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Abstract— Rather than traditional position control,
impedance control is preferred to ensure the safe operation
of industrial robots programmed from demonstrations.
However, variable stiffness learning studies have focused on
task performance rather than safety (or compliance). Thus,
this paper proposes a novel stiffness learning method to
satisfy both task performance and compliance requirements.
The proposed method optimizes the task and compliance
objectives (T/C objectives) simultaneously via multi-objective
Bayesian optimization. We define the stiffness search space
by segmenting a demonstration into task phases, each with
constant responsible stiffness. The segmentation is performed
by identifying impedance control-aware switching linear
dynamics (IC-SLD) from the demonstration. We also utilize the
stiffness obtained by proposed IC-SLD as priors for efficient
optimization. Experiments on simulated tasks and a real robot
demonstrate that IC-SLD-based segmentation and the use
of priors improve the optimization efficiency compared to
existing baseline methods.

I. INTRODUCTION

Learning from demonstration (LfD), especially robot con-
trol based on the playback of demonstrated trajectories, is
an accepted technology in industry thanks to its intuitiveness
and the ease of implementation of its simple feedback con-
troller in low-cost embedded systems. This study focuses on
extending this control scheme to contact-rich and/or human
collaborative tasks without requiring significant updates to
existing systems.

To achieve safe and satisfactory task performance, it
is essential to introduce variable impedance control with
appropriately designed stiffness [1], [2]. Generally, cartesian
position control is used for the demonstration playback; how-
ever, this can potentially cause damage to the robot or its sur-
roundings due to unforeseen contact. In contrast, impedance
control makes the robot’s behavior compliant with respect
to external forces, thereby ensuring safety. Stiffness affects
the safety and reproducibility of the demonstration, and
there is a tradeoff between the two objectives [3]. Thus,
we can formulate the stiffness determination problem as
the optimization of two objective functions, i.e., the task
objective (e.g., tracking error and sparse reward indicating
task success) and compliance objective (e.g., a penalty for
high stiffness).
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Fig. 1. Overview of the proposed to learn stiffness parameters. (1) A
human demonstration τ is collected by direct teaching or teleoperation. (2)
The demonstration τ is fitted to the impedance control-aware switching
linear dynamics model (IC-SLD) to segment τ into several task phases,
resulting in the phase information S = {st = j}. This step also estimates
the stiffness θπ = {Kπ

j } in the segmented phases. (3) Multi-objective
optimization of task and compliance objectives (denoted as JT (θ|S) and
JC(θ|S), respectively) is performed by testing stiffness in real environ-
ments. The Bayesian optimization method suggests the control parameters
θn to test, where the estimated θπ are employed as the prior for π-BO [4].

In previous studies on impedance control, simultaneous
optimization of the task and compliance objectives (T/C
objectives) have yet to be investigated extensively, thereby
raising safety concerns. For example, previous studies [5],
[6] optimized only the task objective using a Bayesian
optimization process to identify the stiffness that leads to
task success. In contrast, other studies [3], [7] optimized the
compliance objective but neglected the task objective.

Simultaneous optimization of multiple objectives fre-
quently requires reward engineering [8], which is particularly
problematic when the optimization problem involves online
testing with real robots. A naive method to optimize T/C
objectives simultaneously is to derive the scalarized objective
by a weighted linear combination [9]; however, this method
requires iterative tuning of the weights and optimization to
find the desired behavior. In addition, the task objective
should include a sparse reward because the user’s primary
goal is task success. This type of task objective is challenging
to predict using a physical model and optimize with gradient
methods; thus, testing the robots on actual equipment is
needed. Even if the model can predict the task objective
effectively, online testing procedures are necessary because
a gap exists between the model and the real-world environ-
ment.
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Multi-objective optimization and Bayesian optimization
are promising solutions to the above problems. Multi-
objective optimization has several benefits, e.g., it provides
multiple optimal solutions (Pareto solutions) that represent
the best tradeoff in a single optimization process without
reward engineering. The following two concepts can also
contribute to online Bayesian optimization: (1) appropriate
segmentation of demonstrations and (2) use of stiffness pri-
ors. Bayesian optimization performs poorly in high dimen-
sions. For concept (1), rather than finding varying stiffness at
each time step, the input dimension is reduced by segmenting
a task into several phases and assigning constant responsible
stiffness values to each phase. In previous studies, the seg-
mentation was performed manually [5], [6], [10] or by using
the Gaussian Mixture Model (GMM) [11], [12]; however,
these segmentation methods are not designed to optimize T/C
objectives. For concept (2), the stiffness estimated by model-
based methods can be a good candidate solution. Unfor-
tunately, standard Bayesian optimization cannot incorporate
prior knowledge [13].

