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Abstract— The safety-critical control of robotic systems of-
ten must account for multiple, potentially conflicting, safety
constraints. This paper proposes novel relaxation techniques
to address safety-critical control problems in the presence
of conflicting safety conditions. In particular, Control Bar-
rier Function (CBFs) provide a means to encode safety as
constraints in a Quadratic Program (QP), wherein multiple
safety conditions yield multiple constraints. However, the QP
problem becomes infeasible when the safety conditions cannot
be simultaneously satisfied. To resolve this potential infeasibility,
we introduce a hierarchy between the safety conditions and
employ an additional variable to relax the less important
safety conditions (Relaxed-CBF-QP), and formulate a cascaded
structure to achieve smaller violations of lower-priority safety
conditions (Hierarchical-CBF-QP). The proposed approach,
therefore, ensures the existence of at least one solution to
the QP problem with the CBFs while dynamically balancing
enforcement of additional safety constraints. Importantly, this
paper evaluates the impact of different weighting factors in
the Hierarchical-CBF-QP and, due to the sensitivity of these
weightings in the observed behavior, proposes a method to
determine the weighting factors via a sampling-based technique.
The validity of the proposed approach is demonstrated through
simulations and experiments on a quadrupedal robot navigating
to a goal through regions with different levels of danger.

I. INTRODUCTION

Robotic systems are being increasingly deployed to per-
form a wide-variety tasks in unstructured environments,
including applications that necessitate operating in close
proximity with people. Therefore, ensuring the safety of
these systems while they operate in such environments is
crucial. As such, there have been a variety of approaches to
safety applied to a range of robot types, including: mobile
robots [1]–[3], legged robots [4]–[6], multi-agent systems
[7], [8], and even humanoid robots [9]–[11]. As of late, Con-
trol Barrier Functions (CBFs) [12] have emerged as a popular
method for practically enforcing safety constraints on robotic
systems. However, as the environments and tasks become
more complicated, safety constraints become contradictory
or conflicting. Therefore, it is essential to manage such
contradictory safety statements to ensure safe and performant
controllers in obstacle-rich environments as illistrated in Fig.
1. With this motivation, this paper addresses the potential
infeasibility of Quadratic Programming (QP) that include
contradictory CBF constraints and proposes a hierarchical
approach for synthesizing feedback controllers and safety
filters handling multiple safety constraints.
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Fig. 1. Motivation of our study: When robots operate in complex
environments with numerous obstacles, they are often required to follow
trajectories that pass through unsafe regions. Such scenarios give rise to
challenges in control and planning to ensure the safety of the robots.

A. Related Work
For robotic applications, CBF-based approaches have

proven to be an effective method for generating safe robot
motions in the context of planning, control, and learning. To
provide an example, for legged robots safety-critical CBF
constraints can be enforced to obtain safe foot placements
[13], coupled with learning [14], and combed with MPC
in a multi-rate fashion [15]. Manipulators can be controlled
with CBFs to enforce box constraints in operational space
[16], or avoid collisions with the environment [17], [18].
In the whole-body control of humanoid robots, joint limits
and self-collision avoidance constraints can be imposed using
CBFs [10]. However, these studies assume the existence of
a safe set satisfying the safety-critical constraints over the
entire time horizon. In reality, many robots operate with
contradictory safety statements. This fundamental issue dates
back to the control theoretic origins of CBFs.

At their inception [12], [19], CBFs were introduced as a
control theoretic tool to ensure safety framed as forward set
invariance. A CBF results in an affine inequality constraint
in the input that, when enforced, implies safety; since this
constraint in affine, it can be enforces in a QP with a cost that
minimizes the difference between the desired input and the
safe input—the QP nature means it can be solved in real-
time. CBFs can also naturally be combined with Control
Lyapunov Functions (CLFs), since these again yield an
inequality constraint affine in the input—CLFs and CBF can
thus be utilized in a single QP to enforce stability and safety
under the assumption of feasibility. In the case when the CLF
and CBF constraints conflict, the CLF constraint is typically
relaxed to strictly fulfill the safety-critical constraints at the
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cost of goal attainment. This interplay between conflicting
CLFs and CBFs was studied in [20] by relaxing CLF con-
straint and scaling the lower bound of CBF constraint. This
naturally leads to the setting of multiple barrier functions.

