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Abstract— Gait generation for soft robots is challenging due
to the nonlinear dynamics and high dimensional input spaces of
soft actuators. Limitations in soft robotic control and perception
force researchers to hand-craft open loop controllers for gait
sequences, which is a non-trivial process. Moreover, short soft
actuator lifespans and natural variations in actuator behavior
limit machine learning techniques to settings that can be learned
on the same time scales as robot deployment. Lastly, simulation
is not always possible, due to heterogeneity and nonlinearity in
soft robotic materials and their dynamics change due to wear.
We present a sample-efficient, simulation free, method for self-
generating soft robot gaits, using very minimal computation.
This technique is demonstrated on a motorized soft robotic
quadruped that walks using four legs constructed from 16
“handed shearing auxetic” (HSA) actuators. To manage the
dimension of the search space, gaits are composed of two
sequential sets of leg motions selected from 7 possible primitives.
Pairs of primitives are executed on one leg at a time; we then
select the best-performing pair to execute while moving on to
subsequent legs. This method—which uses no simulation, so-
phisticated computation, or user input—consistently generates
good translation and rotation gaits in as low as 4 minutes of
hardware experimentation, outperforming hand-crafted gaits.
This is the first demonstration of completely autonomous gait
generation in a soft robot.

I. INTRODUCTION

Soft robots—which incorporate soft actuators and compli-
ant elements into their bodies—are a frontier for the robotics
field. Flexible morphologies enable soft robots to passively
adapt to unstructured environments, resist particulate dam-
age, and reversibly recover from large or unanticipated
external loads which would critically damage comparable
rigid-body robots [1]. Contact compliance also makes soft
robots appropriate for interacting with delicate objects or
environments. In the context of a soft quadruped, redundantly
actuated soft legs can allow a robot to degrade gracefully,
continuing to operate at reduced capacity after damage.
As a result, terrestrially locomoting soft robots demonstrate
potential in high-consequence applications ranging from
inspection (where fitting into irregular geometries is com-
mon) and repair (where compliance matters) to exploration
in search and rescue settings featuring severely degraded
environments.

The key to unlocking this potential is the ability to
control the motion of soft robots. Unfortunately, legged soft
robots pose unique challenges when it comes to discover-
ing propulsion strategies. Non-linear actuator dynamics and
high-dimensional control spaces make hand-crafting gaits
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Fig. 1. The HSABot used for experiments. Each leg is composed of four
handed shearing auxetic actuators, each of which are controlled by micro-
servos. The axes in the lower right hand corner correspond to the robot’s
tracking frame, which is located in the top-center of the AprilTag. The
HSABot is 15cm long (x) by 13cm wide (y). The scale bar is 3cm.

challenging. In practice, many soft robots are either only
designed for forward motion, or are only equipped with
forward gaits, sharply limiting their utility [2], [3], [4], [5],
[6], [7]. When accurate simulations can be built, machine
learning is a valuable tool for discovering soft robotic gaits.
However, when an actuator’s dynamics vary substantially
during a robot’s life—or between different copies of the same
robot—it may simply not be feasible to build and update
accurate simulations. If gathering sufficient data for learning
is infeasible, rigid-body approximations of the soft robot
can be used to learn instead. Then sim-to-real techniques
in machine learning could in principle be applied, though
this limits discovered gaits to rigid body derivatives. When
skilled practitioners design navigation strategies by hand,
they do so using their own experience with soft materials,
as well as human intuition about how compliant organisms
locomote in nature. Autonomous gait-search methods must
accomplish the same task without the benefit of that prior
knowledge, and in a severely data-constrained environment.

