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RACECAR - The Dataset for High-Speed Autonomous Racing
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Fig. 1: RACECAR is the first multi-model sensor data collected from fully autonomous Indy race cars operating at speeds
of up to 170 mph (274 kph). The dataset spans 11 racing scenarios with over 6.5 hours of track activity.

Abstract— This paper describes the first open dataset for full-
scale and high-speed autonomous racing. Multi-modal sensor
data has been collected from fully autonomous Indy race cars
operating at speeds of up to 170 mph (273 kph). Six teams who
raced in the Indy Autonomous Challenge have contributed to
this dataset. The dataset spans 11 interesting racing scenarios
across two race tracks which include solo laps, multi-agent
laps, overtaking situations, high-accelerations, banked tracks,
obstacle avoidance, pit entry and exit at different speeds. The
dataset contains data from 27 racing sessions across the 11
scenarios with over 6.5 hours of sensor data recorded from the
track. The data is organized and released in both ROS2 and
nuScenes format. We have also developed the ROS2-to-nuScenes
conversion library to achieve this. The RACECAR data is
unique because of the high-speed environment of autonomous
racing. We present several benchmark problems on localization,
object detection and tracking (LiDAR, Radar, and Camera),
and mapping using the RACECAR data to explore issues that
arise at the limits of operation of the vehicle.

I. INTRODUCTION

While autonomous vehicle research and development is
focused on handling routine driving situations, achieving
the safety benefits of autonomous vehicles also requires
a focus on driving at the limits of the control of the
vehicle. Demonstrating high-speed autonomous racing can
be considered as a grand challenge for autonomous driv-
ing and making progress here has the potential to enable

breakthroughs in agile and safe autonomy. In recent years
autonomous, racing competitions, such as F1/10 autonomous
racing [1], [2], Indy Autonomous Challenge [3], [4], [5],
and Formula SAE Driverless [6], [7] are becoming proving
grounds for testing motion planning and control algorithms
at high speeds. While the autonomous racing community
and research have grown [8] by an order of magnitude
due to these competitions, the field is still very specialized
and exclusive. Full-scale autonomous racing like the Indy
Autonomous Challenge requires a large research team to
develop the autonomous racing stack. As such, there are only
9 university teams in the world that own and operate full-
scale fully-autonomous Indy race cars. The barrier to entry
into autonomous racing is high and the underlying research
challenges remain elusive from the reach of the larger com-
puter vision, machine learning, and robotics communities.

This paper presents the RACECAR dataset which con-
tains multi-modal sensor data collected from the Indy Au-
tonomous Challenge during the 2021-22 racing season. The
autonomous race cars were outfitted with a full sensor suite
for localization and perception, including solid state LiDARs,
high precision RTK GNSS and IMU units, multiple cameras,
and radar sensors. This paper has the following contributions:

1) We present the RACECAR dataset describing the
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Fig. 2: [Left] The AV-21 is a modified Indy Lights racecar retrofitted with 3 LiDARs, 6 Cameras, 3 Radars, 2 GNSS systems.
[Right] The Indy Autonomous Challenge (IAC) held its first autonomous race at the Indianapolis Motor Speedway (IMS)
track in 2021, followed by a head-to-head overtaking competition held at the Las Vegas Motor Speedway (LVMS).

unique features, and autonomous racing contexts within
which this data was collected.

2) We developed a ROS2 to nuScenes conversion library
which allows us to release the dataset in both ROS2 bag
file format, ubiquitously used by the robotics commu-
nity, as well as in nuScenes format.

3) Using the RACECAR data, we provide benchmark chal-
lenges for the research community on high-speed lo-
calization, object detection, and tracking with baselines
derived from techniques deployed on real autonomous
racecars.

Our intention is to democratize the field of autonomous
racing, making it accessible to researchers who do not have
access to a racecar. In doing so, we hope that the RACECAR
data will enable further advances in perception, planning, and
control for autonomous driving at its limits by making the
underlying algorithms more robust and stress tested at high
speeds. The data and associated code are located at https:
//github.com/linklab—uva/RACECAR_DATA