Multiple barrier functions have been widely studied in
the context of multi-agent robotic systems, with Boolean
compositions of safety-critical constraints formulated using
sums and products of barrier functions [21]. For multi-
agent systems, non-smooth barrier functions can also be used
with the max and min operators for Boolean compositions
[22]. Linear Temporal Logic (LTL) tasks are achieved by
satisfying multiple time-varying barrier functions [23], and
the approach has been extended to multi-agent systems
considering conflicts of Temporal Logic tasks [24]. However,
none of these approaches consider a hierarchy among the
safety-critical constraints. Recently, a decoupling method for
multiple CBF constraints has been proposed to compose mul-
tiple CBFs while enforcing input constraints [25]. However,
this method does not impose a hierarchy of safety-critical
constraints either. This paper, therefore, considers potentially
conflicting CBFs, and propose a relaxation achieved by
imposing a hierarchy based on their relative importance.

B. Contributions

This paper leverages a two-layered control architecture for
robotic systems that includes a reduced-order model (ROM)
to generate control inputs that result in safe paths, and a
full-order model (FOM) that leverage the nonlinear dynamics
of the system to track these paths. The proposed approach
focuses on principled means of relaxing hierarchical safety-
critical constraints, expressed as CBFs in a QP. In particular,
we begin with the assumption that multiple safety conditions
cannot be simultaneously satisfied and that a hierarchy exists
among them. The goal is then to strictly fulfill the top-priority
safety condition while minimizing lower-priority violations,
via a hierarchical architecture similar to [26]. Additionally,
the approach analyzes the weighting factors between the
feedback control input error and the relaxation variable and
proposes a technique to determine these weighting in the
context of achieving a given task.

The main contributions of this paper are threefold.
First, the proposed approach ensures that the formulated
Hierarchical-CBF-QP is always feasible while strictly satis-
fying the top-prioritized safety-critical constraint. In addition,
we reduce the violations of the lower-prioritized CBFs in
order of their importance. Second, the approach includes a
technique to determine the weighting factors between the
nonlinear feedback control input error and the relaxation
variables. Instead of defining new candidate functions that
lower bound the CBF constraints (extended class K func-
tions), we still utilize the same functions and obtain opti-
mal parameters of the weightings in Hierarchical-CBF-QP,
minimizing the cost function. Lastly, the proposed method
enables to the generation of safer paths without the need for
re-planning trajectories, particularly in crowded obstacle-rich
environments. We demonstrate this experimentally.

Our paper is organized as follows. In Section II, pro-
vide the necessary background on the nonlinear modelling
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Fig. 2. Control Framework: Our relaxation approaches are crucial
components of the control framework described earlier. To ensure a fair
comparison of these methods, we have used consistent components and
setups in our implementation.

and control of robots, and frame the safety-critical control
approach, including the introduction of CBFS and safety
filters. Section III outlines the proposed approach for re-
laxing safety-critical controllers and thereby incorporating
contradictory CBF conditions. This section also includes a
technique for determining the appropriate weighting factors
to optimize performance. The proposed approach is also
extended to handle arbitrary CBF constraints in Section III.
Finally, Section IV provides both simulation and experiment
results of the proposed approach applied to a quadrupedal
robot platform (A1) walking in a cluttered environment.

II. PROBLEM STATEMENT

This section covers the fundamental concepts that under-
pin the proposed control architecture for robotic systems
described in Fig. 2: the control-affine system (ROM), the
rigid-body dynamic model (FOM), the feedback controllers,
and the concept of CBF. With these concepts in place, we
define our problem, making proper assumptions to ensure
the effectiveness of the proposed control architecture.

A. Reduced-order Model and Feedback control

We introduce control affine systems defined in a state
space X ⊆ Rn and an admissible input space U ⊆ Rm:

ẋ = f(x) + g(x)u (1)

where x ∈ X and u ∈ U denote the state and control input.
In addition, f : X 7→ Rn and g : X 7→ Rm are Lipschitz
continuous. In this paper, the above control affine system is
considered as ROM such as the linear inverted pendulum or
double integrator models. To design a continuous feedback
controller, we use a simple PD control law with proportional
and derivative gains, Kp and Kd, given a state trajectory,
xd(t), ∀t ∈ [t0, tf ] :

u(t) = Kpex(t) + Kdėx(t) (2)

where e(t) = xd(t) − x(t). This control input will be the
desired input for planning and control based on the full-order



model. The state of ROM is computed and updated based on
measurements or the state update of FOM.

