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Fig. 1: Real-world experiments for rectangle-shape robot and L-shape robot to pass through narrow channels and gaps. (a): BEV(Bird’s
Eye View) of the rectangle-shape robot real-world experiment, pink line indicates the front of the robot. (b): The trajectory of the rectangle-
shape robot is visualized in a point cloud map. (c): BEV of L-shape robot real-world experiment. (d):The trajectory of the L-shape robot
is visualized in a point cloud map.

Abstract— For letting mobile robots travel flexibly through
complicated environments, increasing attention has been paid to
the whole-body collision evaluation. Most existing works either
opt for the conservative corridor-based methods that impose
strict requirements on the corridor generation, or ESDF-based
methods that suffer from high computational overhead. It is
still a great challenge to achieve fast and accurate whole-
body collision evaluation. In this paper, we propose a Robo-
centric ESDF (RC-ESDF) that is pre-built in the robot body
frame and is capable of seamlessly applied to any-shape mobile
robots, even for those with non-convex shapes. RC-ESDF enjoys
lazy collision evaluation, which retains only the minimum
information sufficient for whole-body safety constraint and
significantly speeds up trajectory optimization. Based on the
analytical gradients provided by RC-ESDF, we optimize the
position and rotation of robot jointly, with whole-body safety,
smoothness, and dynamical feasibility taken into account.
Extensive simulation and real-world experiments verified the
reliability and generalizability of our method.
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I. INTRODUCTION

Collision evaluation is a core module of mobile robot
trajectory optimization, ensuring that robot can move safely
in narrow environment. Commonly, a simplified model for
robot collision evaluation, for instance, modeling a robot as
a mass point with linear dynamics [1]–[3], is sufficient for
simple tasks. However, for precisely moving among dense
obstacles, the shape of a robot, especially for non-convex
shape, needs to be explicitly considered in collision evalu-
ation. Generating a trajectory with a robot’s shape, namely
whole-body planning, not only requires careful consideration
of robot’s position, but also its rotation. This demands much
more complicated computation, making whole-body collision
evaluation hard to meet limited onboard resources in practice.
How to efficiently generate collision-free trajectories for an
any-shape robot in real-time is still a great challenge.

For whole-body collision evaluation, apart from some task-
specific methods [4, 5], the most popular options are to
use GJK-based [6, 7], corridor-based [8]–[10] or ESDF-
based [2, 11] methods. GJK-based methods require complex
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pre-processing to model obstacles as convex polyhedrons.
Corridor-based methods constrain the mobile robot inside
the corridor that composed of several consecutive convex
regions. However, the corridor generation tightly requires
that the intersection of its adjacent components have to
contain at least one robot. When applied to narrow spaces
and non-convex robots, they turn to have no feasible solution,
as shown in Fig. 9(c). ESDF-based methods need to maintain
a cost field map, yet suffer from a dilemma between the
computational overhead and the field range. Either some
ESDF-based methods model the robot conservatively as
a combination of circles to achieve fast convergence but
optimize failed in narrow environment, as shown in Fig. 5(b),
or others densely sample on the robot to ensure accuracy
of collision evaluation but take long calculation time, as
illustrated in Fig. 7 and Table I.

Considering the limitations of current methods, we sum-
marize the following main challenges for an ideal whole-
body collision evaluation: (1) Efficiency: low computational
overhead is preferred. (2) Accurate shape modeling: when
applied in narrow scenarios, the method should avoid the
failure due to the low-fidelity approximation introduced by
conservative modeling, as shown in Fig. 5(b). (3) Generality:
the method is supposed to be readily applicable to robots of
any-shape, even non-convex robots, such as ground robots
and aerial robots mentioned in Sec.V .

