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Abstract— Offline evolutionary-based methodologies have
supplied a successful motion planning framework for the
quadrupedal jump. However, the time-consuming computation
caused by massive population evolution in offline evolutionary-
based jumping framework significantly limits the popularity
in the quadrupedal field. This paper presents a time-friendly
online motion planning framework based on meta-heuristic
Differential evolution (DE), Latin hypercube sampling, and
Configuration space (DLC). The DLC framework establishes
a multidimensional optimization problem leveraging centroidal
dynamics to determine the ideal trajectory of the center of mass
(CoM) and ground reaction forces (GRFs). The configuration
space is introduced to the evolutionary optimization in order to
condense the searching region. Latin hypercube sampling offers
more uniform initial populations of DE under limited sampling
points, accelerating away from a local minimum. This research
also constructs a collection of pre-motion trajectories as a warm
start when the objective state is in the neighborhood of the
pre-motion state to drastically reduce the solving time. The
proposed methodology is successfully validated via real robot
experiments for online jumping trajectory optimization with
different jumping motions (e.g., ordinary jumping, flipping, and
spinning).

I. INTRODUCTION

A crucial aspect of a quadrupedal robot’s capacity to
traverse various terrains is its ability to perform jumping
motions in tough natural surroundings. To adapt to un-
even terrains, many researchers have focused on locomotion
via diverse gaits (e.g., bounding, walking). Some works
have already yielded outstanding results, such as high-speed
bounding in [1] and [2]. However, crossing over unavoidable
obstacles (e.g., deep canals and roadblocks) usually requires
a robust and high-performance jumping motion controller.
A core difficulty for quadruped jumping is generating tra-
jectories in real time under kino-dynamic constraints [3]
(e.g., physical constraints). [4] and [5] have already achieved
unforgettable results. However, the laborious calculation of
offline trajectories makes it difficult or impossible to apply
to jobs involving frequent re-planning. This motivates the
development of a unified framework that satisfies online
planning.

Some publications address jumping trajectory optimization
issues subject to complex kino-dynamics constraints using
Reinforcement Learning (RL). The RL approach has shown
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Fig. 1. Various jumping motion experiments to validate the proposed
online motion framework. (1) Two-leg vertical jumps with θ = π

2 . (2) Back-
flip jumps with θ =−2π . (3) Back-flip jumps from 0.3 (m) height platform
(4) Four-leg vertical jumps reach the max height of 0.7 (m).

a remarkable capacity for complicated locomotion on legged
robots [6]–[8]. Recently, some works have used RL to deal
with the jumping of quadruped robots. Learned policies,
inspired by cat landing behavior, were used to control
the robot’s posture in the landing phases. [9]. However,
few works are focusing on planning multiple complicated
jumping motions using a single policy.

Gradient-based trajectory optimization is a commonly
employed optimization method in robot jumping control. The
MIT research uses gradient-based optimization algorithms to
assist the robots Cheetah 3 jump on a high desk (0.76 (m))
and Mini-Cheetah to cover a variety of jumping motions with
an online 3-D jumping trajectory optimization approach [10],
[11], respectively. Similar to [12], they use collocation-based
optimization to build offline trajectories over dynamically-
feasible barriers. Additionally, [13] utilized a mixed-integer
convex program to circumvent the reference motion limits;
however, this method must be optimized offline.

Heuristic algorithms can efficiently solve optimization
problems with complex constraints, which supplies a new
approach for generating jumping motions. Differential Evo-
lution (DE) is a heuristic-based algorithm proposed by Storn
and Price [15]. DE algorithms have been utilized in robotics,
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signal processing, and other industries to address compli-
cated optimization problems [20]. In our previous work, DE
is employed to generate offline jumping trajectories for a
quadrupedal robot [16]. However, this offline approach is
inherently inferior for systems with online re-planning re-
quirements. Moreover, the technique called Latin hypercube
sampling (LHS) can be used to generate an initialization
population for DE, increasing the convergence speed in low-
dimensional space (typically less than 20 dimensions) [17],
[18].