B. Full-order Model, Planning, and Task-Space Control

To realize the control input, we employ full-body rigid
body dynamics and intermediate planners that connect ROM
and FOM. For instance, it is needed to plan the foot
placement while implementing the control input u(t) with
Raibert’s heuristic [27]. Since the planning of footholds is
outside the scope of this paper, we assume that the task
trajectory yd(t) ∈ Rny is properly planned in terms of u(t).

The equation of motion for floating-base robots with
contacts is typically presented as follows:

D(q)q̈ + H(q, q̇) = S>τ + Jc(q)>Fc, (3)

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0 (4)

where q ∈ Q ⊂ Rnq , D(q) ∈ Snq

>0, H(q, q̇) ∈ Rnq ,
S ∈ R(nq−6)×n, and τ ∈ Γ ⊂ Rnq−6 denote the joint
variable, mass/inertia matrix, the sum of Coriolis/centrifugal
and gravitational force, a selection matrix, and a control
torque command, respectively. In addition, Fc ∈ Rnc and
Jc(q) ∈ Rnc×nq represent the contact wrench and the
corresponding Jacobian, respectively. For rigid contacts, we
consider an equality constraint (4) in the acceleration level.
With yd, ẏd, q, and q̇, we formulate a QP problem to obtain
the desired control command to minimize the tracking error:

Task-Space Controller:
min

(q̈,τ ,Fc)
Jy = ‖Kp(y

d − y) + Kd(ẏ
d − ẏ)− Jy(q)q̈‖2,

s.t. D(q)q̈ + H(q, q̇) = S>τ + Jc(q)>Fc,

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0,

Fc ∈ CWC(q), τ ∈ Γ

CWC(q) is the set of the contact forces satisfying the contact
wrench cone constraint. The control of the legged robots is
achieved through a joint-impedance controller, which inte-
grates the joint feedback control with a feedforward torque
obtained from the solution to the aforementioned QP.

C. Control Barrier Functions (CBFs)

This section provides a brief overview of the fundamental
concepts and definitions related to CBFs. We introduce a safe
set C ⊂ Rn defined as the 0-superlevel set of a continuously
differentiable function h : Rn 7→ R, its boundary and interior
sets:

C := {x ∈ Rn : h(x) ≥ 0},
∂C := {x ∈ Rn : h(x) = 0},

int(C) := {x ∈ Rn : h(x) > 0}.
(6)

The nonlinear system is safe with respect to the safe set
C if C is forward invariant. To recall the basic concepts
and definitions related to CBFs, a continuous function α :
(a, b) 7→ R is an extended class K (Ke) function if it is
strictly increasing with α(0) = 0. In particular, if the open
interval is (−∞,∞) and α is strictly increasing with α(0) =
0, limr→−∞ α(r) = −∞, and limr→+∞ α(r) = +∞, α is

an extended class K∞ (Ke∞) function. Using the function α,
CBFs are defined according to [12].

Definition 1. Let C ⊂ Rn be the 0-superlevel set of a
continuously differentiable function h : Rn 7→ R as in (6).
h is a Control Barrier Function (CBF) if there exists a
function α ∈ Ke∞ such that for all1 x ∈ Rn:

sup
u∈Rm

ḣ(x,u) = sup
u∈Rm

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)).

where Lfh(x) = ∂h
∂x (x)f(x) and Lgh(x) = ∂h

∂x (x)g(x)
are Lie derivatives. Given a CBF, we define a set of control
input values for all x ∈ Rn as follows:

Kcbf(x) = {u ∈ Rm : Lfh(x) + Lgh(x)u ≥ −α(h(x))} .

Let u? be the desired control value. We can find the
(pointwise) closes safe control value through the use of a
CBF framed in the context of the following QP:

û = arg min
u∈U

‖u? − u‖2,

s.t. ḣ(x,u) ≥ −α(h(x)).
(7)

The key result of [12] is that û renders the set C forward
invariant (that is, safe), i.e., for all x0 ∈ C it follows that
x0 ∈ C for all time when û is applied to (1).

D. Problem Definition

In this paper, let us consider two barrier functions h1 :
Rn 7→ R and h2 : Rn 7→ R, in turn the corresponding safe
sets are defined as C1 and C2. Based on the defined CBFs,
we formulate a standard CBF-QP given the feedback control
input u?.