To bridge this gap, we propose a Robo-centric Euclidean
Signed Distance Field (RC-ESDF) to achieve fast and ac-
curate whole-body collision evaluation. RC-ESDF is built
offline in the robot body frame, whose shape and size are
similar as the robot, as shown in Fig. 2(c), and it does not
require a real-time update. Moreover, RC-ESDF enjoys lazy
collision evaluation that only focus on the obstacle points
collide with robot, effectively reducing the computational
overhead as shown in Table I. We jointly optimize the robot’s
position and rotation, both convex and non-convex shape
mobile robots obtain better trajectory optimization results
in narrow environments, as presented in Fig. 5 and 9. To
verify the generalizability and reliability of our method,
we implement extensive experiments in simulation and real-
world environments with rectangle-shape (convex, as shown
in Fig. 1(a)) and L-shape (non-convex, as shown in Fig. 1(c))
mobile robots. The main contributions of this paper are:

• We propose a novel RC-ESDF for whole-body collision
evaluation, reducing considerable computational over-
head as it is pre-built without the need for real-time
updating and enjoys lazy collision check.

• Based on the RC-ESDF, we jointly optimize the po-
sition and rotation of robot simultaneously in narrow
environments.

• We conduct extensive simulation and real-world exper-
iments to validate that our method accurately describes
both convex and non-convex shape robots and generates
a collision-free trajectory.
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Comparison of RC-ESDF and Env-ESDF. (a): Env-ESDF built on obstacles in environment. The transparency of the obstacle on the left side of the image is 1.0, 
which clearly shows the shape of the obstacle. The transparency of the obstacle on the right side of the image is 0.02, indicating the distance value of the Env-
ESDF.  ESDF values inside the obstacles is negative, outside is positive. (b): L-shape robot for real-world experiment. (c): RC-ESDF built on L-shape robot. ESDF 
values inside the robot is negative, outside is 0.
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Fig. 2: Comparison of RC-ESDF and Env-ESDF. (a): Env-ESDF
built on 18m×10m point cloud map. The transparency of obstacles
on the left side is 1.0, which clearly shows the shape of obstacles.
The transparency of the obstacle on the right side of the image
is 0.02. Colors indicate the change of ESDF value of the Env-
ESDF. ESDF values inside the obstacles are negative, and outside
are positive. (b): L-shape robot with 1.2m in length for real-world
experiments. (c): RC-ESDF is built based on L-shape robot. ESDF
values inside the robot are negative, and outside are zero.

II. RELATED WORKS

There are various planning works [1, 2] that model a robot
as a mass point and inflate obstacles based on the robot’s
radius, which achieve collision evaluation by ensuring the
center of the sphere in the free space of the inflated map.
However, this conservative method, which does not take the
specific shape of the robot into account, is not applicable
in crowded environments. Ji et al. [12] propose to model
the drone as a disc for perching on a moving platform. To
cross narrow gaps, Liu et al. [5] use a search-based method
that formulates the robot as an ellipsoid and checks if the
ellipsoid collides with obstacles along every primitive. In
summary, these simple modeling methods are not accurate
enough to generally represent any-shape mobile robots.

The most popular whole-body collision evaluation meth-
ods for mobile robot are GJK-based, corridor-based and
ESDF-based method. GJK-based methods [6, 7, 13, 14] that
represent the robot and obstacles using convex polyhedron
and constructs safety constraint by calculating the distance
between two convex polyhedrons. However, this method
need to ensure that all obstacles are convex-shape, and the
solution dimension of the problem increases significantly as
the number of obstacles increases.

There are a number of frameworks that opt for corridor-
based methods to achieve whole-body collision evaluation.
Generally, corridor is constructed by a set of polyhedron-
shape [3, 8, 15], sphere-shape [4, 16] , or rectangle-shape



[9, 10] convex hulls. Han et al. [8] propose a baseline for
autonomous drone racing, which takes the drone’s shape into
account to fly through narrow gaps. This method models the
robot as a convex polyhedron, then constrains the convex
polyhedron in the flight corridor to guarantee safety. Ding
[9] and Manzinger [10] construct a series of rectangles as a
safe corridor for car-like robot. Although this method speed
up the construction of the corridor, it sacrifices a significant
amount of solution space. However, the above corridor-based
methods strictly require that the intersection of adjacent
compositions of the corridor can contain at least one robot.
Worse, these methods are naturally too conservative for non-
convex shape robots, such as the L-shape robot, as shown in
Fig. 5(c) and 9(c).