II. RELATED WORK

Although there are several autonomous racing competi-
tions held at different scales, there is no large-scale au-
tonomous racing dataset available. The Formula Student
Objects in Context [9] data provides annotated camera
and LiDAR frames with track bounds indicated by col-
ored cones. More generally, several large-scale autonomous
driving datasets have been released in recent years, some
accompanied by open benchmark challenges. The most
notable among these is the KITTI Dataset [10] which
has led to improvements and new methods for 3D object
detection, visual odometry, and Simultaneous Localization
and Mapping (SLAM). Other datasets such as the Waymo
Open Dataset [11], and the Lyft Level 5 Data [12] are
also noteworthy due to the scale, scenario coverage, and
quality of annotations. The nuScenes Dataset [13] is another
popular autonomous driving dataset that includes camera,
LiDAR, Radar, GPS, and CANBus data. Also included are
annotations of semantic descriptions, vehicle attributes such
as velocity and pose, and cuboid bounding boxes.

The top speed of any of the vehicles within these datasets
remains limited to highway driving speed. RACECAR data
is not a replacement for existing AV datasets, but instead
provides a unique setting that is not possible to capture in

on-road testing. Since the AV-21 racecar has a similar set of
sensors as one would find on any AV prototype, the high-
speed nature of the RACECAR data makes it suitable to test
the limits of perception algorithms.

III. RACECAR: DATA COLLECTION

The RACECAR dataset is compiled by contributions from
several teams, all of whom competed in the inaugural season
of the Indy Autonomous Challenge during 2021-22. Nine
university teams participated in two races. The first race was
held at the Indianapolis Motor Speedway (IMS) track in
Indiana, USA in October 2021 (Fig. PJRight]). This track
is a 2.5 mile (4 km) oval and is home to the famous ’Indy
500’ race. The second race was held at Las Vegas Motor
Speedway (LVMS) in January 2022 (Fig. 2JRight]). The
track is shorter (1.5 mile) and more aggressively banked (up
to 20 degrees in the turns) making it challenging to run the
cars at high speeds. At IMS, teams reached speeds up to
150 mph on straights and 136 mph in turns, competing in
solo vehicle time trials and obstacle avoidance. At LVMS,
teams participated in a head-to-head overtaking competition
reaching speeds in excess of 150 mph!, with the fastest
overtake taking place at 170 mph.

A. Sensor Configuration

The AV-21 Indy Lights vehicle (Fig. 2JLeft]) is outfitted
with three radars, six pinhole cameras, and three solid-
state LiDARs. Each of the sensor modalities covers a 360-
degree field of view around the vehicle. For localization,
the vehicle is equipped with two sets of high-precision
Real-Time Kinematic (RTK) GNSS receivers and IMU. The
chassis, as well as the steering, powertrain, and brake system,
are as close as possible to the base Indy Lights race car but
were controlled autonomously using a custom drive-by-wire
system. The top speed of the vehicle is rated at 180 mph.
Detailed sensor configuration, specification, and calibration
information is available

B. Racing Scenarios

Table [[ shows the eleven different racing scenarios which
are included in the RACECAR dataset. There are 6 scenarios
S1---Sg from LVMS and 5 scenarios S7---Sq; from the
IMS track. The scenarios are further categorized on the basis
of solo, multi-agent, slow-speed, and high-speed runs with
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Scenario  Track  Description Speeds

S1 LVMS  Solo Slow Lap < 70 mph
Sa LVMS  Solo Slow Lap 70-100 mph
S3 LVMS  Solo Fast Lap 100-140 mph
Sa LVMS  Solo Fast Lap > 140 mph
Ss LVMS  Multi-Agent Slow < 100 mph
Se LVMS  Multi-Agent Fast > 130 mph
S7 IMS Solo Slow Lap < 70 mph
Ss IMS Solo Slow Lap 70-100 mph
So IMS Solo Fast Lap 100-140 mph
S10 IMS Solo Fast Lap > 140 mph
S11 IMS Pylon Avoidance < 70 mph

TABLE I: RACECAR Scenarios

speeds indicated in Table[l] Scenario S is especially exciting
since it contains several multi-agent runs between pairs of
several teams at speeds of over 130mph. S is a scenario
from IMS with static obstacle avoidance. By spanning these
eleven scenarios, the RACECAR dataset provides an interest-
ing mix of solo laps, multi-agent laps, overtaking situations,
high-accelerations, banked tracks, obstacle avoidance, and pit
entry and exit at different speeds.

IV. RACECAR: DATA ORGANIZATION

Each team’s autonomous racing stack used the Robot
Operating System (ROS) middleware. The raw sensor data
for each scenario was logged using a ROS2 bag format.
ROS2 bags are a popular database storage format and a
variety of tools have been written to allow one to store,
process, replay, and visualize bag data.Each data frame is
composed of a serialized message and a UNIX timestamp.