In our work, we try to accelerate the DE algorithm through
three techniques: search space compressing without losing
the jumping motion performance, careful selection of the
initial population, and a warm start by pre-calculation. By
adding the conditioned configuration space of the robot,
the smaller searching space enables the DE approach to
reduce the population and the number of iterations, hence
accelerating the optimization time. The LHS gives more
uniform initial populations of the DE algorithm, which
accelerates away from the local minimum. Also, when the
desired state is in close proximity to solved states saved in
the pre-motion library, pre-calculated optimization variables
can be shared with new evolution as a warm start. To sum
up, the DE algorithm based on C-space, LHS, optimization
variables transformation, and Pre-motion library is used to
construct the proposed framework.

In this work, we intend to answer the following questions:
a) How to design a time-friendly optimization framework for
online motion planning using an evolution-based technique?
b) How do the configuration space, Latin hypercube sam-
pling, and optimization variables transformation accelerate
the convergence speed of the optimization? c) How to
produce a series of trajectories for the Pre-motion Library?

Our primary contributions can be shown as follows:
1) A time-friendly online motion planning framework

for quadruped jumping based on the meta-heuristic
Differential evolution, Latin hypercube sampling, and
Configuration space (DLC) algorithm is proposed,
which can generate various jumping trajectories online.

2) We creatively combine configuration space, Latin hy-
percube sampling, and the Pre-motion Library to re-
duce optimization time.

3) The algorithm has been verified online by various
jumps on a real quadruped robot (see Fig. 1).

Moreover, the current study differs from our prior work
[16] in that it only addresses how to solve a quadruped robot
jumping problem by an evolutionary algorithm but does not
consider how to overcome the time-consuming restriction.

II. MODELS AND DYNAMICS

The objective of this section is to present the centroidal
dynamics and 2D planar model for the DLC framework. The
reduced-order dynamic model of jumping motion treats the
robot as a single rigid body (SRB) with a specified moment
of inertia for the optimization process. Moreover, this work
considers the 2D planar model (i.e., sagittal and coronal

planes) to the framework as shown in Fig. 2 and Fig. 3.
The xxx presents the system state.

xxx := [PPPT
C ΘΘΘ

T VVV T
C

BωωωT ]T ∈ R12 (1a)
QQQ := [qqqi q̇qqi] ∈ R24 (1b)

where PPPC ∈ R3 is the position of the robot center of mass
(CoM) w.r.t inertial frame; ΘΘΘ ∈ R3 represents the Euler
angles of the robot; VVVC ∈ R3 is the velocity of the CoM.
Bωωω ∈ R3 is the angular velocity of CoM represented in the
robot frame B. qqqi ∈ R3 and q̇qqi ∈ R3 are the joint angles and
velocities of each leg. i is the number of feet. The GRFs
uuu := [ fff i] ∈R12, fff i ∈R3 is the dynamic system control input
at each contact point acquired by optimization. rrri is the
vector from CoM to the robot foot. Then the body net wrench
F ∈ R6 of the CoM is shown as follows:

F =

[
FFFc
τττc

]
=

4

∑
i=1

[
fff i
rrri× fff i

]
, (2)

where FFFc and τττc represent the total force and torque of
CoM. Moreover, the simplified model for jumping motions
decreases the 18 Degrees-of-Freedom (DoFs) to 7 (including
6 leg joints and an angle of the jumping plane, see Fig. 3).

Then the equations of the centroidal dynamics model [22]
are given in (3) along with the coordinates defined in Fig. 2.

P̈PPC(t) =
∑

4
i=1 fff i

m
−ggg (3a)

d(IIIωωω)

dt
= τττc +0003×1× (m ·ggg), (3b)

where ggg ∈ R3 represents gravitational acceleration. BIII ∈
R3×3 is the robot’s rotation inertial tensor which is assumed
as a constant in this work, diag(BIII) = [0.07,0.26,0.242]T . In
addition, our framework classifies jumping motions into four
phases: four-foot contact, two-foot contact, flying phase, and
landing phase.

Fig. 2. A model of a single rigid body (SRB) utilized in the framework
for optimization. The blue arrow represents the CoM to the plantar position
vector, while the red arrow represents the Ground Reaction Forces (GRFs).

III. JUMPING MOTION PLANNING FRAMEWORK

To design a time-friendly optimization framework for
online motion planning, we improve the meta-heuristic
Differential evolution algorithm by introducing the Latin
Sampling algorithm to replace the random initial population
and the Configuration space to further reduce the optimiza-
tion algorithm’s search domain. Additionally, the pre-motion
library is also used as the warm-start.