ESDF-based method is also heavily used in collision
evaluation [2] as a map representation that easily provides the
distance to the nearest obstacle, which we call environment-
based ESDF (abbreviated as Env-ESDF) in this paper. Some
methods model the robot with a series of circles [11, 17].
Based on Env-ESDF, safety can be achieved by constraining
the distance between the center of the circles and the
obstacles to be greater than the circles’ radius. However,
this conservative method is struggling to deal with the
narrow environment, as shown in Fig. 5(b). An intuitive idea
for ESDF-based whole-body collision evaluation method is
dense sampling on the robot, which can accurately describe
the shape of robot, but requires more complex calculations,
as shown in Fig. 7 and Table I. Few methods can satisfy both
accuracy and low computational consumption. Moreover, we
need to build a large Env-ESDF to ensure that the trajectory
is always in the field, thus the trade-off between the range
of the ESDF and the computational overhead of building the
field keeps a challenging problem.

III. ROBO-CENTRIC ESDF

In this section, we present the details of constructing RC-
ESDF. It is pre-built in the robot body frame, which only
focuses on the shape of the robot rather than the obstacles in
the environment. Compared to Env-ESDF, RC-ESDF does
not require real-time updates based on the environment
information obtained from sensors, which greatly reduces
the computational overhead. In the same way that Env-
ESDF can describe obstacles of any-shape, RC-ESDF has
natural applicability to represent any-shape robot, even for
non-convex shape robots. As shown in Fig. 2(c), RC-ESDF
accurately models the robot according to its shape.

We define ESDF values inside the robot are negative, and
its norm is the closest distance to the robot surface. ESDF
values outside the robot are zero, which ensures that there are
no discontinuities in the optimization due to the field with
abrupt boundaries. In contrast, Env-ESDF based methods
can only ensure continuity for optimization by creating a
larger field. This method ignores the obstacles information
out of RC-ESDF that does not collide with the robot, and
only evaluates collision by the ESDF values of the obstacle
points that intersect with RC-ESDF. For the calculation of
ESDF values, RC-ESDF utilizes an efficient O(n) algorithm
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The process of the robot colliding with an obstacle. The gray arrow indicates the direction of the robot's movement. $q_i$ means the obstacle points that 
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Fig. 3: This figure illustrates the process of the robot colliding
with an obstacle in the world frame. The gray arrow indicates
the direction of the robot’s movement. The green point qi is the
obstacle point colliding with the robot. The green arrow represents
the norm and direction of the sum of the gradient that obstacle
points generated in RC-ESDF.
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Fig. 4: This figure illustrates the process of the robot colliding with
an obstacle in the body frame. Movement of the green obstacle
points intersect with the robot along the gray dashed arrows in RC-
ESDF. The green arrows represent the gradient of obstacle points
generated in RC-ESDF.

[18]. This algorithm requires RC-ESDF to be stored by a
grid map. And we store ESDF value of the vertices of the
grids. ESDF values and gradient information of any obstacle
point in RC-ESDF can be obtained by linear interpolation
[2] of the ESDF values of the saved vertices.

To clearly illustrate the gradient of collision evaluation
based on RC-ESDF, we show the movement of the robot
intersecting with an obstacle as time changes in Fig. 3
and 4. In this demonstration, the obstacle is represented
by several blue points and collision obstacle points have
green color. In the world frame, as illustrated in Fig. 3,
the robot gradually moves into the range of the obstacle
following the direction of the solid gray arrow. Meanwhile,
in the robot body frame, as shown in Fig. 4, the obstacle
points progressively move into the RC-ESDF. Thus we can
obtain ESDF values and gradients of all the obstacle points
in RC-ESDF at different time t. Conducting gradients to the
control points of trajectory through the chain rule, the joint
safety constraint on position and rotation is constructed. The
detailed calculation process is in Sec.IV-B.1.