A. Data Processing and Synchronization

ROS bag data has been preprocessed in several ways. We
pruned the bag files such that large swaths of time spent
idling in certain parts of the track are removed. The next step
was converting all the GNSS data into a uniform Cartesian
coordinate system across the entire RACECAR dataset. This
is especially useful for multi-agent scenarios (S5, Sg) where
we have positions of both vehicles on track expressed in
the same global Cartesian coordinate frame. The two data
sources from different teams running in the same session
were synchronized using both the UNIX timestamps in the
data, as well as reported GPS satellite time.

B. Ground Truth Annotations

Currently, the data is not professionally annotated with
bounding boxes, but we provide centimeter-level accurate
positions of the vehicles in a common global coordinate
frame to evaluate perception benchmarks. The Real-Time
Kinematic (RTK) GNSS accuracy is below 1-2 cm. Included
in the GNSS data message is a standard deviation value
that drops below 0.05 m when a RTK fix is acquired. Also
included in each packet is a solution status which denotes the
uncertainty of the RTK correction. Centimeter level accuracy
for a racecar of footprint 4.918 m x 1.886m is very accurate
and a reasonable margin of error.
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Fig. 3: ROS2 bags to nuScenes conversion process

V. ROS2 1O NUSCENES

As stated earlier, one of the motivations behind releasing
the RACECAR data is to present the data to as many
researchers as possible. Therefore, we also convert the entire
dataset into the nuScenes format to improve the dataset’s
accessibility to the general self-driving community.

In nuScenes format, data is organized in a tiered structure,
starting with a scene at the highest level. A scene consists
of a continuous stream of data for which a scenario took
place, along with information on what occurred in the scene,
the location of the scene, and when it was recorded. For
our data, scenes correspond to scenarios (from Table m)
The continuous stream of data present within a scene is
used to create samples at fixed time intervals, containing all
sensor measurements (e.g. LiDAR, Radar, or camera). All
sensor data is recorded with a corresponding pose of the ego
vehicle in an inertial frame and an extrinsic matrix to convert
sensor readings to the inertial frame. The intrinsic calibration
of camera sensors is also included to project between 3-
dimensional coordinates and the image plane.

The rosbag2nuscenes library was developed to con-
vert the data originally stored in ROS2 bag files to the
nuScenes format. An overview of the conversion process
is shown in Figure [3| Using the rosbag2 Python API, the
conversion library reads through the database entries and
extracts the necessary ROS2 messages, converting them to
JSON files specific to the nuScenes schema. The sampling
rate is set at the default rate of 2 Hz, but is adjustable as laps
at higher speeds warrant higher sampling rates than those at
lower speeds. Scenes also last significantly longer than the
twenty-second clips in the original nuScenes dataset.

VI. AUTONOMOUS RACING BENCHMARKS

The RACECAR data contains full multi-modal sensor
coverage of 11 exciting racing situations with full-scale au-
tonomous racecars. Therefore, this dataset presents a unique,
high-speed version of seminal problems in autonomous driv-
ing such as localization, object detection and tracking, and
mapping. We present these three problems and demonstrate
the applicability of the RACECAR dataset to establish new
benchmarks for these problems within the context of high-
speed autonomous racing.
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Fig. 4: [Left] Localization Pipeline, sensors produce state measurements which are used as updates for an Extended Kalman
Filter to produce a vehicle Pose estimate. [Right] The blue dots represent GNSS updates at 20 Hz. The red dots are EKF
predictions at 100 Hz. At approximately 40 m/s, the car travels 2 meters before another GNSS update.
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A. Benchmark 1: Localization

High precision and low latency localization is a key
challenge of autonomous racing [14]. At a speed of 150
mph, the racecar travels up to 220 ft in one second. Since
all of the racing took place outdoors and under clear sky
conditions, the localization methodology adopted by several
teams was mainly based on a fusion of the two GNSS signals
and their IMU units using an Extended Kalman Filter [15] as
shown in FigureEl LiDAR-based [16] and camera-based [17]
localization are also possibilities and the RACECAR dataset
will enable such a comparison.