We present a straightforward, time-efficient strategy for
enabling soft robotic quadrupeds to learn how to walk, with
short learning time horizons and dramatic improvements in
performance. Our main contribution is a tree-search based
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Fig. 2. A “race” between the HSABot (A) using the hand-crafted gait from [3] and (B) our generated forward gait. In unconstrained space, the data-driven
gait is 2.5 times faster than its hand-crafted counterpart with the same step frequency. With the aluminum guide bar shown, the data-driven gait is ≈2 times
faster. This figure is a composite of tracking images from 0s, 100s and 200s into each run. The scale bar is 15cm—one body length—long. A guide-rail
was used in both experiments.

workflow for finding new gaits on-board in as little as
4 minutes. We use this method to produce a small-time
locally controllable gait set for a soft quadrupedal robot,
and then demonstrate a letter tracing task under closed
loop control. These tasks are carried out on the HSABot, a
soft quadrupedal robot which uses handed sheering auxetic
(HSA) actuators to provide motive force (see Fig. 1) [3]. We
provide a comparison to the fastest existing (hand-crafted)
gait for the HSABot [3] and show that our method can more
than double the robot’s top speed without changing the step
delay.

This paper is organized as follows: Section II discusses
gait design, soft quadrupeds, and the soft actuators used in
this paper. Section III details the robot design and experimen-
tal setup used. Sections IV and V then cover our gait search
algorithm and closed loop scheduling controller. Finally,
Section VI discusses our experiments with generating gaits
as well as racing and tracing tasks.

II. RELATED WORK

Legged locomotion is an active area of research for both
rigid and compliant robot designs. The control of soft legged
robots poses a particular challenge because key assumptions
from rigid robotics, like consistent dynamics and the avail-
ability of kinematic models, do not hold. Our method rests
principally on existing work in the areas of gait design, HSA

actuator development, and soft robotic quadrupeds, each of
which is explored in more detail below.

A. Soft Quadrupeds

Soft robotic quadrupeds vary in morphology and design
depending on the actuation methods they employ. Early
examples of soft robotic quadrupeds used fluidic elastomer
actuators for complex, bioinspired walking [1], [5], [8], [9].
Others used artificial muscles based on liquid crystal elas-
tomers, shape memory alloys, and cable tendon actuators [7],
[10], [11], [12], [13], [14], [15]. Soft robotic quadrupeds have
also used thermally [4] or electrically [3], [16] controlled legs
for locomotion. The HSABot used in this paper uses HSA
actuators to provide both the structure and motive force for
its legs [3].

The elastomeric materials used to manufacture soft ac-
tuators, such as polyurethanes and silicones, are highly
susceptible to damage [17], leading to low fatigue and cycle
limits [18]. As a result, one challenge of open loop control
for gait implementation on soft quadrupeds is that it depends
heavily on the damage-state of a robot’s actuators. In [1], a
functional gait relies on the resilience of the robot. Data-
driven methods, such as the one highlighted in [19] and our
method, enable the possibility to work around or even take
advantage of mutations in dynamics.



B. Gait Design

Although designing gaits for quadrupedal robots is not a
solved problem, it has been studied extensively. The most
straightforward approach involves simple repeating patterns
based on quadrupedal motion observed in nature, for example
trotting, striding, galloping or crawling [5], [20], [21], [22].
This approach works well for basic motions, and for simple
robots can even be implemented without invoking a formal
kinematic model of the robot [5].

A generalization of this approach involves parameterizing
gaits in terms of the trajectories followed by each foot, as
seen in [20], [22]. This helps abstract away some of the robot
design and allows tools like optimization to be brought to
bear more easily. However, it does require at least a basic
kinematic model of the robot.

Other more sophisticated methods have also been used.
For example, contact planning—in which ground capture
is used to plan footfalls along some desired trajectory—
has proven successful in helping robots navigate complex
environments [23]. Similarly, reinforcement learning (RL),
often trained in simulation, can provide improvements in gait
speed and robustness [24]. However, these methods almost
universally require good robot models to function well.

Soft robots most often use either bioinspired gaits [5],
[6] or some version of foot-trajectory planning. The former
is common in soft robotics because it lends itself to hand-
crafting. Contact planning assumes a level of autonomy
which is rare in soft robotics, but RL has been used for
some soft robots [25], [26]. Unfortunately, for soft robots
which require finite element methods for accurate simulation,
gathering enough simulated data to use machine learning
effectively can be challenging. In this paper, we take an
intermediate approach, using data-driven methods to find the
gait while restricting the search space to simple repeating
patterns.

