40 k = 100 k = 10 k = 40 k = 100
A

ve
ra

ge
N

av
.C

os
t

(m
ea

n)
UCB-Bandit (baseline) 250.04▲ 190.08♦ 170.88■ 230.66▲ 187.71♦ 172.10■ 290.89▲ 216.87♦ 194.20■
Const-UCB:C lb,opt (ours) 175.38▲ 159.14♦ 155.08■ 173.96▲ 163.50♦ 158.81■ 209.44▲ 186.21♦ 181.20■
Const-UCB:C lb,s.c. (ours) 163.56▲ 153.12♦ 152.13■ 165.62▲ 158.06♦ 155.94■ 197.30▲ 182.14♦ 179.66■
Best Single Policy2 150.39▲ 150.39♦ 150.39■ 154.03▲ 154.03♦ 154.03■ 177.31▲ 177.31♦ 177.31■

C
um

ul
.

R
eg

re
t

(m
ea

n) UCB-Bandit (baseline) 1327.0△△△ 3105.9♢♢♢ 4761.4□□□ 994.1△△△ 2444.8♢♢♢ 3879.4□□□ 1472.0△△△ 3391.9♢♢♢ 4892.1□□□
Const-UCB:C lb,opt (ours) 369.1△△△ 813.4♢♢♢ 1180.5□□□ 278.2△△△ 698.9♢♢♢ 1076.9□□□ 417.8△△△ 918.6♢♢♢ 1249.1□□□
Const-UCB:C lb,s.c. (ours) 259.2△△△ 446.6♢♢♢ 573.3□□□ 208.4△△△ 419.1♢♢♢ 565.0□□□ 309.5△△△ 600.6♢♢♢ 786.9□□□

Fig. 4. Average Navigation Cost (mean) and Cumulative Regret (mean) for deployments in maze environments, Fig. 3(a). Each deployment
consists of 100 randomized navigation trials, each in a previously unseen maze. Mean cost and regret are computed across 200 randomized deployments.
For our approach Const-UCB, we show results with optimistic C lb,opt and simply connected C lb,s.c. lower bounds as discussed in Sec. VII-C. The solid
lines denote the mean, and the shaded regions show 10th to 90th percentile. The symbols: triangle, diamond and square denote average cost (filled) and
cumulative regret (unfilled) at 10th, 40th and 100th trial respectively in both the table and the plot for each environment.

TABLE I
AVERAGE NAVIGATION COST FOR EACH POLICY IN MAZE-CENTRIC

ENVIRONMENTS WITHOUT POLICY SELECTION

Maze-Green Maze-Gray Maze-Random

Non-learned 206.05 194.37 177.31
LSP-Maze-Green 150.39 483.20 557.99
LSP-Maze-Gray 618.87 154.03 418.98
LSP-Maze-Random 231.71 238.22 180.23

Maze-Green The floor is generally gray, but a green path on
the ground connects the start to goal. The green color
is thus a signal an experienced agent should recognize
as leading towards the unseen goal.

Maze-Gray Similar to the Maze-Green environment, yet the
color of the floor and path are flipped: the floor is green
with a gray path to the goal. Thus, this environment
should mislead policies trained in Maze-Green.

Maze-Random The green path on gray floor is placed
randomly and is not a reliable route to goal.

We train a LSP-based policy in each—yielding LSP-Maze-
Green, LSP-Maze-Gray, and LSP-Maze-Random—following
the procedure in Sec. VI-B. Each LSP-based policy is trained
on 500 randomly generated mazes. Each maze map during a
navigation trial is also distinct and is not a part of the training
set. We also deploy a non-learned optimistic baseline policy
that our approach can select; the non-learned policy, instead
of using a neural network, uses optimistic heuristics about
the environment to compute the subgoal properties, namely

2For each environment, “Best Single Policy” refers to the policy which
incurs minimum cost when deployed in that environment. The costs incurred
by Best Single Policy are underlined in Table I and II.

that each subgoal could lead to the unseen goal: i.e., PS = 1.
We evaluate policy selection approach across 100 trials

in each maze variation. Each trial consists of a randomly
generated maze not present during the training of corre-
sponding policies. Policy selection evaluation for each trial3

is aggregated over 200 randomized deployments to compute
statistics; we compute the mean and upper and lower 10th-
percentile and show results in Fig. 4. We show average nav-
igation cost and cumulative regret accrued until kth trial for
each approach. UCB-Bandit is the baseline policy selection
approach using Eq. (2), and Const-UCB corresponds to our
constrained policy selection approach using Eq. (3).