IV. GRADIENT-BASED JOINT TRAJECTORY
OPTIMIZATION

A. Trajectory Representation

We jointly optimize the position and yaw of robot si-
multaneously. It can generate a whole-body collision-free



trajectory considering smoothness and feasibility. For a
holonomic ground-robot, its trajectory is represented by
{x(t), y(t), ψ(t)} ∈ SE(2). The trajectory is parameterized
by a uniform B-spline curve, which is a piecewise poly-
nomial uniquely determined by its degree pb, a knot span
∆t, and Nc control points {Qk,Ψk}. In practice, we choose
pb = 3, then the total duration of the trajectory is (Nc−3)∆t.
The control points of the velocity, acceleration, and jerk
curves can be obtained by:

Vk =
Qi+k −Qk

∆t
,Ak =

Vk+1 −Vk

∆t
,Jk =

Ak+1 −Ak

∆t
,

k ∈ {1, 2, ..., Nc − 2} .
(1)

The control points of yaw velocity VΨ,k, yaw accelera-
tion AΨ,k, and yaw jerk JΨ,k have the same expression.
We optimize the subset of Nc + 1 − 2pb control points
{Qpb ,Qpb+1, ...,QNc−pb} and {Ψpb ,Ψpb+1, ...,ΨNc−pb}.
The first and last pb control points should not be changed
because they determine the boundary state.

B. Objective Functions

The optimization problem is formulated as follows:

min
Q,Ψ

J = λpsJps+λpfJpf +λψsJψs+λψfJψf +λcJc, (2)

where Jps and Jpf are the smoothness and feasibility penalty
of position, Jψs and Jψf are the smoothness and feasibility
penalty of yaw angle, Jc is the joint collision penalty
associated with both position and yaw. λps, λpf , λψs, λψf ,
λc are weights for each penalty terms.

1) Collision penalty: Collision penalty pushes the entire
robot away from obstacles at each constraint point [pT

k , ψk]
to ensure that the whole trajectory is collision-free. Accord-
ing to the properties of the third-order B-spline, constraint
point pk and ψk is defined as:

pk =
1

6
(Qk + 4Qk+1 +Qk+2),

ψk =
1

6
(Ψk + 4Ψk+1 +Ψk+2),

(3)

where pk = [xk, yk]
T is the center of rotation of the robot

in the world frame, and ψk is yaw angle. We define collision
penalty Jc as:

Jc =

Nc−2∑
k=1

Fc(pk, ψk),

Fc(pk, ψk) = d2pk,ψk
,

(4)

where Fc(pk, ψk) is a differentiable potential cost function.
dpk,ψk

is the sum of RC-ESDF values of obstacle points that
collide with robot whose pose is [pT

k , ψk]:

dpk,ψk
=

Md∑
i=1

di,∀i ∈ {1, 2, ...,Md} , (5)

where Md is number of collision points, di is the RC-ESDF
value of i-th collision point. di can easily be obtained from
RC-ESDF, which is mentioned in Sec.III.

We define the j-th vertex vk,j of the RC-ESDF in the
world frame as:

vk,j = Rkvb,j + pk ∀j ∈ {1, 2, ...,Mv} , (6)

where Mv is the number of vertexes and vb,j = [xb,j , yb,j ]
T

is the j-th vertex of RC-ESDF in the robot body frame. Note
vb,j is constant once the robot’s shape is identified. Rk is
rotation matrix that represents the robot’s rotation. We use
Axis-aligned bounding box (AABB) algorithm to delineate
a rectangular area based on where the robot is located in
the world frame. The point qw,i of obstacles in the AABB
bounding box, which are defined as collison point, can be
transferred to qb,i in the body frame :

qb,i = R−1
k (qw,i − pk). (7)

We use Hi,k to represent the RC-ESDF value of the i-
th collision point qb,i when the robot is at [pT

k , ψk]. The
gradients of the RC-ESDF value Hi,k with respect to pk
and ψk can be calculated by:

∂Hi,k

∂pk
=

(
∂qb,i
∂pk

)T
∂Hi,k

∂qb,i
= −Rk

∂Hi,k

∂qb,i
,

∂Hi,k

∂ψk
=

(
∂qb,i
∂ψk

)T
∂Hi,k

∂qb,i

= (qw,i − pk)
T

[
−sinψk −cosψk
cosψk −sinψk

]
∂Hi,k

∂qb,i
.