This paper substantiates and validates these two concepts.
Figure 1 summarizes the top-level concept. Our primary
contributions are summarized as follows.

• We propose to learn stiffness via multi-objective opti-
mization of the T/C objectives.

• We introduce an impedance control-aware switching
linear dynamics model (IC-SLD) that effectively seg-
ments a demonstration and identifies stiffness.

• We employ the state-of-the-art Bayesian optimization
method π-BO [4] to utilize the estimated stiffness as
the priors of a promising solution candidate.

The remainder of this paper is organized as follows. In
Sec. II, we summarize related work. In Sec. III, we briefly
review preliminaries, i.e., impedance control, Bayesian and
multi-objective optimization, and switching linear dynamics
(SLD). Sec. IV presents the proposed stiffness learning
method, and the effectiveness of the proposed method is
demonstrated in Sec. V. Finally, the paper is concluded in
Sec. VI.

II. RELATED WORK

A. Learning Stiffness with Interaction

Various techniques have been proposed in the literature
on variable impedance control to learn stiffness [14]. In the
following, we review the learning methods involving online
robot testing.

Reinforcement learning (RL) is a representative method
of determining stiffness through real-world interaction. In a
previous study, Buchli applied Policy Improvement with Path
Integral (PI2) to tune the stiffness at each timestep [9]. In
addition, previous studies [15], [16] trained neural policies
using RL to infer stiffness and attractors from current obser-
vations. Recent studies [17], [18] have attempted to learn
neural policies to determine nondiagonal stiffness matrices.
However, RL remains sample inefficient and requires numer-
ous interactions in real-world environments.

Another strategy to learn control parameters in an online
manner is using black-box optimization. In several previous
studies, various black-box optimization methods have been
applied to stiffness learning, e.g., Bayesian optimization [5],
[6], Covariance Matrix Adaptation Evolutionary [19], and
Particle Swarm Optimization [20]–[22].

B. Segmentation of Demonstrations

In robotics, segmentation has long been a primary research
subject due to its attractive applications, e.g., reusable skill
discovery and hierarchical reinforcement learning. Accord-
ingly, various methods have been proposed, e.g., Fourier
basis-based segmentation [23], clustering by GMM [24],
[25], movement matching from a pre-existing skill set of
Dynamic Movement Primitives [26], simultaneous segmenta-
tion and learning of Probabilistic Movement Primitives [27],
and SLD-based system identification [28], [29]. In addition,
deep RL has recently focused on acquiring neural skills by
training multiple policies conditioned on segment identifiers
[30]–[35].

C. Multi-objective Optimization in Robotics

Designing robot mechanisms or controllers while satisfy-
ing conflicting objectives is a popular topic in robotics, e.g.,
the speed vs. head stability of the gait of a snake robot [36],
the initial vs. running costs of industrial robot arms [37],
and the desired joint trajectory vs. regenerate the energy of
a prosthetic leg [38]. A recent study [39] proposed a method
to optimize both performance and safety metrics using π-
BO, where the safety metric was the distance between the
robot and fragile items, and users defined the priors.

III. PRELIMINARIES

A. Cartesian Impedance Control

The purpose of impedance control is to impose the robot’s
dynamics to follow the closed-impedance model:

Λ∆ẍ+D∆ẋ+K∆x = F , (1)
∆x = xd − x, (2)

where x ∈ R6 is the end-effector position and orientation in
task space, xd ∈ R6 is the attractor, F ∈ R6 is the external
force/torque acting on the end-effector, and the matrices
Λ ∈ R6×6, D ∈ R6×6, and K ∈ R6×6 are the desired
Cartesian inertia, damping, and stiffness, respectively. Here,
the spring behavior realized in terms of stiffness K allows
the robot to follow the desired trajectory of the attractor xd

while making the robot flexible to unexpected external forces
F . To make the system compliant, stiffness K should be as
low as possible. In addition, damping D is frequently set in
proportion to the square root of the stiffness [40]–[43];

D = 2K
1
2 . (3)

Thus, in the current study, D is not subject to optimization.