The results in Fig. 4 show that in all environments, our
constrained UCB (Const-UCB) bandit approach accelerates
policy selection, reducing average navigation costs within
far fewer trials than is possible with the UCB-Bandit alone.
Consequently, our Const-UCB approach accumulates sig-
nificantly lower mean cumulative regret compared to UCB
bandit: 88% lower in Maze-Green, 85% lower in Maze-Gray
and 84% lower in Maze-Random owing to quickly ruling
out poor performing policies. The maze environments are
constructed so as to be simply-connected and selection with
the simply-connected lower bound C lb,s.c. achieves the best
performance. Even if we did not know in advance that the en-
vironments were simply-connected, our selection procedure
using the optimistic lower bound C lb,opt outperforms baseline
UCB bandit, demonstrating the utility of our approach.

3For computational efficiency when computing statistics, each deploy-
ment randomly samples a subset of 100 distinct evaluation scenarios from
a set of 150, run in advance of model selection for each policy.



Deployment Environment Maze-Green Office-Base Office-Diff

Num of Trials (k) k = 10 k = 40 k = 100 k = 10 k = 40 k = 100 k = 10 k = 40 k = 100
A

ve
ra

ge
N

av
ig

at
io

n
C

os
t

(m
ea

n) UCB-Bandit (baseline) 213.90▲ 184.62♦ 168.87■ 648.02▲ 503.31♦ 470.43■ 638.02▲ 508.72♦ 480.22■
Const-UCB:C lb,opt (ours) 174.03▲ 158.88♦ 155.03■ 642.21▲ 505.00♦ 469.48■ 622.17▲ 508.17♦ 475.46■
Const-UCB:C lb,wgt

p=0.5 (ours) 165.65▲ 154.23♦ 152.63■ 467.63▲ 451.30♦ 446.58■ 476.77▲ 456.97♦ 452.43■
Const-UCB:C lb,s.c. (ours) 163.01▲ 152.91♦ 152.03■ 454.22▲ 446.93♦ 444.77■ 483.54▲ 458.35♦ 454.27■
Best Single Policy2 150.39▲ 150.39♦ 150.39■ 442.95▲ 442.95♦ 442.95■ 424.84▲ 424.84♦ 424.84■

C
um

ul
.

R
eg

re
t

(m
ea

n)

UCB-Bandit (baseline) 736.7△△△ 2138.7♢♢♢ 3603.1□□□ 3180.7△△△ 6186.5♢♢♢ 8495.4□□□ 3389.6△△△ 6978.6♢♢♢ 10948.8□□□
Const-UCB:C lb,opt (ours) 332.2△△△ 760.7♢♢♢ 1121.3□□□ 2003.2△△△ 5053.6♢♢♢ 7309.7□□□ 2374.3△△△ 5848.0♢♢♢ 9615.9□□□
Const-UCB:C lb,wgt

p=0.5 (ours) 274.9△△△ 504.0♢♢♢ 674.8□□□ 222.1△△△ 568.5♢♢♢ 847.5□□□ 719.6△△△ 1783.2♢♢♢ 3599.2□□□
Const-UCB:C lb,s.c. (ours) 249.8△△△ 428.9♢♢♢ 546.4□□□ 74.5△△△ 230.9♢♢♢ 327.4□□□ 749.3△△△ 1887.6♢♢♢ 3737.3□□□

Fig. 5. Average Navigation Cost (mean) and Cumulative Regret (mean) for deployments in office-centric environments, Fig. 3(b). Each deployment
consists of 100 randomized navigation trials, each in a previously unseen map. Mean cost and regret are computed across 200 randomized deployments. For
our approach Const-UCB, we show results with optimistic C lb,opt, weighted C lb,wgt and simply connected C lb,s.c. lower bounds as discussed in Sec. VII-C.
The solid lines denote the mean, and the shaded regions show 10th to 90th percentile. The symbols: triangle, diamond and square denote average cost
(filled) and cumulative regret (unfilled) at 10th, 40th and 100th trial respectively in both the table and the plot for each environment.