C. Handed Shearing Auxetic Actuators

Handed shearing auxetics (HSAs) are a class of architected
materials that has been engineered for motorized, soft robotic
actuation [27]. Cylindrical HSAs with opposite handedness
have been assembled into soft robotic actuators for multi-
degree-of-freedom (multi-DOF) motion and grasping [27],
[28]. HSAs can be 3D printed using digital projection lithog-
raphy and polyurethane-based, photopolymer resins [29].
They can be fluidically innervated or equipped with internal
cameras for distributed sensing capabilities [30], [31]. More
recently, mult-DOF HSA platforms were assembled into soft
robotic legs from 3D printed, miniaturized HSA pairs [3].
Miniaturization allowed four HSA legs to be actuated by a
total of 16 lightweight microservo motors to achieve battery-
powered, untethered walking for 65min at 2 body lengths
per min with a payload capacity of over 1.5kg. Unfor-
tunately, HSA-based actuators will inevitably demonstrate
time-varying mechanical behaviors given their fabrication
from viscoelastic materials [29]. Like the vast majority of
soft robotic actuators, higher actuation speeds (i.e., higher
strain rates) and strains of HSA actuators result in higher

rates of degradation of mechanical stiffness and changes of
repeatable actuation over time [29].

III. SYSTEM OVERVIEW AND METHODS

The HSABot used in this work (see Fig. 1) is adapted
from [3]. It is made of four HSA legs actuated by 16
microservo motors (Power HD 1440A, Pololu). The HSAs
are 3D printed from a single-cure, polyurethane resin (E-
Rigid PU Black, ETEC) using a digital light processing
(DLP) printer (D4K Pro, ETEC) [3]. All 16 servos are glued
to their associated actuator, and are driven by an Adafruit
PCA9685 driver board. An onboard Teensy 4.0 acts as a
USB-to-I2C bridge, allowing the robot to be controlled by
way of a power/USB tether mounted to the top of the
test frame. The experimental code is written in Python and
interfaces with the robot using a ROS driver for the onboard
Teensy. ROS is also used to manage the video streams and
track the robot using the ROS apriltag package. The
robot has a body length (BL) of 15cm.

Throughout our experimental trials, we used four sets of
HSA legs. Although no leg was damaged enough to prevent
locomotion, we did observe degradation of the HSA actuators
via strain-induced weakening over time in our experiments.
We mitigate actuator damage over time by limiting the servos
to 80% of their nominal travel (±1.25rad) to prevent over-
torquing and run the gaits with a step delay of 0.25s except
when testing for speed. Even with these settings, we found
that gait behavior would begin to change noticeably after
1-2 hours of continuous walking as the legs weakened and
became easier to actuate. This is consistent with the time-
varying mechanical behaviors of viscoelastic materials used
in HSAs [3], [29], [30] and other soft robotic actuators.

All training was conducted on either a polished wooden
surface or photo paper, and tracing experiments were run
photo paper. Whenever used, the photo-paper was folded and
secured at the table edges to ensure consistent gait behavior.
One-inch square polyurethane pads were added to the feet for
grip. Though we observed more stick-slip gait behavior on
the paper compared to the wood, all gaits performed accept-
ably on both surfaces. HSABot tracking was accomplished
using an Intel Realsense D435 camera with a resolution of
1280 by 720 at 15hz. Two AprilTags, placed on the robot
and table, provided the robot and origin frames respectively.
A test cage confined the robot to a 750mm square, and held
the camera above the table. Tracking within that region was
repeatable to 0.5mm, and we did not observe any significant
tracking noise in the positioning data.

IV. ALGORITHM

A. Notation

We denote the 16 servo positions as a vector c =
[c1, . . . ,c16]∈R16, and we denote the state of the robot itself
as its position x,y and orientation θ .

Definition 1 (Step): A step is defined as one full set of
servo positions cn ∈ R16.

Definition 2 (Gait): A gait is defined as a sequence of
steps, denoted as g = {c1 . . .cn}.