Using GNSS data alone results in a localization rate of
only 20 Hz. While this may be fine for passenger autonomous
driving, it is not adequate for autonomous racing. The AV-21
reports the rotation of the wheels at 100 Hz and accelerome-
ter and gyroscope data at 125 Hz. This information is fused
together with successive GPS readings and the pose estimate
of the racecar [x,y, z, 0] is obtained at 100Hz. Here z,y, z
corresponds to the Cartesian location of the car in world
frame, and @ is the vehicle heading.

Figure @JRight], shows the position estimates for the
racecar traveling at 40 m/s (90 mph). A comparison between
GNSS only and an EKF estimate is shown. It can be seen that
at this speed the racecar can travel up to 2m blindly before
another estimate of position is received via the GNSS. With
an EKF running at a 5x faster rate, only 0.4m is traveled
before another precise estimate is made resulting in more
precise localization of the vehicle.

Birds Eye View (BEV)
Model Overall 0-20m 20-40m 40-60m 60m-Inf
PP AP 83.02 99.72 98.73 93.08 54.27
VR AP 75.82 97.05 90.39 83.60 40.71
3D Bounding Box
PP AP 71.62 90.37 89.69 79.08 37.33
VR AP 63.31 86.17 85.85 65.62 23.95

TABLE II: Baseline AV-21 LiDAR Detections trained on
LVMS Multi-Agent Data, using both Birds Eye View (BEV)
labels and 3D Bounding Boxes. PP: PointPillars, VR: Vox-
elRCNN, AP: Average Precision

B. Benchmark 2: Object Detection and Tracking

Long-range and robust detection and tracking of opponents
on the track is of paramount importance. At high speeds,
overtaking another vehicle provides a very small window of
time for the ego vehicle to react. A false negative detection
could result in a collision between the attacker and the
defender. Similarly, a false positive can cause erratic behavior
by causing a vehicle to try and avoid a vehicle that is not
there. In this section, we present three example approaches
for object detection and tracking using the LiDAR, Cameras,
and Radar. Ideally, one would fuse all the detections together
into one cohesive detection but we present these separately
to showcase that the RACECAR data can enable object
detection challenges for each sensing modality as well as
challenges for fused detection.

1) LiDAR Based Object Detection and Tracking: 3D point
clouds obtained from the LiDAR are quite dense and noisy
for object detection. Figure [5] shows an Euclidean clustering
based pipeline for object detection. This method involves
downsampling the point cloud, region of interest based
filtering, ground-plane segmentation, and then an euclidean
distance based clustering algorithm. This classical approach
to object detection for point clouds is limited to a detection
range of around 50 m.

Machine learning approaches to object detection are very
popular but due to the requirement of annotated training data,
exploration of auto-labeling methods, synthetic data genera-
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Fig. 6: [Left] Radar Filtering based on Track Boundaries
and Velocity. [Right] Tracking Error when Compared to
Ground Truth for an overtake between TUM Motorsoprt and
EuroRacing team.

tion, or hand labeling is necessary. With the RACECAR data,
we hope deep learning approaches to racing problems can
be further explored. We have provided results of a baseline
implementation of both PointPillars [18] and VoxelRCNN
[19], shown in Table [l These models were trained on
two multi-agent runs within the RACECAR dataset, with
labels generated from the GNSS/IMU information provided.
Inference on point clouds using PointPillars resulted in
maximum detections at distances up to 110 m. However,
the average precision of detections dropped approximately
40% for distances over 60 m. For racing speeds of over
100 mph, 60 m detections provide a second of reaction
time, and for computationally expensive planning algorithms,
every additional moment counts. A benchmark challenge is
to improve the detection range and reliability.

2) Radar Based Object Detection and Tracking: The front
Electronically Scanning Radar (ESR) returns a list of tracked
objects within its frame of view. Each object tracked is
packaged with data concerning its angle, distance, forward
velocity, and lateral velocity all with respect to the radar.
Similar to the raw LiDAR data, at high speeds the Radar data
is noisy, returning tracks for arbitrary points on the racetrack
wall in addition to random objects nearby. One strategy
for removing undesirable objects is to filter by velocity,
dynamically adjusting based on ego speed, as well as a region
of interest filter similar to the LIDAR. Figure [f] describes the
error in both x and y directions between the Radar detected
position and the ground truth position from a head-to-head
racing scenario between TUM and EuroRacing.