B. Bayesian and Multi-objective Optimization

1) Basis: We consider the following optimization problem
of function f across a set of feasible input Θ;

θ∗ = argmax
θ∈Θ

f(θ), (4)

where θ∗ denotes the optimal solution. Bayesian optimiza-
tion is an iterative process involving a candidate solution
suggested by an acquisition function α(θ;Dn):

θn+1 = argmax
θ∈Θ

α(θ;Dn), (5)

where n is the number of iterations, and Dn = {(θi, yi =
f(θi))}ni=1 is the dataset of assessed candidates. Several
acquisition functions have been proposed previously, and the
most common is Expected Improvement (EI) [44]:

α(θ;Dn) = Ep(y|θ) [max(y − y∗1:n, 0)] (6)

where y∗1:n is the best objective value observed by iteration
n. However, the oracle of p(y|θ) is unknown; thus, it is
necessary to evaluate α via surrogate modeling by Gaussian
processes [44] and a tree-structured Parzen estimator [45].

2) Multi-objective Optimization: For brevity, we consider
the optimization problem of two functions f1 and f2 without
loss of generality:

θ∗ = argmax
θ∈Θ

f1(θ), f2(θ). (7)

Generally, these objectives conflict with each other.
Here, let Y ∗

1:n be the set of Pareto solutions observed
by iteration n, representing the best tradeoff between the
target objectives. The current state-of-the-art multi-objective
Bayesian optimization technique [46] defines EI such that
the hypervolume indicator IH(Y ∗

1:n) (illustrated in Fig. 1) is
improved:

α(θ;Dn) = Ep(y|θ) [max(IH(Y ∗
1:n ∪ {y})− IH(Y ∗

1:n), 0)] ,
(8)

where, in the case of two objectives, IH(Y ∗
1:n) is the area

composed of Y ∗
1:n and a reference point r:

IH(Y ) := λ

⋃
y∈Y

[y1, r1]× [y2, r2]

 . (9)

Here, λ(S) is the area of a set S, and [y1, r1] × [y2, r2]
represents a rectangle comprised of the two edges.

3) Bayesian Optimization with Priors: Conventional
Bayesian optimization methods cannot incorporate prior
knowledge other than narrowing the search space. However,
this hard prior can result in suboptimal performance because
of missing important regions. Recently proposed π-BO in-
corporates the prior in the form of a probability distribution
π(θ) into an optimum, and it utilizes the following decaying
prior-weighted acquisition function:

απ(θ;Dn) := α(θ;Dn)π(θ)
β/n, (10)

where β ∈ R+ is a hyperparameter reflecting the confidence
in π(θ). Initially, the acquisition function gives significant

weight to the prior; however, with increasing n, the exponent
of the prior decreases gradually toward zero, thereby making
απ similar to α.

C. Switching Linear Dynamics

Switching linear dynamics (SLD) models a system
as a collection of linear dynamics, where each model
represents an operating mode [47]. Here, let τ =
(x1,u1, · · · ,uT−1,xT ) be an observed trajectory compris-
ing of states x and control inputs u, which is assumed to be
generated by the following stochastic dynamics:

p(x1:T |u1:T , s1:T ) =

T−1∏
t=1

p(xt+1|xt,ut, st = j), (11)

where p(xt+1|·) is the Gaussian linear model:

p(xt+1|xt,ut, st = j) := N (xt+1;Ajxt +Bjut,Σj),
(12)

Here, st ∈ {1, 2, · · · ,M} is the discrete hidden switch
variable (or segment identifier), M is the number of linear
models, and Aj , Bj , and Σj are the dynamics parameters
depending on the switch state st = j. In this task, the goal
is to identify the dynamics parameters θ := {Aj , Bj ,Σj}Mj=1

and infer the hidden states S := {st}Tt=1, which is performed
by maximizing the following objective:

JEM(θ, S) :=

T−1∑
t=1

M∑
j=1

W j
t · J j

t , (13)

W j
t := p(st = j|x1:T ,u1:T ), (14)

J j
t := log p(xt+1|xt,ut, st = j). (15)

We can solve this optimization problem numerically by the
expectation-maximization algorithm (EM) algorithm [47],
which conducts the following E-step and M-step iteratively
until convergence. Here, the E-step calculates W j

t with fixed
θ, and M-step updates θ by maximizing Eq. (13) with fixed
W j

t .