TABLE II
AVERAGE NAVIGATION COST FOR EACH POLICY IN OFFICE-CENTRIC

ENVIRONMENTS WITHOUT POLICY SELECTION

Maze-Green Office-Base Office-Diff

Non-learned 206.05 448.60 476.88
LSP-Maze-Green 150.39 1667.70 1759.76
LSP-Office-Base 258.76 442.95 641.88
LSP-Office-Diff 306.45 942.62 424.84

B. Office-centric Results

We simulate navigation in procedurally-generated office-
like environments consisting of randomly generated inter-
connected hallways with rooms meant to look like offices
with furniture-like clutter. Each generated map is unique
with randomized start and goal poses. Fig. 3 shows example
offices from our visual simulator. We design and experiment
in two variants of the office environments:
Office-Base The hallway walls are painted with gray while

room walls are yellow.
Office-Diff The wall colors for hallways and rooms are

swapped to look visually different from Office-Base.
Two LSP-based policies, LSP-Office-Base and LSP-

Office-Diff, are trained in their corresponding environments
following the procedure in Sec. VI-B. Similar to maze
experiments, each LSP-based policy in office environments
is trained in 500 randomly generated offices while deploying
on a different set of maps. In addition to these two policies,
we deploy an optimistic non-learned policy and the LSP-
Maze-Green policy (see Sec. VIII-A for both), the latter of

which is trained in Maze-Green, showing cross-environment
policy selection and thus the flexibility of our approach. De-
ployment and statistics generation follow the same procedure
as described for maze experiments (Sec. VIII-A).

The results in Fig. 5 show that our constrained UCB
(Const-UCB) bandit approach reduces the average navigation
cost within fewer trials compared to the baseline UCB bandit
approach in all of our experiments, more quickly converging
closer to the costs of the best performing policy, and never
under-performs the bandit. Consequently, our Const-UCB
approach accumulates significantly lower mean cumulative
regret compared to UCB bandit: 85% lower in Maze-Green
(with C lb,s.c. bound), 96% lower in Office-Base (with C lb,s.c.

bound) and 67% lower in Office-Diff (with C lb,wgt
p=0.5 bound)

owing to quickly ruling out poor performing policies.

Our office environment is not simply connected, and so
only the optimistic lower bound C lb,opt maintains guarantees
on long-term convergence; the least tight of the bounds,
it only non-trivially improves performance (i.e., constrains
selection) when the office-trained policies are deployed in the
maze environment. However, even some assumptions about
the structure of unseen space are helpful for more strongly
constraining selection. Though they may violate theoretical
guarantees on asymptotic performance in general, we show
that using the weighted lower bound cost C lb,wgt

p=0.5 , with a p =
50% likelihood a shorter alternative path exists, and the non-
simply-connected assumptions result in improvements over
the unconstrained UCB bandit in both office environments.



IX. CONCLUSION AND FUTURE WORK

We present a data-efficient policy selection approach that
leverages Learning over Subgoals Planning-enabled offline
alt-policy replay to compute a lower bound on the perfor-
mance of policies based on the partial map and images
collected from the environment during navigation, and use
bandit-like method to identify the best-performing policy
quickly. Our approach enables the learning-guided robot to
reduce average navigation cost in a wide variety of partially-
mapped environments by picking only those policies that
are known to perform better or have the potential to do
so and thereby significantly reducing the cumulative regret
compared to the baseline UCB bandit. In future, we hope
to extend our work to perform policy selection with online
retraining or adaptation of policies in new environments.

X. ACKNOWLEDGEMENT

We would like to thank Jana Košecká, George Konidaris
and Kevin Doherty for their thoughtful feedback on this
work. This material is based upon work supported by the
National Science Foundation under Grant No. 2232733.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, 1998.

[2] G. J. Stein, C. Bradley, and N. Roy, “Learning over subgoals for effi-
cient navigation of structured, unknown environments,” in Conference
on Robot Learning. PMLR, 2018.

[3] C. Richter, J. Ware, and N. Roy, “High-speed autonomous navigation
of unknown environments using learned probabilities of collision,”
in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014.

[4] G. Wayne, C.-C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-
Barwinska, J. Rae, P. Mirowski, J. Z. Leibo, A. Santoro et al.,
“Unsupervised predictive memory in a goal-directed agent,” arXiv
preprint arXiv:1803.10760, 2018.

[5] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), 2017.

[6] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised deep reinforcement learning with generalized computation
graphs for robot navigation,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018.

[7] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre et al., “Learning to navigate in
complex environments,” arXiv preprint arXiv:1611.03673, 2016.

[8] J. Lee, A. Pacchiano, V. Muthukumar, W. Kong, and E. Brunskill,
“Online model selection for reinforcement learning with function
approximation,” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2021.