(a) (b)
Fig. 3. 2D planar models schematic diagram used in DLC framework. (a)
and (b) represent the sagittal plane and coronal plane, respectively. The red
arrow indicates the GRFs of different jumping planes. The red area indicates
that the 2D planar model reduces the 18 DoFs for diverse jump motions to
7 DoFs.

A. Optimization Formulation

The objective of this section is to build the optimization
problem and optimization objectives. Additionally, unlike the
gradient-based method, our evolutionary-based optimization
framework’s cost function is a well-designed priority hierar-
chical fitness function.

minimize
Dopt

10L−
L

∑
n=3

(10n−3
σnWn)+W1ζ

subject to xxx(k+1) = xxx(k)+∆tẋxx(k)

ẋxxk+1 = g(uuuk,xxxk)

xxxk ∈ X,k = 1,2, · · · ,N
uuuk ∈ U,k = 1,2, · · · ,N
qqqk ∈Q,k = 1,2, · · · ,N
xxx(0) = xxx0,xxx(N) = xxxtarget

(4)

where ζ =
∫ T

0 (|τττ(t)q̇qq(t)|)dt is the energy consumption of the
motion. Dopt is the optimization variables whose meaning
and selection are elaborated in the next section. σn ∈ R is
the differences between the system state produced by the
evolutionary algorithm optimization iteration process and the
feasible set specified by C-space. Wn ∈ [0,1] is a weight that
indicates the significance of one constraint to the optimiza-
tion problem. N is the evolution population number (ref to
Algorithm 1); L ∈ R is the total number of layering priority
constraints. X, U and Q are the feasible sets according to
kino-dynamics constraints. xxx(0) and xxx(N) are the initial state
and the desired state for the robot; ẋxxk+1 = g(uuuk,xxxk) represents
the centroidal dynamics combination form with respect to
(3a) and (3b).

B. Optimization Parameters and Transformation

The objective of this section is to design optimization
variables for the DLC framework of different jump motions.
We utilize the system state as the optimization variable
instead of employing polynomial parameters.

Here, the scenario of front jumping in the sagittal plane
illustrates how to generate the optimization variables and do
the optimization variables transformation.
Assumption 1: The force along the y-axis is zero.
Assumption 2: Leg 0 and leg 1 has the equivalent force, the
same as the rear two legs. That is, fff 0 = fff 1 and fff 2 = fff 3.

Assumption 3: The x-axis force of the front and back feet are
equal when t ∈ [0, t1]. Based on the assumptions, the equation
of GRFs of the front jump can be simplified as follows:

fff i =


a1t +a0 t ∈ [0, t1]

b2t2 +b1t +b0 t ∈ [t1, t2]
0 t ∈ [t2, t3]

, (5a)

Λ = [a0,a1,b0,b1,b2], (5b)

By using a 2D simplified model of front jumping motion,
the robot state can be represented as sssΩ(t) = [xc,zc,θ ],
where [xc,zc] are the position of CoM and θ is the pitch
angle. We can get the analytical expression of sssΩ(t) from
GRFs given in (5a) using the centroidal dynamics models.
In addition, there are 12 polynomial coefficients for one
jump motion according to assumption 2. The robot’s state
should then ideally be utilized for optimization. Furthermore,
to easily bound the Λ, we convert polynomial coefficients
into expressions based on sssΩ(t). we choose robot states
under four time points together with three durations of
different jumping phases ([ t1

2 , t1, t2, t3]). Then, we can select
the optimization variables given in (6).

DDDopt := [sssΩ(
t1
2
),sssΩ(t1),sssΩ(t2), topt ]

T ∈ R12, (6)

Algorithm 1: DLC Algorithm
input : ssst ,OOOk,DDD∗res,Maxgen,NP,DDDopt,r,ε
output: DDDres

1 g← 1,kkk← [ssst ,OOOk],sssm ∈ R12← DDDopt ;
2 ΩΩΩsss←{sssm | sm,1∼9 ∈ΩΩΩC,sm,10∼12 ∈ΩΩΩT} ;
3 ΩΩΩ

∗
s ←{sssm ∈ΩΩΩs | ∥sssm−DDD∗res∥< r};