IV. METHOD

A. Problem Statement

We consider dividing a demonstrated trajectory τ into M
segments (or task phases) and assigning a constant stiffness
Kj to each segment j ∈ {1, 2, · · · ,M}. Here, let S = {st =
j}Tt=1 and θ = {Kj}Mj=1 be the set of segment identifiers
(st ∈ {1, 2, · · · ,M}) and the parameter set, respectively. The
target multi-objective optimization problem is formulated as
follows:

argmax
θ∈Θ

JT (θ|S),JC(θ|S), (16)

where JT (θ|S) and JC(θ|S) are the task and compliance
objective, respectively. Here, JC(θ|S) is defined as follows:

JC(θ|S) := −
T∑

t=1

|Kst |. (17)



This objective sums the penalties for high stiffness at each
time step. The task objective JT assesses the task perfor-
mance as follows:

JT (θ|S) :=
T∑

t=1

R(xt), (18)

where R is a task-specific reward function to evaluate each
state xt, and the state transitions are dominated by Ks1:T .
Note that both JT and JC are highly influenced by S;
however, S is not the optimization target in Eq. (16). Thus,
we must select S carefully to realize effective optimization.

B. Impedance Control-aware Switching Linear Dynamics

The application of SLD is reasonable for the above setup
of assigning constant parameters to the task phases (or
switching stiffness control). Here, we introduce impedance
control-aware switching linear dynamics (IC-SLD), which
incorporates the impedance model priors from Eq. (1) to for-
mulate the SLD identification problem. With this impedance
control-aware formulation, we expect to identify task phases
suitable for the switching stiffness control performed during
the subsequent optimization.

Here, the state xt and action ut are defined as xt :=
(ẋt,xt) ∈ R12 and ut := (∆xt,F t) ∈ R12, respectively,
where ∆xt denotes the residual from the attractor, which
we regard as control inputs. Note that we cannot extract
∆xt from the human demonstration; thus we assume that
∆xt := xt+1 − xt during the segmentation step. We also
assume that sensors obtain the force observations during
the demonstration. According to these definitions and by
discretizing Eq. (1) with the Euler method, we can specify
the linear dynamics parameters Aj and Bj in Eq. (12) as
follows:

Aj =

(
I − Λ−1 · 2K

1
2
j ∆t O

I ·∆t I

)
, (19)

Bj =

(
Λ−1Kj∆t Λ−1∆t

O O

)
, (20)

where ∆t is the sampling period. We also assume that D =
2K1/2, as in Eq. (3). By substituting Eqs. (19) and (20) into
Eqs. (15) and (12), we obtain the following:

J j
t ∝ −δxT

t Σ
−1
j δxt − log |Σj |, (21)

where δxt = (δẋt, δxt), and

δẋt := ẋt+1 − ẋt − Λ−1(Kj∆xt + 2K
1
2
j ẋt − F t)∆t,

(22)
δxt := xt+1 − xt − ẋt∆t. (23)

Generally, demonstrations do not include the observation of
velocity ẋt; thus, the velocity is approximated as ẋt ≃
(xt − xt−1)/∆t. In this case, δxt = 0 and the related term
in Eq. (21) can be ignored. In terms of σj , we found that
relating the variance matrix to the stiffness matrix stabilizes
the optimization:

Σj [1:6; 1:6] = κKj , (24)

where κ ∈ R+ is a hyperparameter described later in this
section. Consequently, we utilize the following objective for
the EM algorithm:

J j
t ∝ −δẋT

t K
−1
j δẋt − κ log |Kj |. (25)

The first term of this objective is to find Kj that minimizes
the discrepancy from the motion equation of Eq. (1). In ad-
dition, the term can be optimized by increasing the stiffness
(or decreasing K−1

j ) if the discrepancy cannot be solved due
to noisy observation F t, but this behavior is penalized by the
second term weighted by the hyperparameter κ. In a previous
study [11], we observed a similar concept of relating variance
and stiffness. However, with this formulation, the closed-
form solution of Eq. (13) is not given; thus we optimize the
objective by Newton’s method in the M-step. Recall that our
goal is to divide the demonstration into several task phases;
thus, we limit the state transitions to be unidirectional (or
left-to-right), i.e., s1 = 1 ≤ s2 ≤ · · · ≤ sT = M .

C. Multi-objective Bayesian Optimization

By involving S determined by the segmentation, we subse-
quently conduct a multi-objective optimization of Eq. (16) in
real-world environments using the previously proposed state-
of-the-art Bayesian optimization method [46]. In addition,
we exploit the identified stiffness θπ = {Kπ

j }, through the
previous IC-SLD step as a prior for the optimization by π-
BO. Thus, we define the prior π(θ) in Eq. (10) as follows:

π(θ) :=

M∏
j=1

N (Kj ;K
π
j , σj), (26)

σj := min(Kmax −Kπ
j ,K

π
j −Kmin), (27)

where Kmax, Kmin are the maximum and minimum stiffness
specified in the target system, respectively.