CBF-QP (Two CBFs):
u• = arg min

u∈U
‖u? − u‖2,

s.t. ḣ1(x,u) ≥ −α1(h1(x)), (8a)

ḣ2(x,u) ≥ −α2(h2(x)) (8b)

When the feedback control command u? satisfies all con-
straints without conflicting each other, u• becomes orig-
inal feedback control input u?. However, the constraints
frequently conflict with each other so we address specific
assumptions for our problem, which is potentially infeasible
CBF-QP.

To define our problem, we first define the following sets
using C1 and C2:

C∩ = {x ∈ Rn : h1(x) ≥ 0 ∧ h2(x) ≥ 0} ,
C∪ = {x ∈ Rn : h1(x) ≥ 0 ∨ h2(x) ≥ 0}

(9)

where ∧ and ∨ denote logical operators AND and OR,
respectively. It is true that C∩ = C1

⋂
C2 and C∪ = C1

⋃
C2.

For proof of this, see Lemma 3.1 in [21]. One of the critical
assumptions in our problem definition is as follows:

1Here we consider all points in Rn for notational simplicity. Technically,
one could consider a subset E containing C and restrict our attention to this
set E. One would only need to check the CBF conditions on this set E.



Fig. 3. Sets in our problem definition: Given safety-critical constraints,
the sets defined in this paper, C1, C2, C∩, and C1 − C∩, are described
visually.

Assumption 1. Consider two properly defined class Ke∞
functions α1 and α2. We assume that there exists a state
x along the trajectory such that x ∈ C1 − C∩, which means
h1(x) > 0 and h2(x) < 0, as shown in Fig. 3.

If the current state x satisfies Assumption 1, the potential for
infeasibility arises due to a conflict between the constraints
(8a) and (8b), simultaneously.

Proposition 1. Under Assumption 1, if a state x is given,
there exist α1 and α2 such that no control input from
Kcbf,1(x) belongs to Kcbf,2(x).

Proof. Let us consider h2(x) = −β1(x)h1(x) + β2(x)
where β1(x) > 0 and β2(x) < β1(x)h1(x). In addition,
it is noted β1 and β2 are the class C1 functions. The time
derivatives of β1(x) and β2(x) becomes as follows:

∂β1,2
∂x

ẋ =
∂β1,2
∂x

(f(x) + g(x)u) = β̇1,2(x,u).

Then, the time derivative of h2(x) becomes

ḣ2(x,u) = −β̇1(x,u)h1(x)− β1(x)ḣ1(x,u) + β̇2(x,u)

≤ −β̇1(x,u)h1(x) + β1(x)α1(h1(x)) + β̇2(x,u).

If the defined α2 satisfies the following inequality for all
control inputs u ∈ Kcbf,1,

β̇1(x,u)h1(x)− β1(x)α1(h1(x))− β̇2(x,u) > α2(h2(x))

there is no u satisfying ḣ2(x,u) ≥ −α2(h2(x)) in
Kcbf,1(x). Therefore, any control inputs from Kcbf,1(x) do
not belong to Kcbf,2(x).

As noted in Proposition 1, the CBF-QP (Two-CBFs)
problem is infeasible, which means that u• does not exist.
To address this issue, we need to relax the QP problem, In
the relaxation process, we introduce a new assumption:

Assumption 2. Under Assumption 1, the first safety con-
dition is more critical than the other, so it must be strictly
satisfied while tracking the trajectory, x(t) ∈ C1 for all time.

Assuming that the conditions specified in Assumptions 1 and
2 are met, we present methods to obtain control inputs that
prioritize the satisfaction of safety-critical constraints.

Effect of inreasing c 
in Definition 2

Meaning of  
in Definition 2

Depending on 
the weightings 

(Relaxed-CBF-QP)

(Hieerachical-CBF-QP)

Fig. 4. Intuitions for the relaxation approaches: Relaxed-CBF-QP (R-
CBF-QP) aims to reduce the size of the safe set C1 − C∩ by adjusting the
set C2. On the other hand, Hierarchical-CBF-QP (H-CBF-QP) combines
the optimized control input u? with ḣ2(x, û2) to generate the appropriate
control input.

III. RELAXATION OF CBF-QP

In this section, we present our proposed relaxation ap-
proaches for a scenario with two CBFs, Relaxed-CBF-QP
and Hierarchical-CBF-QP. Then, we examine the impact of
the weighting factors of QP formulations on the robot’s
behavior. In addition, we discuss a potential approach for de-
termining the weighting factor of safety relaxation. We then
generalize the approach to accommodate arbitrary CBFs.