4 if ∥ssst − sss∗t ∥2 < ε then
5 sssm(g)← LHS(ΩΩΩs,NP);
6 else
7 sssm(g)← LHS(ΩΩΩ∗s ,NP);
8 end
9 while Fitness(DDDres(g),kkk)> ε ooorrr g < Maxgen do

10 for m← 1 to NP do
11 Mutation and Crossover;
12 for n← 1 to 12 do
13 vm,n(g)←M(sm,n(g));
14 um,n(g)←C(sm,n(g),vm,n(g));
15 end
16 Selection;
17 if Fitness(UUUm(g),kkk)<Fitness(sssm(g),kkk) then
18 sssm(g)←UUUm(g);
19 if Fitness(sssm(g),kkk)<Fitness(DDDres(g),kkk)

then DDDopt← sssm(g) ;
20 else
21 sssm(g)← sssm(g);
22 end
23 end
24 g← g+1;
25 end
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Fig. 4. Overview of Online DLC optimization jumping framework, based on LHS, DE, and C-space. The red dot line means using the trajectory from
the Pre-motion Library. The motion planning procedure is shown by the blue blocks. The low-level controller is shown by the green blocks.

C. C-space and Kino-dynamic Constraints

This section aims to build the configuration space (C-
space)x. We introduce the kino-dynamic constraints includ-
ing joint constraints, contact force constraints, and friction
constraints [16] to generate the C-space, which makes this
optimization problem lie in a much smaller searching region.
Inspired by Ding’s work [13], we search for sssΩ(tttopt) and
tttopt of DDDopt in two independent spaces, configuration space
(C-space) ΩΩΩC ⊂ R3 and time-space (T-space) ΩΩΩT ⊂ R3,
respectively. The definition of ΩΩΩC and ΩΩΩT are as follows:

ΩΩΩC := {sssΩ ∈ R3 | qqqmin < qqq(sssΩΩΩ)< qqqmax,

zzzhip(sssΩΩΩ)> zzzmin,

zzzknee(sssΩΩΩ)> zzzmin},
ΩΩΩT := {tttopt ∈ R3 | 0.1 < tttopt < 0.5},

(7)

where ΩΩΩC is a set of robot’s configurations sssΩ in different
jumping tasks and phases w.r.t. world frame, which satisfies
joint angle and joint position constraints. The constraint of
joint position (zhip and zknee) means that the hip joint and
knee joint should not be in contact with the ground during
the jump. ΩΩΩT is the time range of four feet contacts, two
feet contacts, and flight jumping phases that are manually
selected. For ΩΩΩC, due to the complex relationship between
sssΩ and qqq, zzzhip, and zzzknee the shape of ΩΩΩC is difficult to
describe with analytical formulas. The value range of the
three elements in sssΩ depends on hardware limitations. Then
we split each value range into 50 equal parts to get 125000
points. Finally, the shape of ΩΩΩC can be obtained (see Fig.
5) by removing the points that do not satisfy the constraints
of joint angles and joint positions. Therefore, for different
jumping tasks and feet contact modes, the DLC algorithm
can directly optimize sssΩ in the corresponding ΩΩΩC to speed
up the progress of finding local optimal sssΩ.

D. Pre-motion Library

This section aims to establish an offline library about a set
of the 12 local optimal optimization variables (DDDres) called
the Pre-motion Library to accelerate online optimization.

The central idea for building the Pre-motion Library is
to generate a set of DDDres offline with 12 local optimal
optimization variables (DDD∗res). According to the fixed step size
(∼ 0.05 m), sssΩ is uniformly divided to obtain the target state

(a) (b)

Fig. 5. The 3-dimensional (3D) configuration space for different jumping
tasks and contact modes. (a) Front jump configuration space with the front,
rear, and four feet contact modes. (b) Side jump configuration space with
left, right, and four feet contact modes.
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Fig. 6. The optimization time with the Pre-motion Library of four-leg
front jump motion and convergence comparison of DE algorithm with and
without LHS. (a) The DLC algorithm running time of the four contact front
jumping task with DDD∗res of sss∗

Ω
= [0.6,0.2,0] in Pre-motion Library. The high-

level information sssttt = [xc,zc,0], where xc ∈ [0.5,0.7] m,zc ∈ [0.2,0.4] m and
a sampling point was taken every 0.005 (m) in the two directions. (b) DE
algorithm with and without LHS.

of the robot. Then, the obtained target robot states are input
into the DLC framework. The corresponding DDD∗res are saved
and collected to form the Pre-motion Library. The library
comprises 567 DDDres representing various kinds of jumping
motion (e.g., front/rear/side, backflip, side flip, two/four-
leg jump). When re-planning is required, pre-calculated
optimization variables can be shared with new evolution as
a warm start.