Definition 3 (Primitive): A primitive is defined as a set of
4 servo positions which cause one leg to assume a particular
configuration, denoted as pn = [c1, . . . ,c4] ∈ R4. A set of 4
primitives fully defines the robot’s servo positions.

Definition 4 (Drift): In this work, drift refers to any mo-
tion orthogonal to the desired velocity vector for a particular
gait. This can either be inherent to the gait or due to external
factors.

Algorithm 1 Tree Search Algorithm
// Define set of all primitives.
P←{p0, . . . , p6}

// Initialize gait arrays to all-neutral.
Gcurrent ← [(p0, p0),(p0, p0),(p0, p0),(p0, p0)]
Gbest ← Gcurrent

// Initialize reward to negative infinity.
Rbest ←−∞

// Search on each leg in turn.
for L ∈ {0, . . . ,3} do

// Test this primitive permutation.
for (pa, pb) ∈ P×P do

Gcurrent [L] = (pa, pb)
Rcurrent = EvaluateGait(Gcurrent)
if Rcurrent > Rbest then

Rbest ← Rcurrent
Gbest ← Gcurrent

end if
end for
Gcurrent ← Gbest

end for

In this work, we define a gait as being composed of
three steps of servo positions separated by equal time steps
(g = {c1,c2,c3}). Each servo position can be either fully
left (state = 0), fully right (state = 1), or centered (state
= 0.5) in the servo travel. The fully left and fully right
positions correspond to extension or contraction of the HSA
depending on the cardinality of the actuator, and the centered
position serves as a neutral default. In the first two gait
steps the servos are set to positions determined by the search
algorithm, and in the final stage the servos return to neutral.
This allows different gaits to be sequenced arbitrarily without
introducing unpredictable behavior during transitions. The
step-delay is not considered a search parameter and can be
varied to increase or decrease the gait velocity.

To restrict the search space for new gaits, we selected
7 leg-based primitives from among the leg positions found
in [29]. A gait is thus uniquely defined by either 32 servo
positions (two steps of 16), or 8 leg primitives (two steps of
4). The primitives selected are leg neutral, linear extension,
linear contraction, and leg-tilt in each of the four cardinal
directions. These primitives were hand-chosen to span the
range of extreme motions available to each leg, although in

Fig. 3. This figure shows 6 different gaits for translation along the robot’s
x and y axes, as well as in-place rotation clockwise (i.e., left turn, +θ ) and
counter-clockwise (i.e., right turn, −θ ). Each gait is composed of three steps
of 16 servo positions. Servo positions can be either fully left (0), centered
(0.5), or fully right (1). This set of gaits corresponds to the velocities shown
in Figure 4.

practice, behavior varies substantially between legs, and it
may reverse or become amplified as the legs wear. Since
the algorithm does not assume primitives will have a par-
ticular behavior—only that the primitives induce different
behaviors—these shifts are handled automatically.

To find a new gait, we employ a depth first tree search,
in which the nodes are combinations of servo positions for
a particular leg. We first iterate through all 49 two-step
primitive permutations for leg A and select the best. We
then continue to play that sequence on leg A, as we test
all 49 permutations for leg B, and so on until the entire gait
has been found. This process is outlined in Algorithm 1.
Subsequent legs are thus searched in the context of previous
legs. We do not believe that a tree search is necessarily the
optimal method, but it allows us to complete a gait search
in 196 evaluations, rather than the 5.8 · 106 required for a
brute force search of all primitive combinations, or the 264

evaluations to exhaustively search the space of all possible
two-step gaits. Equation 1 shows the number of evaluations
required, for a time complexity of O(n) with respect to the
number of legs and O(n2) with respect to the number of
primitives:

Nevals = NLegsN2
primatives (1)

This sample efficiency is one big advantage of our method
over reinforcement learning approaches like Q learning. By
limiting the exploration to less than 200 evaluations, the tree
search can be used for efficient re-training in the field.

When finding a new gait, the default servo positions are
set to neutral. However, they can also be set to a previously
found gait, allowing the algorithm to re-evaluate each leg’s
optimal behavior in the context the existing gait. This re-
finement process helps reduce the search-order dependence



of gaits, and monotonically improves gait performance. The
impact of refinement is bigger for translation heavy gaits,
than for rotation heavy gaits. We recommend refining trans-
lation gaits as a matter of course.