3) Camera Based Object Detection and Tracking: On-
board the AV-21 are six color, global shutter cameras. To
maximize detection range, the front-facing two cameras
utilize a narrower camera lens, as this improves far-field
resolution. The remaining four cameras use a wider field of
view to provide 360° coverage around the vehicle. Example
images from the cameras can be seen in Figure [T}
Calibration: As part of the data set, full camera intrinsics
and extrinsics are provided. Instrinsics were obtained using
an off-the-shelf camera calibration package available in the
ROS 2 ecosystem. Extrinsics were obtained using laser
rangefinders and surveying equipment, measuring the sensor
locations with respect to a fixed point on the vehicle.
Camera Object Detection Methods: Due to the higher
resolution and higher frame rates, cameras have the potential
to provide faster and longer-range detections of opponent

Fig. 7: Detections from YOLO on several camera views dur-
ing a passing maneuver between MIT-PITT-RW and KAIST.
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Fig. 8: (Left) RTK-GPS ground truth position of the ego
vehicle and opponent, overlaid with camera detections. (Top
Right) Distance from ego to the opponent. (Middle Right)
Error between measured and ground truth. (Bottom Right)
Speed profile of opponent

vehicles. However, camera detections are inherently noisier
and more difficult to localize in 3D, due to depth ambiguity
and projection error. A baseline utilizing YOLO v5 [20]
was trained using a data set of other AV-21 vehicles. By
exploiting the fact that the dimensions of the AV-21 are
known, we can extend YOLO to report back real-time object
depths by using a standard pinhole optics model. Detec-
tions from several camera views during a passing maneuver
between MIT-PITT-RW and KAIST can be seen in Figure
[/l The baseline was also compared to the GPS position of
the opponent vehicle during a lap on the Las Vegas Motor
Speedway track as shown in Figure [§]

C. Benchmark 3: Mapping

Relying on one method of localization can be risky, and
in the case of having faulty or unreliable GNSS sensors, it
can be useful to have an alternative solution. Implementing
Simultaneous Localization and Mapping (SLAM) using 3D
LiDAR point clouds or camera images for 2D visual SLAM,
can provide another source of localization and an online
method of mapping. Point cloud mapping aims to build a
3D point cloud map of an environment from sensor data
that conveys 3D information about the surroundings of a
perceiving agent, either directly like a LiDAR or indirectly
as in the case of 2D visual SLAM.

The RACECAR dataset contains highly interesting data
for implementing LIDAR SLAM algorithms, however several
key challenges remain. Since three LiDARSs are used, precise
calibration is crucial to allow good scan matching. Bad
calibration can be seen in Figure[9] High velocity leads to big
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jumps between the individual scans. This makes the SLAM
more dependent on a good initial guess for the transformation
of each frame. High velocity also leads to strong motion blur.
This needs to be compensated before matching the point
clouds. Figure [0 shows the effect of motion distortion on
the tents behind the track barrier that are vertical in reality.
Due to the blur, they appear sheared in the point cloud. The
banked turns make it impossible to assume a flat ground.
Available SLAM algorithms tend to create spiral maps. A
new handling of the ground surface has to be implemented.
Map based Localization: To avoid these problems, map-
based localization approaches can be realized. Online, the
current scan can be matched with the offline-generated map.
However, this is still a difficult task as the current scans have
to be corrected first, and good state estimation is necessary
to provide initial guesses for scan matching. Existing SLAM
packages fail to provide a precise and robust localization
output on the RACECAR dataset. Figure [9] shows a failed
SLAM attempt at the LVMS track. Robust SLAM at high
speeds (100+ mph) is still a challenge for autonomous racing.

VII. CONCLUSION

The paper presents the RACECAR dataset for high-
speed autonomous racing. Multi-modal sensor data has been
collected, processed, and converted into ROS2 bag files
and nuScenes format for wider accessibility. The data was
collected from AV-21 autonomous Indy Light racecars dur-
ing the 2021-22 Indy Autonomous Challenge held at the
Indianapolis Motor Speedway and at the Las Vegas Motor
Speedway tracks which witnesses overtaking at speeds of
170 mph. There are 27 racing sessions spanning 11 racing
scenarios and over 6.5 hours of data that have been provided.
We provide ground truth locations for the vehicle which
enables use of the data for several benchmark problems
in autonomous racing - localization, object detection and
tracking, and mapping. Baseline algorithms are presented
for each benchmark. The dataset, accompanying processing
scripts, and the ROS2 to NuScenes conversion library are all
open source.
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APPENDIX
A. Complete Sensor Specifications

The data set was captured from a suite of sensors chosen to
help teams run a full autonomous driving stack. The racecar
was designed with the entire driver cockpit removed and
replaced with a computer, drive-by-wire system, and sensors.