A. Two CBFs Case

To ensure the feasibility of the CBF-QP problem, we
modify the CBF constraint (8b) under Assumptions 1 and
2. Specially, we define a minimum constant value ε for the
secondary safety-critical constraint to ensure that x ∈ C∩.

Definition 2. For a state x ∈ C1 − C∩, let C(x) be the set
of constant values as follows:

C(x) := {c ∈ R≥0 : h1(x) ≥ 0 ∧ h2(x) ≥ −c}. (10)

Then, the minimum value among the elements of C(x) is
defined as ε := min (C(x)) as depicted in Fig. 4.

In other words, if h2(x) is greater than or equal to −ε, then
the state x satisfies both safety conditions and is in the safe
set C∩. Instead of using h2(x) in the CBF constraint, we
introduce new barrier function with an offset as h′2(x) =
h2(x)+c where C′2 = {x ∈ Rn : h′2(x) ≥ 0}. The secondary
safety-critical constraints can then be expressed as following
inequality constraints

ḣ′2(x,u) = Lf (h2(x) + c) + Lg(h2(x) + c)u

= ḣ2(x,u) ≥ −α2(h2(x) + c)

where Lfc = 0 and Lgc = 0, respectively. We introduce an
additional relaxation variable δ to make the CBF-QP problem
feasible, which satisfies α2(h2(x) + c) = α2(h2(x)) + δ,
which means

c = α−12 (α2(h2(x)) + δ)− h2(x) ≥ ε.

If we already know ε, then the relaxation variable is bounded
as δ ≥ α2(h2(x)+ε)−α2(h2(x)). Otherwise, we can simply



set δ ≥ 0 in the optimization problem. Now, we formulate the
first relaxed approach called Relaxed-CBF-QP as follows:

Relaxed-CBF-QP (R-CBF-QP):
u = arg min

u∈U, δ∈R≥0

Jr = λu‖u? − u‖2 + λδδ
2,

s.t. ḣ1(x,u) ≥ −α1(h1(x)), (11a)

ḣ2(x,u) ≥ −α2(h2(x))− δ, (11b)

where λδ ≥ 0 and λu ≥ 0 are the weighting factors. The
solution to the above QP problem depends on the relative
weighting factors in the cost function.

Remark 1. Let us consider λu = 0 and λδ > 0. As
per Definition 2 and the modified CBF constraint (11b),
the solution to the R-CBF-QP problem satisfies (11b) with
the lower bound α2(h2(x) + ε). Therefore, we have δ? =
α2(h2(x)+ ε)−α2(h2(x)), which does not incorporate any
feedback control effort.

Corollary 1. When λu > 0 and λδ = 0, the constraint
(11b) vanishes. Thus, the control input from the solution to
R-CBF-QP is identical to one obtained by solving CBF-QP
formulated in (7) considering h1(x).

As mentioned in the problem definition, our objective is
to partially satisfy the secondary safety-critical constraints
while strictly enforcing the primary constraint. So, we obtain
ûk for each safety-critical constraint by solving (7). Then,
we employ the solution ûk to compute ḣk(x, ûk). Next,
we formulate a QP problem with an equality constraint that
enforces the hierarchy between the safety-critical constraints
under Assumption 2.

Hierarchical-CBF-QP (H-CBF-QP):
u∗ = arg min

u∈U, δ∈R
Jh = λu‖u? − u‖2 + λδδ

2,

s.t. ḣ1(x,u) ≥ −α1(h1(x)), (12a)

ḣ2(x,u) + δ = ḣ2(x, û2), (12b)

Because of Assumptions 1 and 2, δ cannot be zero in the
H-CBF-QP. So, we enforce the constraint (12b) to minimize
the difference between ḣ2(x,u) and ḣ2(x, û2) as shown in
Fig. 4.

Corollary 2. Like Corollary 1, the constraint (12b) disap-
pears when λu > 0 and λδ = 0.

Proposition 2. When λu = 0 and λδ > 0, H-CBF-QP
becomes (7) with a cost Jj = ‖u? − u‖2M + p>u.