(8)

Then the gradient of the cost function Fc(pk, ψk) with
respect to pk and ψk can be written as:

∂Fc(pk, ψk)

∂pk
= 2dpk,ψk

Md∑
i=1

∂Hi,k

∂pk
,

∂Fc(pk, ψk)

∂ψk
= 2dpk,ψk

Md∑
i=1

∂Hi,k

∂ψk
.

(9)

2) Feasibility penalty: Feasibility penalty constrains the
velocity and acceleration along the trajectory from the ex-
ceeding maximum value vm and am, we define the feasibility
penalty function Jpf as:

Jpf =

Nc−1∑
k=1

(||Vk||2 − v2m) +

Nc−2∑
k=1

(||Ak||2 − a2m). (10)

To limit the velocity and acceleration of yaw angle, the
yaw feasibility penalty function Jψf can be written as:

Jψf =

Nc−1∑
k=1

(||Vψ,k||2 − v2ψ,m) +

Nc−2∑
k=1

(||Aψ,k||2 − a2ψ,m).

(11)
where vψ,m and aψ,m are the maximum value of yaw
velocity and acceleration.



3) Smoothness penalty: In the paper, minimizing the
control points of second and third-order derivatives of the B-
spline trajectory is sufficient to reduce the derivative along
the whole curve. We use squared acceleration and jerk as
smoothness penalty function Jps and Jψs:

Jps =

Nc−1∑
k=1

||Ak||22 +
Nc−2∑
k=1

||Jk||22,

Jψs =

Nc−1∑
k=1

||Aψ,k||22 +
Nc−2∑
k=1

||Jψ,k||22.

(12)

C. Numerical Optimization

We adopt L-BFGS1 [19] to solve the numerical problem in
trajectory optimization. Since the ESDF values are obtained
by linear interpolation, the gradient of the ESDF values
with respect to the ego motion of robot is not smooth. We
use Lewis-Overton line search [20] that supports nonsmooth
functions. Readers can refer to our previous work EGO-
Planner [1] for more details.

V. EXPERIMENT RESULTS

A. Implementation Details

To validate the efficiency and accuracy of our method
in trajectory optimization,we conduct simulation comparison
experiments based on convex and non-convex shape robots
respectively. We also performed simulation experiments of
our method in a 3D narrow environment based on an aerial
robot. All the simulation experiments are run on a desktop
equipped with an AMD Ryzen 7 3700x 8-core CPU. In real
world experiments, to validate our method can be applied
to any-shape robots, we especially implement experiments
with rectangle-shape (convex) and L-shape (non-convex)
McNamee-based wheeled robots. All computations are per-
formed by an onboard computer NUC with i5-1135G7 CPU.
Environment information is stored by a pre-build precise
point cloud map and real-time localization is obtained by
a NOKOV motion capture system. During the optimization,
all methods use the same optimization solver L-BFGS and
parameters. For safety requirements, we set the safety dis-
tance threshold to 0.1m, which can be easily achieved in our
method by expanding the RC-ESDF.

B. Benchmark for Convex Shape Robot

We benchmark our method with Env-ESDF based method
Fast-Planner [2], Li’s method [11], and corridor-based
method Fast-Racing [8] based on convex shape robot. In
simulation, we set a 1.8m × 1.2m rectangle-shape robot
and 17m × 10m narrow environment. We also provide the
same reference path generated by A* as the initial value
of trajectory optimization for each method. The results are
shown in Fig. 5.

Li’s method abstracts the robot’s shape with two circles.
However, this method is too conservative to optimize in

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite
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Fig. 5: Comparison of the proposed method against three whole-
body trajectory optimization methods to pass through narrow gaps
based on convex shape robot. (a): Proposed. (b): Li’s method. (c):
Fast-Racing. (d): Whole-body Fast-Planner. (e): Two circles are
blocked by narrow gaps of Li’s method leading to abrupt yaw angle
changes. (f): The intersection of two adjacent polyhedron fail to
cover the whole-body of the robot, which leads to optimization
failure.
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Fig. 6: Comparison of Our method and Li’s method for the yaw
velocity of the robot.

narrow area. As illustrated Fig. 5(b) and (e), the robot is
blocked by obstacles because of the low-fidelity approxi-
mation introduced by this method. This leads to the fact
that the yaw angle dramatically changes and fails to meet
feasibility constraint in the optimization to enable the two
circles to achieve obstacle avoidance. To further illustrate,
we compare the yaw velocity curves of Li’s and our method,
as shown in Fig. 6. It clearly demonstrates that Li’s method
does not satisfy the dynamic feasibility constraint and has
several large abrupt changes.