1) LiDARs: The car is outfitted with three Luminar H3
Solid State LiDARs. The LiDAR’s output raw 3D point
clouds comprised of x, y, z coordinates, and intensity for each
laser scan. The rate at which these messages are published
is dependent on the density of the point cloud, with more
laser scans producing a higher density point cloud but a
lower frame rate. The scan pattern of the LiDARs can
also be configured in Uniform, Trapezoidal, or Gaussian
distributions allowing higher point cloud density in focused
areas. As seen in the bottom right quadrant of Figure the
three LiDAR’s field of view covers 360 deg, with a detection
range of 250 m.

2) Global Navigation Satellite System (GNSS): GNSS and
Inertial Measurement Unit (IMU) information were collected
using two Novatel Pwrpak 7d Receivers and was the primary
source of localization for the vehicles. There exist two
receivers for the purpose of redundancy, and as they are
stacked on each other within the vehicle they are referred
to as the top and bottom receivers. The receiver uses two
symmetrically placed antennas on the AV21 seen in the top
left of Figure Both receivers were configured with a
Real Time Kinematic (RTK) system to provide positioning
information with up to centimeter level accuracy. The on-
board IMUs provide angular velocity and acceleration data,
which help drive an Inertial Navigation System (INS) to dead
reckon position, velocity, and heading. The raw data provided
here includes latitude, longitude, altitude, and their respective
standard deviations from each receiver. Also included are the
acceleration and angular velocity collected from each IMU.

3) Cameras: Six Allied Vision Mak G319C Cameras
were installed on the vehicle. The cameras resolution, frame
rate, focal length, and optical center can be configured, and
output raw uncompressed images. These are uncompressed
images and require further processing for translation into
usable point clouds. The cameras possess functionality for
Precision Time Protocol and allow device synchronization
in the order of microseconds.

4) Radar: The AV-21 has both long range and medium
range Aptiv RADAR devices installed. An electronically
scanning radar is placed for long range detection on the
front of the vehicle, and two mid range radars are placed
on the side of the vehicle. Raw radar data is interfaced
through the CANBus and after processing from a driver,
provides detected vehicle speed, a covariance matrix, and
relative velocity of detected objects. The two radars range
and field ov view is described in Table [V] and can be seen
in Figure [I0}

5) Drive-by-wire: The car was outfitted with a New Eagle
Raptor drive-by-wire system to provide an electronic control
interface for the vehicle actuators. The computing stack

on the onboard computer provided steering angle, throttle
input, brake input, and gear shifting commands to the Raptor
interface. Battery voltage, engine temperature, engine RPM,
current gear, and the wheel speed of the vehicle were all
consistently monitored and assisted in control of the vehicle.

6) Communication: Each car used a Cisco Ultra Reliable
Wide Band radio to connect to a track-wide mesh network.
This network provided an internet connection for GNSS RTK
corrections, as well as connection to a basestation computer
used for live observation of the vehicle telemetry. The AV21
also communicated with race control, racetrack supervisors
providing command flags indicating when cars should stop,
slow down, or return to the pits. Race control sent flags to
the AV21s using MyLaps, a popular sports timing system
which also provided vehicle telemetry to race control.

7) Onboard Computing: Onboard computing of the car
was handled by an ADLINK AVA-3501. The computer
posseessed a Intel Xeon processor, 64 GB of RAM, 3 TB
of storage, and a Quadro RTX 8000 GPU. The computer
was intended as a platform to run every component of
the self driving computing stack, including any potential
machine learning methodologies. Each computer was setup
with Ubuntu 20.04 and ran ROS2 to interface with each com-
ponent of the vehicle. All the sensors, as well as the drive-
by-wire system used ROS2 drivers to provide a consistent
common interface.

8) Chassis: The vehicle chassis was manufactured by
Dallara. The car resembles an AV-21 Indy Lights race car, but
has been retrofitted to accomodate the various sensors and
computing platforms described. All of the cockpit and safety
features for a human driver were removed and replaced with
a platform to house all the electronic components.