Proof. By substituting δ, the cost function of H-CBF-QP
becomes Jh = ‖ḣ2(x, û2) − ḣ2(x,u)‖2. Let us consider
û2 = u?+∆u from (7). Then, the cost function is specified
as follows:

Jh =(u? + ∆u− u)>M(u? + ∆u− u)

=‖u? − u‖2M + p>u+ const

where p> = −2∆u>M and M = (Lgh2(x))
> Lgh2(x),

which is positive definite.

Different from R-CBF-QP, H-CBF-QP implicitly considers
the feedback control input although λu = 0 due to Proposi-
tion 2.

B. Design of Weighing Factors

The ideal approach would be to formulate and solve a
large-scale nonlinear optimization problem that determines
the weighting factors, but this is challenging since the entire
control framework comprises multiple optimization problems
in a cascaded structure. Therefore, in this section, we propose
a straightforward method to find suitable parameters for the
weightings. To simplify the problem, we fix the weighting
factor for the feedback control input error as a constant λu =
1, and express the other weighting factor as a function of h2.
Specifically, we define λδ(h2(x)) as:

λδ(h2(x)) =

{
γ0 if h2(x) > 0,
γ0(1 + ∆γ|h2(x)|) else

(13)
where γ0 > 0 is a baseline weighting factor for relaxing
h2(x), and ∆γ > 0 is a gradient factor for preventing the
violation of h2(x) ≥ 0. This weighting factor reduces δ
more as h2(x) decreases below 0. As discussed in Corollary
2 and Proposition 2, the proper selection of the parameters
(γ0, ∆γ) is crucial to balance the performance of the feed-
back controller and the satisfaction of the lower-prioritized
safety condition.

One straightforward approach for searching the optimal
parameter is to use a sampling-based technique. First, we
define a cost function that depends on the task trajectory,
which is discretized with a time interval ∆t. The cost
function is given as follows:

r =

N−1∑
i=1

‖ex(i∆t)‖wi
+ ‖ex(T )‖wf

+ wδ

N∑
i=1

δ(i∆t) (14)

where wi and wf are the weightings for the tracking trajec-
tory and achieving the final goal, respectively, and wf �
wi > 0. wδ > 0 is a discount factor that penalizes safety
relaxation of the secondary condition. Second, we randomly
draw samples from the Normal distribution (γ0, ∆γ) ∼
N (µ, ; Σ), where µ and Σ are the mean vector and covari-
ance matrix, respectively. We iterate the simulations with
the random samples to find the optimal pair (γ0, ∆γ)
that minimizes the cost function (14). When designing the
weightings by evaluating the cost, we eliminate the offset as
ro(∆γ, γ0) = r(∆γ, γ0)−min(r) where r(∆γ, γ0) denotes
the cost with ∆γ and γ0.

C. Generalization

We generalize the proposed approach for handling general
cases to incorporate m CBF constraints. To achieve this, we
rewrite Assumptions 1 and 2 as follows for the extensive
case:

Assumption 3. Given m CBFs, h1, · · · , hm, we assume
that a state x belongs to C1 − C∩ where C∩ = {x ∈ Rn :
h1(x) ≥ 0∧· · ·∧hm(x) ≥ 0}. The importance of the CBFs
is determined in lexicographic order.
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Fig. 5. Simulation results: (a) x and y positions of the robot, (b) CBF values with respect to different values of γ0, (c) tracking errors with respect to
different values of γ0, (d) color map of the cost values in terms of the sampled parameters, (e) robotic simulation results demonstrated using a quadruped
robot (A1) in 2D operational space. In figure (a), we present the entire results of H-CBF-QP given the sampled γ0 and ∆γ. Figures (b) and (c) include
the results with the fixed ∆γ for showing a clear tendency of γ0 (1, 2, 3, 4, 5).

Under the above assumption, it is possible to extend
our approach in both implicity and explicit ways. First, we
formulate a single QP problem that considers the feedback
control input and all safety-critical constraints implicitly.
This is the Implicit-H-CBF-QP (IH-CBF-QP) and is given
as follows:

Implicit-H-CBF-QP (IH-CBF-QP):

min
u∈U, δ2,··· ,δm∈R

Jimp = λu‖u? − u‖2 +

m∑
k=2

λδkδ
2
k,

s.t. ḣ1(x,u) ≥ −α1(h1(x)),

ḣk(x,u) + δk = ḣi(x, ûk), ∀i ∈ {2, · · · ,m}

We obtain a feasible control input by solving m QP prob-
lems, which are (7) for k = 2 to k = m and the above
IH-CBF-QP. However, the solution to the problem is too
sensitive and ambiguous to the weighting parameters in the
cost function. Since all relaxation variables are coupled,
it is hard to impose the hierarchy among them in this
implicit way, even if heuristics are used. Improper weightings
may result in reducing the lower-prioritized constraint and
increasing the error of the higher-prioritized one.