The result of corridor-based method Fast-Racing is shown
in Fig. 5(c). The corridor is made up of grey polyhedrons.
The result indicates that the trajectory optimization fails due
to the intersection of two adjacent polyhedrons can’t cover
a whole-body of the robot.

Fast-Planner treats robots as a mass point for efficient
calculation in simple environments. An intuitive way to
achieve whole-body collision evaluation is sampling points
on the full shape of the robot and summing up ESDF
values of these points to construct safety constraint, and we
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Fig. 7: Comparison of proposed and whole-body Fast-Planner for
ESDF building time and trajectory optimization time. Proposed
method has negligible ESDF building time.

call this Env-ESDF-based method whole-body Fast-Planner
(abbreviated as WBFP). To compare the differences between
WBFP and proposed more fairly, we use the same trajectory
optimizer L-BFGS and optimization parameters. As shown
in Fig. 5(d), the trajectory of whole-body Fast-Planner has
a similar effect to our method. Then we compared the two
methods in trajectory optimization time. The resolution of
both the Env-ESDF in Fast-Planner and the RC-ESDF in our
method is 0.1m. We require the two methods to repeat the
trajectory optimization 20 times in the same environment,
with a random start and end point and a planning length
of about 15m. The result is illustrated in Fig. 7, WBFP
has to maintain an ESDF with a range of 16m × 12m and
check ESDF values of every sample points to avoid nonlinear
mutations. In addition to not consuming time maintaining the
ESDF, our method has less computational overhead due to
lazy collision evaluation with fewer requests to ESDF for
interpolation.

C. Comparison of Different Size Robots

To further demonstrate the advantages of the proposed
method over whole-body Fast-Planner [2], we conduct ex-
periments using rectangle-shape robots of different sizes in a
25m×18m environment. The initial path is still provided by
A*. We set up robots with sizes 0.4m×0.8m, 1.8m×1.2m
and 3.6m×1.4m respectively, and their results are shown in
Table I and Fig. 8. The total trajectory optimization and one
iteration time of the proposed method are much less than
that of the whole-body Fast-Planner.

Whole-body Fast-Planner requires calculating the ESDF
value for each sample point at each iteration. As the size of
robot increases, the time cost of collision penalty calculation
for a single iteration also increases, resulting in a longer total
optimization time. Proposed method only needs to query the
ESDF value of obstacle points that fall within the field at
each iteration, which greatly enhances the speed of whole-
body collision evaluation. In summary, our method achieves
efficient whole-robot collision evaluation and fast trajectory
optimization while accurately describing the robot shape.

D. Benchmark for Non-convex Shape Robot

We benchmark our method with the same methods in
Sec.V-B based on non-convex shape robot. We designed an
L-shape robot of 1.2m length and 0.4m width and 10m ×

TABLE I: Methods Optimization Time Comparison for
Different Size Robots

Methods

Opt time Size

0.4m× 0.8m 1.8m× 1.2m 3.6m× 1.4m

Proposed
(total time) 0.10s 0.31s 1.14s

WBFP
(total time) 1.449s 13.26s 11.84s

Proposed
(one iteration) 0.11ms 0.36ms 1.36ms

WBFP
(one iteration) 2.00ms 10.47ms 23.45ms

(a) 0.4m×0.8m (b) 1.8m×1.2m (c) 3.6m×1.4m

Fig. 8: Trajectory optimization results for three different size robots.

6m narrow environment. The reference path for trajectory
optimization is generated by the standard implementations
of RRT* from OMPL2. The comparison results are shown
in Fig. 9 and Table II.