B. Extended Kalman Filter

Formulating and processing the EKF algorithm is a well
known process, to estimate the full 3D (6 Degrees of
Freedom) pose and velocity of a robot over time.

The first step is to represent one’s process using a nonlin-
ear dynamic system.

x, = f(xp_1) + Wi (H

xy, represents the robot’s current 3D pose at time k, f is
the state transition function, and w,_; is added noise towards
the process. The vector x contains the robot’s 3D pose, 3D
orientation, and their derivatives.

Zp = f(xr-1) 2

P, =FP, \FT +Q 3)

The algorithm begins with a prediction of the future state,
using the current state estimate, the transition function, and
estimated covariance. P is the estimated covariance, F' is
the Jacobian of the non linear transition function, and @ is
the process noise covariance that perturbs the system. The
estimated covariance can be initialized to some reasonable



Scenario (Teams) GNSS LiDAR RADAR Camera
S1(C, M, P) 51,486 58,375 9,924 157,146
S2(C, M, K) 79,748 60,020 1,148,205 301,065
Ss(M, E) 52,194 44,855 31,444 387,756
S4(T, E) 23,852 23,722 15,725 0
S5(C,M,P,T,E,K) 129,914 118,156 23,525 122,204
Se(T, E, P) 52,504 67,253 35,023 0
S7(C, K) 16,596 8,025 0 0
Sg(C, K) 22,140 0 0 270,648
So(T, E) 44,510 40,569 23,129 0
S10(P) 13,153 12,476 0 0
S11(T, K) 22,594 29,746 6,440 278,009

TABLE III: Dataset Content: Raw ROS2 message frame counts for each sensor

a
il

Y

GNSS

LiDAR

Radar

Wheelbase: 2.971m

wogs'T :YipIMm

Fig. 10: Top Left: Rendering of the racecar with visible sensors highlighted. Top Right: Vehicle diagram showcasing the
length, width, and wheelbase of the vehicle. Bottom Left: Inside view of cockpit with various sensors highlighted. Bottom
Right: Sensor ranges for LiDAR, Radar, and Cameras are overlayed on top of the vehicle.

value, but the process noise covariance should represent the
uncertainty between the real life system model, and the
approximate predictions made by the transition function.
Tuning these values carefully requires experimentation and
iteration, and should be kept at a relatively small value
initially.

2z = h(.’l)k) + Vg

“)

Sensor measurements z;, are recieved at time k, h is a
sensor model that correctly maps measurement inputs into a
state space vector, and vy is the measurement noise. These
sensor measurements can be any state measurement from the
IMU, wheels, GNSS measurements, or LiDAR laser scans.
The measurement noise can be approximated from testing
the hardware directly.

K =P.H"(HP,H" + R)™" )

T :.’i‘k +K(Z—H§Ik) (6)

P,.=(I-KH)P,I-KH)" + KRK"” (7

After the prediction step and a measurement update is
received, the estimated state and it’s associated covariance is
updated in a correction step. K represents the Kalman gain,
which is calculated from the measurement covariance R and
the estimated covariance P. This gain is used to update the
state vector and it’s covariance matrix. After the correction
step, another prediction step is made, and the process repeats.



AV21 Specifications

GNSS PwrPak7 E1
GNSS Positional Accuracy (L1) 1.5m

GNSS Positional Accuracy (RTK) lem + lppm
GNSS Data Rate 0-20 Hz

IMU Data Rate 125 Hz
LiDAR H3 Prototype
Range (10% Reflectivity) 250m
Horizontal Field of View 120°
Configurable Vertical Field of View 0-30°

Frames per Second 10-30

Front Radar

Front Facing Aptiv ESR

Long Range Detection
Mid Range Detection
Long Range FOV
Mid Range FOV
Update Rate

174m
60m
+10 deg
445 deg
20 Hz

Side Radar

Side Facing Aptiv MRR

Long Range Detection

160m

Mid Range Detection 40m
Horizontal Field of View 90 deg
Vertical Field of View 5 deg
Camera Mako G-319
Max Resolution 2064 x 1544
Max frame rate at full resolution 37.6 fps
Spectral range 300-1100 nm

Chassis

Dallara AV-21

Overall Length
Overall Width
Overall Height
Wheelbase
Weight

192 in / 4876 mm
76 in / 1930 mm
45.5 in / 1156.5 mm
117 in / 2971 mm
1600 Ibs / 726 kgs

TABLE IV: AV21 - Sensor Specifications
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