To evaluate each gait candidate, we use the reward func-
tion shown in equation 2 which rewards motion along a
primary axis, and penalizes drift along the other axes:

R(ẋ, ẏ, θ̇) = aẋ+bẏ+ cθ̇ + e|ẋ|+ f |ẏ|+g|θ̇ | (2)

Other cost functions could be used to reward different types
of gaits. The velocities used are in the body-frame of the
robot at the start of an evaluation. Due to stochasticity in
the robot’s motion, we have sometimes found it helpful to
execute multiple gait cycles per evaluation. Using a step
delay of 0.1s and 3 cycles per evaluation each gait takes
just under 4 minutes to train. However, to preserve leg life
we often used two rounds of training with 0.15s per step,
and 2 gait cycles per evaluation. Using those parameters the
process takes 7 minutes and 50 seconds to find a gait.

V. CLOSED LOOP CONTROL

Tracing and trajectory following are key robot capabilities
for completing higher-level tasks like search or mapping.
This section presents a closed loop gait scheduling con-
troller which enables the HSABot to mimic differential drive
dynamics even as leg wear leads to changing gait drifts
and velocities. For the purposes of this paper, a trajectory
is assumed to be composed of segments which are either
pure translations along the robot’s forward/backward axis
(x), or pure rotations about the vertical axis (z). In principle,
this allows the robot—for a given error tolerance—to follow
any line which is specified using (x,y) coordinates along its
length. However, in practice this controller is not suitable for
curve tracing.

Definition 5 (Primary Gait): In any given trajectory seg-
ment the primary gait is the one which would, in the absence
of drift, allow the robot to complete that segment. For
example, the primary gait for a forward translation segment
is +x and the primary gait for a rightward turn is −θ .

When the robot tracks a linear trajectory segment, it
repeatedly calls either its body-fixed +x (forward) or −x
(backward) gait until it reaches the end of the line segment.
As the robot travels, its y (sideways) and θ (rotational) drift is
measured relative to the segment, and once the drift exceeds
a specified tolerance—in our case [.05m, .05m, .05rad]—the
controller schedules corrective gaits in place of the primary
gait until the drift has been eliminated (e.g., if heading
drift exceeds tolerance in the +θ direction, −θ gaits would
be scheduled until the heading drift has been reduced to
0). The same process is used for ensuring the robot does
not drift while rotating, except that the correction gaits are
+x,−x,+y,−y instead of +y,−y,+θ ,−θ as they would be
for linear segments.

VI. EXPERIMENTAL RESULTS

As shown in Figure 4, we trained a set of 6 gaits–Forward,
Backward, Left, Right, Turn Left, and Turn Right–which

allowed the HSABot to rotate and translate along its body-
centered axes. The rotation gaits were trained with one cycle-
per-evaluation, and the translation gaits were trained with
three cycles-per-evaluation. We used the reward function
coefficients found in Table I, which produced fast gaits
with minimal drift. Figure 5 shows a 90 degree rotation
performed using a data-driven +θ gait. We found that
increasing coefficients “d”, “e”, and “f”, helps reduce drift
during refinement, but that for initial training it is best to
keep them relatively low so that “not moving at all” is not
a local maxima for the reward function.

Fig. 4. This chart shows the mean velocity of the robot for six body-
centered axial gaits. Note the relatively high drift on the two x gaits and the
+θ gait. Linear velocities are reported in body lengths (BL) per gait cycle,
while angular velocities are reported in radians per gait cycle.

a b c d e f
+x (Forward) 1 0 0 0 -0.1 -0.1
−x (Backward) -1 0 0 0 -0.1 -0.1
+y (Left Shuffle) 0 1 0 -0.1 0 -0.1
−y (Right Shuffle) 0 -1 0 -0.1 0 -0.1
+θ (Left Turn) 0 0 1 -0.1 -0.1 0
−θ (Right Turn) 0 0 -1 -0.1 -0.1 0

TABLE I
REWARD FUNCTION COEFFICIENTS USED FOR TRAINING.