An index file (Yaml-file) maintains all of the CoM’s pre-
motion trajectories. In addition, the Pre-motion file is ∼ 30



(b)

Backflip with Pre-motion Library Backflip without Pre-motion Library
(c)

Four-leg  with Pre-motion Library Four-leg  without Pre-motion Library

(d)

(e)

Two-leg  with Pre-motion Library Two-leg  without Pre-motion Library
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(a)

Fig. 7. The DLC framework solving time on four-leg jump, two-leg jump,
and back-flip with or without Pre-motion library. The solving time has
random noise (±0.05 (m)) at desired sssΩ. (a), (c) and (e) are the back-flip,
four-leg jumping, and two-leg jumping solution times with the Pre-motion
Library. (b), (d) and (f) are the solution time without the Pre-motion Library
of those three jump motions.

Megabytes in size (MB). It will be loaded into memory at the
start of the controller’s engine. The desired trajectory from
the library is based on the minimum Euclidean distance with
a specified threshold (0.05 (m)), the input is the high-level
information sssΩ.

TABLE I
AVERAGE SOLVE TIMES FOR DIFFERENT JUMP MOTION TYPE

Jump Motion Four-contact Back-flip Two-contact
With Pre-motion Library 0.14 (s) 0.79 (s) 0.657 (s)

Without Pre-motion Library 2.19 (s) 5.7 (s) 9.11 (s)
Offline DE [16] 65 (s) 167 (s) 266 (s)

E. Online DLC Algorithm

After the C-Space, Pre-motion Library, and optimization
variables are proposed, then the online DLC framework can
be introduced.

The online DLC algorithm utilizes the prioritization fitness
function (see (4)) to search for solutions in C-space. We
introduce ΩΩΩC and ΩΩΩT into the searching space ΩΩΩs to limit
the mutation region. Then, in contrast to the conventional DE
algorithm’s random population initiation, we use Latin hyper-
cube sampling (LHS) to produce a more uniform initial pop-
ulation distribution [29], which improves algorithm iteration
convergence speed (see Fig. 6(b)). For the objective robot

state ssst whose Euclidean distance to DDD∗res(t3) is less than
the threshold ε , it is obtained from the Pre-motion library,
otherwise, it continues to use the LHS for initialization.

The details of the DLC algorithm are shown in algorithm
1, where ssst ∈R3 is the desired position and Euler angular of
the CoM and OOOk ∈ R12 is the location of obstacles coming
from the high-level information in our framework. Maxgen
and NP represent the maximum generation and population
numbers, respectively. r is the neighborhood radius of DDD∗res.
ε is the fitness value at which the algorithm stops and returns
DDDres, which is usually less than β . g is the number of the DLC
generations, M(·), C(·), and LHS(·) present the mutation,
crossover, and Latin hypercube sampling functions. UUUm(g)
is the unit vector w.r.t. optimization parameters.

IV. IMPLEMENTATION DETAILS AND EXPERIMENTS

This section’s primary objective is to experimentally verify
the efficacy and adaptability of the proposed framework via
various jumping motion types with the open-source MIT
Mini-Cheetah [28]. The jumping controller uses a joint-level
PD controller with DLC generated torque. And a first-order
low-pass filter for qqq and τττ is used for the landing controller.
In order to protect the mechanical components of the robot,
positive flexible landing control is necessary, here we employ
relatively small PD gains [16].