To address this issue, we introduce a sequential opti-
mization method, Explicit-H-CBF-QP (EH-CBF-QP). This
formulation is based on a recursive extension of the H-CBF-
QP and defined as follows for k ≥ 3:

Explicit-H-CBF-QP (EH-CBF-QP):
min

u∈U, δk∈R
Jexp = λu‖u? − u‖2 + λδkδ

2
k,

s.t. ḣ1(x,u) ≥ −α1(h1(x)),

ḣi(x,u) + δ∗i = ḣi(x, ûi), ∀i ∈ {2, · · · , k − 1}
ḣk(x,u) + δk = ḣk(x, ûk),

Here, δ∗i denotes the optimal relaxation variable obtained
from the optimization of the i-th H-CBF-QP. By recursively
solving the EH-CBF-QP problems from k = 2 to k = m,
we obtain the optimal control input and relaxation variables
for all safety-critical constraints.

Corollary 3. In the EH-CBF-QP formulation, the hierarchy
is strictly maintained, i.e., it is impossible to decrease δ2k
without increasing δ2i with higher priority (i < k).

IV. IMPLEMENTATION

In this section, we present simulation and experiment
results that demonstrate the effectiveness of our approach
using a quadruped robot system (A1).

A. Simulation Scenario

The simulations were performed on a laptop equipped with
a 3.4 GHz Intel Core i7 processor using MATLAB, Pybullet,
and OSQP software tools. In addition, we consider a double
integrator (ROM) and PD controller to validate our approach
in the high-level architecture, then implement a full-body
task space controller to realize the control input of ROM in
the simulation. The desired orientation of the robot’s base
is computed based on the ratio of velocity components in
the x and y directions. The state of ROM is defined as x =
[p>, ṗ>]> where p ∈ R2 represents the position in a 2-
dimensional space, and the control input u ∈ U is bounded
by an input set U = {z ∈ R2 : |zi| ≤ 5, i = 1, 2}.

In this paper, we aim to solve a tracking problem where
the task trajectory, pd(t), is given for [0, 20] seconds with
pd(0) = [0, 0]> and pd(20) = [−12, 10]>. To ensure
safety, we enforce inequality constraints such that h1(x) =
px + 0.2 ≥ 0, h2(x) = py + 0.2 ≥ 0, and

hk = ‖p− pk‖ − rk ≥ 0
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Fig. 6. Snapshots of experimental validation: (a) and (b) show the snapshots of experiments implemented by using R-CBF-QP and H-CBF-QP,
respectively. (c) and (d) represent CBF value variations in R-CBF-QP and H-CBF-QP, respectively. The robot successfully reaches the goal destination
using both approaches. However, there is a collision between the robot and one of the yellow boxes, which is located near the center of Region 2, in the
third snapshot of (a). In contrast, H-CBF-QP effectively avoids the collision.

where p3 = [−1, 5.5]>, p4 = [−1, 4.5]>, r3 = 4,
and r4 = 5. In this simulation, we assume that the region
represented by h3(x) ≥ 0 (region 1) is the more dangerous
region than the region represented by h4(x) ≥ 0 (region
2), and hence, a hierarchy among these safety constraints is
imposed in lexicographic order. For the class K functions,
we utilize the following function:

α(h) =

{
ϕ1 log(ϕ2h+ ϕ3)− ϕ1 logϕ3 h ≥ 0,
−ϕ1 log(−ϕ2h+ ϕ3) + ϕ1 logϕ3 h < 0

where ϕ1, ϕ2, ϕ3 > 0. In this section, we set ϕ1 = 1, ϕ2 =
0.5, and ϕ3 = 0.1. We draw random samples for δ2 with µ =
[3, 1.5] and Σ = diag(1, 1). Next, we consider simulation
results with the samples in γ0 ∈ [0, 5] and ∆γ ∈ [0, 2.5]
for simplicity. For the cost (14), the weightings are set as
wi = 1, wf = 1000, wδ = 0.5, respectively.