Based on Li’s method [11], L-shape robot is abstracted as a
combination of five circles. This method is conservative that
the robot is blocked in a narrow area, as shown in Fig. 9(b),
resulting in no feasible solution. Fast-Racing [8] represents
the non-convex shape robot as a convex polyhedron, and
strictly requires that the intersection of adjacent compositions
of the corridor can contain at least one robot, as depicted in
Fig. 9(c), leading to the safety constraint is hard to satisfy.
For Whole-body Fast-Planner [2], dense sampling is required
at each iteration, thus increasing the total optimization time.
In summary, our method costs a shorter trajectory optimiza-
tion time while obtaining better trajectory quality.

(a) Proposed (b) Five-Circles (c) Fast-Racing

(d) Whole-Body
Fast-Planner

(a) (b)

(c) (d)

Collision!

(a) (b) (c) (d)

Collision!Collision!

Fig. 9: Comparison of the proposed method against three whole-
body trajectory optimization methods to pass through narrow gaps
based on non-convex shape robot. (a): Proposed. (b): Li’s method.
(c): Fast-Racing. (d): Whole-body Fast-Planner.

2http://ompl.kavrakilab.org/



TABLE II: Methods Quantitative Comparison for
Non-convex shape robot

Methods opt(s) smooth(m/s3) length(m)

Proposed 0.46 0.65 18.25

Li’s method failed 0.77 18.55

Fast-Racing failed \ \

WBFP 1.29 0.60 17.68

E. Application on Aerial Robots

To demonstrate the applicability of our method to three-
dimensional trajectory optimization, we specifically designed
a simulation experiment based on aerial robots, where the
robot’s trajectory is represented by {x(t), y(t), z(t), ψ(t)} ∈
R3×SO(2). In simulation, a 3.6m×1.8m×0.6m rectangular
aerial robot needs to pass through three narrow slits in suc-
cession. The result is shown in Fig. 10. The optimization time
is 6.63s, the trajectory length is 31.43m, and the execution
time is 38.12s. In conclusion, the simulation experiment
demonstrates that our method can be extended to 3D narrow
environments, benefiting from accurate modeling.

Fig. 10: Rectangular aerial robot traverses three narrow slits.

F. Real World Experiments

We conduct real-world experiments in several complex
environments with narrow gaps and channels. Thanks to the
holonomic characteristics of the McNamee-based wheeled
robot, the rotation of the robot is decoupled from the posi-
tion, which means that the robot can pass through narrow
gaps by rotating yaw angle freely. The reference path is
generated by RRT* from OMPL.

The rectangle-shape robot is shown in Fig. 1(a), whose
length and width are 1.2m and 0.4m, respectively. Pink line
represents the head of the robot. The experiment scene is
depicted in Fig. 1(a) under the Bird’s Eye View (BEV),
and the point cloud map and trajectory after optimization
is shown in Fig. 1(b). Narrow gaps and channels are less
than 1.0m, where the rectangle-shape robot needs to pass in
a specific rotation. In this experiment, our method generates
a 13m whole-body collision-free global trajectory in only
0.16s. Changes of position and rotation of the robot are
presented as snapshots in Fig. 1(a).

The L-shape robot is illustrated in Fig. 1(c). The longest
and shortest sides of the L-shape are 1.2m and 0.4m, re-
spectively. In experiment scene Fig. 1(c) and (d), the width
of narrow gaps is 1.0m, which requires L-shape robot to

(a)

(b)

start end L-shape robot

Fig. 11: L-shape robot experiment that makes the robot pass through
a line of narrow gaps by changing yaw angle like roller skating.
(a): BEV of experiment. (b): Trajectory in point cloud map.

move and rotate flexibly to pass through narrow gaps with
the narrowest part of robot body. Another experiment scene
is shown in Fig. 11, which requires the L-shape robot to cross
over a line of narrow gaps like roller skating. The robot has to
change yaw angle continuously, and keep trajectory smooth
and feasible, shown in snapshot Fig. 11(a).

The real-world experimental results prove the reliability
of our method in complicated and narrow environments.
Additionally, tests on robots of different shapes verify the
generality of the proposed method for both convex and non-
convex shape robots.