To study the solving efficiency of the proposed framework,
we conduct experiments on the trajectory of optimization
on both the simulation and the real robot. We do not just
repeat the verification of the feasible solutions in the jump
library; rather, we conducted a small-scale randomization
(±0.05(m) of the target position) of each offline-obtained
feasible solution to evaluate the algorithm’s adaptability.
The optimization time for general motions (without touching
the C-space boundary and hardware limits) is often less
than 0.3 (s) (see Fig. 7) with the Pre-motion Library. Still,
it will take about 3-9 seconds to optimize actions with
extreme boundaries (such as the highest vertical jump or
highest double-leg jump height). The average solving time
is shown in the Table. I. Using back-flip as an illustration, the
average optimization time spans from 197s to 0.79s, while
the solution speed is approximately 200 times faster. The
DE algorithm with LHS typically requires fewer iterations
than the conventional initial population technique (see Fig.
6(b)). Our experiments organize into five categories: jumping
motions, flipping motions, flipping from a platform, yaw-spin
jumps, and vertical jumps. The supplementary video contains
demonstrations of the experiments.

In the flipping motion studies, our framework is employed
to validate the back-flip, left-flip, and flip from a platform
(see Fig. 8 and Fig. 1). The robot can perform a backflip from
a 34-centimeter-high platform and land safely. For the second
DLC technique, the offline-generated library is maintained
onboard. The experimental data for back-flip jumping is
depicted in Fig. 9. The experimental data shows that the
torque is restricted at the maximal joint torque of 24 (Nm),
showing that the robot requires a great deal of energy to leave
the ground. Initially, we optimize the jumps using the robot’s
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Backflip in jumping phase Sideflip in jumping phase Two-leg in jumping phase Four-leg in jumping phase

Side jump in jumping phase Yaw-spin in jumping phase   Four legs continous jump Rear jump in jumping phase

Fig. 8. Different jumping motions experiments to validate the proposed DLC framework. (a) Back-flip with desired pitch angle at θ = −2π(rad). (b)
Side-flip with desired roll angle at ϕ = −2π (rad). (c) Two-leg vertical jump with desired pitch angle at θ = − π

2 (rad). (d) Four-leg vertical jump with
desired height of 0.8 (m). (e) Side jump with a desired distance of 0.3 (m). (f) Yaw-spinning with desired yaw angle π (rad). (g) Four legs continuous
jump. (h) Rear jump with desired distance 0.3 (m).

1 1.5 2 2.5 3
time [s]

-2

0

2

Jo
in

t A
ng

le
 [

ra
d]

Leg 0 Joint Angle
Jump Flight Landing

(a)

1 1.5 2 2.5 3
time [s]

-30

-20

-10

0

10

20

30

Jo
in

t T
or

qu
e 

[N
m

]

Jump Flight Landing

(b)

1 1.5 2 2.5 3
time [s]

-2

0

2

Jo
in

t A
ng

le
 [

ra
d]

Leg 3 Joint Angle
Jump Flight Landing

(c)

1 1.5 2 2.5 3
time [s]

-30

-20

-10

0

10

20

30

Jo
in

t T
or

qu
e 

[N
m

]

Jump Flight Landing

(d)

Fig. 9. Joint angle and torque of the back-flip: leg 0 and leg 3 joint angles are shown in (a) and (c). (b) and (d) represent the joint torques of leg 0 and
leg 3. Different color shadows of the figure show the different jumping phases of the different legs.

own computer (Intel ATOM x5-Z8350); however, with pre-
motion, it takes the robot around ∼ 3s or even large to
optimize due to computational restrictions. Hence, a remote
computer optimized online and sent the robot’s trajectory
through UDP.

V. CONCLUSIONS

In this paper, a novel online evolutionary-based time-
friendly optimization motion planning framework has been
proposed for quadruped jumping. Experiments show that an
evolutionary-based method can be an alternative approach
to solving the complicated motion planning problems of
legged robots. Optimization variables transformation and C-
space compress the DE searching region, and Latin hy-
percube sampling gives a more uniform initial population
with limit points, which enhances the ability of the DE
algorithm to escape from the local minimum. Those three
core contributions can give a very obvious improvement
in the convergence speed of the evolutionary algorithm. In
particular, a small-scale random perturbation to the feasible
solution in the pre-motion library is nevertheless capable of

ensuring the approximate convergence speed. At the same
time, the feasible solution in Pre-motion Library as a warm-
start can significantly boost the framework optimization
progress. Experimental results indicate a significant reduction
in the convergence speed compared with our previous work
[16].

Additionally, our framework prioritizes optimizing time
consumption rather than landing precision of jumping. And,
the optimization time for extreme cases which touch the C-
space boundary (e.g., jumping to a high enough desk (0.4
(m)) or side-flipping over high enough obstacles) still needs
to be shortened.
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