The combination of these 6 gaits allows the robot to
navigate the world and perform tracing tasks under either
joystick or closed loop control. We demonstrated this by
having the robot trace an N as shown in Figure 6. This test
was run under closed loop control with similar gaits to those
shown in Figure 4 and a drift evaluation every 4 gait cycles.
Figure 6 also shows an open loop trail of the same target
trajectory (an N), conducted using the mean velocities for
each gait to generate a control sequence. The open-loop N
was reduced in size by one-third relative to the closed-loop
N –from 30cm in height to 20cm– to ensure the robot would
remain on the testing table. There was moderate post-training
wear on two of the actuators, which may explain why the
open loop figure (Figure 6A) shows gaits that are consistently
faster than would be expected.

To evaluate the speed of generated gaits, we compared
a freshly generated forward (+x) gait to the hand-crafted



Fig. 5. Four representative data driven gaits used for the N tracing figure:
A) Right Turn (−θ ), B) Forward (+x), C) Backward −x, D) Turn Left
(+θ ). Not shown here are the two side shuffle gaits which were also used
for corrective moves during the closed loop tracking process.

forward gait1 from [3]. Figure 2 shows the two gaits with
snapshots of the robot every 100s. The data-driven gait
was trained with one round of refinement, and we used
a step size of 100ms for both gaits. The data-driven gait
produced a forward velocity of 5.6mm/s (0.037 BL/s), just
under 2.5 times faster than the hand-crafted gait at 2.25mm/s
(0.015 BL/s). Interestingly, the hand-crafted gait was slower
than the 3.4mm/s reported in [3]. We think this is due
to a combination of natural variability between robots and
fairly substantial actuator damage on leg D. No difference
in velocity was observed for either gait over the course
of speed testing. This follows a pattern we have observed,
whereby moderate “damage” to the HSA actuators can
actually improve robot speed and agility (usually at the cost
of some increased drift).

One issue revealed during the tracing process is the
impact of the tether on robot performance. Gait training was
conducted near the center of the working area, and when
the robot started to reach the edges of the enclosure, we
found that the tether introduced substantial rotational and
translational drift. Since the tracing was performed under
closed loop control, the robot was able to compensate.
However, turning speed was reduced, and switching to an
untethered solution is a priority for future work.

VII. CONCLUSION

In this work, we present a method that rapidly discovers
mobility strategies for soft quadrupedal platforms, with min-
imal computation and no hand-tuning. This is accomplished

1The researchers attempted to hand-craft rotation gaits as an additional
point of comparison, but were unable to do so after an order of magnitude
longer than was required for the linear gaits.

Fig. 6. Using closed loop control, the robot is able to trace out non-trivial
shapes. A) The HSABot traced a 20cmx15cm Capital N— for Northwestern
University —by following an open-loop trajectory. B) The same tracing
task for a 30cmx22.5cm N completed using closed-loop control. This
experiment was conducted over several operating-hours after the gaits were
trained and tested. By using the closed loop controller, the HSABot is
able to compensate for the resulting changes in gait behavior—particularly
rotation—while the open loop solution is not.

through a simple yet flexible gait structure, and a tree-search
based workflow that allows new gaits to be found in as
little as 4 minutes. We then demonstrate how the resulting
gaits can be used to trace figures and provide a closed
loop control strategy which enables the quadruped to follow
similar commands to a conventional differential drive robot.
This expands the utility of a platform, since navigation tools
for diff-drive robots are already very well developed. We
also show that the gaits produced are 150% faster than pre-
existing hand-crafted gaits for the same robot.

In future work, we plan to investigate automatic primitive
discovery to reduce the method’s reliance on human domain
knowledge as well as search re-ordering as a strategy for



better transfer learning. We also plan to investigate methods
for detecting and adapting to shifting robot dynamics on
an ongoing basis. Further development of the platform to
leverage gait generation and closed loop control should
enable it to perform navigation and mapping tasks using pre-
existing tools from rigid robotics.
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