VI. CONCLUSION

In this paper, we propose a novel RC-ESDF for any-shape
robot trajectory planning. Pre-building in the robot body
frame, RC-ESDF does not require a real-time update. This
method ignores the information of obstacles that are out of
RC-ESDF and only considers the obstacle points that fall
in the field, which significantly reduces the computational
overhead. Additionally, we jointly optimize the position and
rotation of robot simultaneously to generate a collision-free
whole-body trajectory for any-shape mobile vehicle robot.
Compared with the corridor-based method and the Env-
ESDF-based method, our method achieves fast trajectory
optimization and explicitly considers robot’s shape, which
has better performance in dense environments. Real-world
experiments validate that our method is robust to narrow
environments and generic for both convex and non-convex
robots. In the future, we plan to extend our method to the
SE(3) space and consider how to generate a whole-body
reference path efficiently.



REFERENCES

[1] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2021.

[2] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[3] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-
repeat-replan: A complete and robust system for aggressive flight in
complex environments,” IEEE Transactions on Robotics, vol. 36, no. 5,
pp. 1526–1545, 2020.

[4] J. Ji, Z. Wang, Y. Wang, C. Xu, and F. Gao, “Mapless-planner:
A robust and fast planning framework for aggressive autonomous
flight without map fusion,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 6315–6321.

[5] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se (3),” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[6] X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous parking
using optimization-based collision avoidance,” in 2018 IEEE Confer-
ence on Decision and Control (CDC). IEEE, 2018, pp. 4327–4332.

[7] R. He, J. Zhou, S. Jiang, Y. Wang, J. Tao, S. Song, J. Hu, J. Miao, and
Q. Luo, “Tdr-obca: A reliable planner for autonomous driving in free-
space environment,” in 2021 American Control Conference (ACC).
IEEE, 2021, pp. 2927–2934.

[8] Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-racing: An
open-source strong baseline for se(3) planning in autonomous drone
racing,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp.
8631–8638, 2021.

[9] W. Ding, L. Zhang, J. Chen, and S. Shen, “Safe trajectory genera-
tion for complex urban environments using spatio-temporal semantic
corridor,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2997–3004, 2019.

[10] S. Manzinger, C. Pek, and M. Althoff, “Using reachable sets for
trajectory planning of automated vehicles,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 2, pp. 232–248, 2020.

[11] B. Li, T. Acarman, Y. Zhang, Y. Ouyang, C. Yaman, Q. Kong,
X. Zhong, and X. Peng, “Optimization-based trajectory planning for
autonomous parking with irregularly placed obstacles: A lightweight
iterative framework,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[12] J. Ji, T. Yang, C. Xu, and F. Gao, “Real-time trajectory planning for
aerial perching,” arXiv preprint arXiv:2203.01061, 2022.

[13] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
193–203, 1988.

[14] S. Cameron, “Enhancing gjk: Computing minimum and penetration
distances between convex polyhedra,” in Proceedings of international
conference on robotics and automation, vol. 4. IEEE, 1997, pp.
3112–3117.

[15] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
2022.

[16] Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization
approach to smooth trajectories for motion planning with car-like
robots,” in 2015 54th IEEE conference on decision and control (CDC).
IEEE, 2015, pp. 835–842.

[17] B. Li, Y. Ouyang, Y. Zhang, T. Acarman, Q. Kong, and Z. Shao, “Opti-
mal cooperative maneuver planning for multiple nonholonomic robots
in a tiny environment via adaptive-scaling constrained optimization,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1511–1518,
2021.

[18] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Theory of computing, vol. 8, no. 1, pp. 415–428,
2012.

[19] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[20] A. S. Lewis and M. L. Overton, “Nonsmooth optimization via quasi-
newton methods,” Mathematical Programming, vol. 141, no. 1, pp.
135–163, 2013.


	Introduction
	Related Works
	Robo-centric ESDF
	Gradient-based Joint Trajectory Optimization
	Trajectory Representation
	Objective Functions
	Collision penalty
	Feasibility penalty
	Smoothness penalty

	Numerical Optimization

	Experiment Results
	Implementation Details
	Benchmark for Convex Shape Robot
	Comparison of Different Size Robots
	Benchmark for Non-convex Shape Robot
	Application on Aerial Robots
	Real World Experiments

	Conclusion
	References