[9] J. Reisinger, P. Stone, and R. Miikkulainen, “Online kernel selection
for bayesian reinforcement learning,” in Proceedings of the 25th
International Conference on Machine Learning, 2008.

[10] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge
University Press, 2020.

[11] T. L. Lai, H. Robbins et al., “Asymptotically efficient adaptive
allocation rules,” Advances in Applied Mathematics, 1985.

[12] J. C. Gittins, “Bandit processes and dynamic allocation indices,”
Journal of the Royal Statistical Society: Series B (Methodological),
1979.

[13] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
1933.

[14] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit
problems,” arXiv preprint arXiv:1402.6028, 2014.

[15] S. Mannor and J. N. Tsitsiklis, “The sample complexity of exploration
in the multi-armed bandit problem,” Journal of Machine Learning
Research, 2004.

[16] P. Mallozzi, E. Castellano, P. Pelliccione, G. Schneider, and K. Tei,
“A runtime monitoring framework to enforce invariants on rein-
forcement learning agents exploring complex environments,” in 2019
IEEE/ACM 2nd International Workshop on Robotics Software Engi-
neering (RoSE), 2019.

[17] J. Kulhánek, E. Derner, T. De Bruin, and R. Babuška, “Vision-based
navigation using deep reinforcement learning,” in 2019 European
Conference on Mobile Robots (ECMR), 2019.

[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” in AAAI Con-
ference on Artificial Intelligence, 2018.

[19] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[20] Y. Xiang, W. Niu, J. Liu, T. Chen, and Z. Han, “A PCA-based model
to predict adversarial examples on Q-learning of path finding,” in 2018
IEEE Third International Conference on Data Science in Cyberspace
(DSC), 2018.

[21] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, Learning
Policies for Partially Observable Environments: Scaling Up. Morgan
Kaufmann Publishers Inc., 1997.

[22] S. Candido and S. Hutchinson, “Minimum uncertainty robot navigation
using information-guided POMDP planning,” in 2011 IEEE Interna-
tional Conference on Robotics and Automation, 2011.

[23] H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee, “Motion planning
under uncertainty for robotic tasks with long time horizons,” The
International Journal of Robotics Research, 2011.

[24] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cog-
nitive mapping and planning for visual navigation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[25] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

[26] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017.

[27] A. Ghosh and S. R. Chowdhury, “Model selection in reinforce-
ment learning with general function approximations,” arXiv preprint
arXiv:2207.02992, 2022.

[28] A. Pacchiano, C. Dann, C. Gentile, and P. Bartlett, “Regret bound
balancing and elimination for model selection in bandits and RL,”
arXiv preprint arXiv:2012.13045, 2020.

[29] Q. M. Rahman, P. Corke, and F. Dayoub, “Run-time monitoring of
machine learning for robotic perception: A survey of emerging trends,”
IEEE Access, 2021.

[30] W. Zhou, J. S. Berrio, S. Worrall, and E. Nebot, “Automated evaluation
of semantic segmentation robustness for autonomous driving,” IEEE
Transactions on Intelligent Transportation Systems, 2019.

[31] S. Daftry, S. Zeng, J. A. Bagnell, and M. Hebert, “Introspective
perception: Learning to predict failures in vision systems,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016.

[32] M. Merlin, N. Parikh, E. Rosen, and G. Konidaris, “Locally observable
markov decision processes,” in ICRA 2020 Workshop on Perception,
Action, Learning, 2020.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 2018.

[34] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, 1968.

[35] C. Bradley, A. Pacheck, G. J. Stein, S. Castro, H. Kress-Gazit, and
N. Roy, “Learning and planning for temporally extended tasks in
unknown environments,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021.


	Introduction
	Related Work
	Problem Formulation
	Goal-directed Navigation in Partial Maps
	Policy Selection during Deployment
	Limits of Black Box Policy Selection for Planning in a Partial Map

	Overview: Data-Efficient Policy Selection via Offline Alt-Policy Replay
	Offline Policy Replay Requires a Planning Approach Robust to Vantage Point Change
	Preliminaries: The Learning over Subgoals Model-Based Planning Abstraction
	Planning via Learning over Subgoals Planning
	Network Architecture and Training

	Approach: Offline Alt-Policy Replay via Learning over Subgoals
	Information Collection during a Trial
	Offline Alt-Policy Replay Overview
	Computing an Approximate Lower Bound Cost
	Combining Observed and Replayed Lower Bound Costs

	Experimental Results
	Maze-centric Results
	Office-centric Results

	Conclusion and Future Work
	Acknowledgement
	References