B. Simulation Results

We simulated the R-CBF-QP and H-CBF-QP controllers
with different parameters for the weighting factor, and the
results are depicted in Fig. 5. Fig. 5(a) shows the desired and
actual base positions of the robot with different controllers.
While R-CBF-QP prioritizes safety-critical constraints for
region 1, the actual path deviates slightly from the desired
trajectory. In contrast, the robot controlled by H-CBF-QP
deviates more far from the desired trajectory than the one
controlled by R-CBF-QP because the robot tries to become
safer by escaping region 2. Fig 5(b) shows that the bar-
rier function value h4(x) becomes closer to zero while
maintaining h3(x) above zero, indicating that our approach
is capable of reducing the violations of secondary safety
conditions while strictly satisfying those with the highest
priority. However, as shown in Fig. 5(c), the tracking error
of the feedback controller increases as we attempt to make
the robot safer in terms of the secondary safety condition.
To balance the feedback control performance and safety,
we deploy the proposed a sampling-based technique to find
proper parameters and analyze them in a cost map of Fig.
5(d).

Fig. 5(e) shows the simulation results implemented by
using Pybullet. The black path indicating the result driven
by R-CBF-QP goes through the center of region 2. However,
the robot controlled by H-CBF-QP tries to avoid region 2,
even if it incurs some tracking errors. Interestingly, if we set
the weighting parameters too large, the robot moves far from
the desired trajectory, and it becomes challenging to return
to the original path. Therefore, we need to find the proper
balance between performance and safety parameters.

C. Experimental Validation

We demonstrate the effectiveness and efficiency of our
proposed approaches using the real quadruped robot (A1).
We maintain consistency between the simulation scenario
and the experimental setup. To do experiments in a realistic
environment, we construct an experimental structure using
boxes (region 1) and artificial turf plates (region 2) shown
in Fig. 6. At the center of the region 2, we put a box which
is lighter than ones in the region 1. Given the assumption
that the boxes in the region 1 are too heavy for the robot
to move, we prioritize avoiding region 1 over region 2. Due
to space limitations, we scale down the problem setup and
set the centers of the regions at p3 = [−1.7, 1.5]> and
p4 = [−0.35, 1.8]>, with radii of r3 = 1.7 and r4 = 1.34,
respectively. The goal destination is set at [−4, 3.34]>, and
we generate a continuous trajectory toward the destination
during a 20-second interval. The detailed specifications for
the CBFs are the same as ones in the simulations. By demon-
strating simulations with the sampled parameters, then, we
obtain the pair for H-CBF-QP as (5, 1.3).

In these experiments, both relaxation approaches, R-CBF-
QP and H-CBF-QP, are able to generate feasible control
inputs for the robot. Despite colliding with the box located
at the center of region 2, R-CBF-QP is able to steer the
robot towards the goal. However, if the box becomes much
heavier than our setup, the robot may not be able to reach
the goal destination. In contrast, H-CBF-QP generates a safer
behavior and enables the robot to avoid the yellow box at
the center of region 2, as shown in Fig. 7. Fig. 6(c) and
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Fig. 7. Experimental results: The movements of the robot in the
operational space (left) and the position over the defined time horizon (right).
There exists a box at the center of Region 2 depicted by a yellow square.

(d) confirm that H-CBF-QP results in less violations of the
safety condition associated with h4 compared to R-CBF-QP.

V. CONCLUSION

This paper presents a novel and intuitive approach to ad-
dress contradictory safety conditions in robotic systems. By
imposing a hierarchy among these conditions, we formulate
feasible QP problems that consider the hierarchical safety
conditions while generating dynamic locomotion. R-CBF-
QP generates a feasible control input, taking into account
only the highest priority safety constraint. On the other hand,
the proposed H-CBF-QP is capable of strictly holding the
safety condition with the highest priority, while handling
others with lower priority. We also leverage a sampling-based
method to determine the weighting factors in the H-CBF-QP
formulation. The effectiveness of our approach is demon-
strated through simulations in achieving safer locomotion of
the quadruped robot (A1).

In the future, we aim to expand our proposed approach to
handle more intricate physical interactions between robots
and their environments. Our focus is on incorporating phys-
ical reaction forces when walking on contact-rich terrain or
interacting with other agents in obstacle-rich environments.
Furthermore, we are exploring the theoretical aspect of Input-
to-State safety verification of our method and assessing the
impact of uncertainties arising from estimations.
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