D. Implementation Notes

Algorithm 1: T/C objectives optimization with IC-
SLD and π-BO

Input: A demonstrated trajectory τ ,
Number of segmentations M ,
Number of optimization iterations N ,
Hyperparameters: β, κ
Output: Pareto solutions θ∗1:N
// (1) Segmentation of τ by IC-SLD

1 Optimize JEM defined by Eqs. (13), (25) to find
θπ = {Kπ

j } and S = {st}.
// (2) Multi-obj. optimization with π-BO

2 Define the prior π(θ) by Eq. (26)
3 Initialize dataset D0 ← ∅
4 for n← 1 to N do
5 Choose a candidate by απ defined by Eqs. (8), (9),

(10): θn = argmaxαπ(θ;Dn)
6 Eval. the compliance objective: yC ← JC(θn|S)
7 Eval. the task objective in a real environment:

yT ← JT (θn|S)
8 Update the dataset: Dn ← Dn−1 ∪ {(θn, (yC , yT ))}
9 return θ∗1:N in DN



The pseudocode for the proposed algorithm is presented
in Alg. 1, and we present the following implementation
details. (ℓ1) We collect demonstrations at a sampling fre-
quency of 20 Hz and perform IC-SLD segmentations at
the same sampling frequency, i.e., ∆t = 50 ms. Here, we
assume that the stiffness matrices are diagonal. (ℓ7) The
task objective is then evaluated by actuating the robot with
the control parameters Ks1:T , xd,1:T , where xd,1:T is the
attractor trajectory to be tracked which is determined from
Ks1:T and the demonstrated trajectory x1:T , F 1:T as follows:

xd,t = xt +K−1
st (2K1/2

st ẋt + Λẍt − F t). (28)

The above parameters are input to the feedback controller at
20 Hz, and the internal feedback operations are performed
at a higher frequency (e.g., 1,000 Hz).

V. EXPERIMENTS

We evaluated the effectiveness of the proposed method
through simulation and real robot experiments. In the fol-
lowing, we first specify the task settings and baselines in
Secs. V-A and V-B, respectively. We then report the results
of the simulation and real experiments in Secs. V-C and V-D,
respectively.

A. Task Settings

We employed two simulated tasks and a task using a
real robot. The simulated tasks included Wipe and Door
from the robosuite simulation framework [40]. We also
performed the wipe task in real-world environments using the
TokyoRobotics Torobo1. The task objectives of these tasks
were the sums of the task-specific reward function R(xt).
Visualization of the experimental tasks and the reward defi-
nitions are summarized in Fig. 2. Here, demonstrations were
collected by using a 3Dconnexion SpaceNavigator2 in the
simulator or teaching the Torobo directly. For the Door
task, the gripper actions involve the simple playback of the
demonstrations. Here, we set the IC-SLD hyperparameter to
κ = 10−5 for the simulated tasks and κ = 10−7 for the
real task, based on the maximum acceptable stiffness of the
systems.

B. Baseline Methods

The following two methods were selected as baselines for
segmentation.

1) Gaussian Mixture Model: We performed GMM model
fitting using T samples from demonstrations. The GMM
model is specified as follows:

p(ξt) =

M∑
j=1

ηjN (ξt|µj ,Σj), (29)

where ξt := (xt, ẋt, ẍt,F t), ηj is the mixture coefficients,
and (µj ,Σj) are parameters for Gaussian distributions. After
the fitting process, the segment identifiers were determined
as st = argmaxj ηjN (ξt;µj ,Σj).

1https://robotics.tokyo/products/torobo/
2https://3dconnexion.com/jp/product/

spacemouse-compact/

Wipe Door Wipe by Torobo

Fig. 2. Wipe and Door simulation tasks in robosuite [40], and a task
on the Torobo. The rewards of the simulated tasks are binary variables
indicating success or failure, where ‘1’ indicates that the current state is a
task completion state (dirt is cleaned or door is opened). The reward for the
real task is a negative square error between the realized and demonstrated
position trajectories.
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1:n). Solid lines and shaded areas show the means and standard
deviations of the multiple trials, respectively.

2) Switching Linear Dynamics unaware of Impedance
Control: We implemented an SLD-based baseline method
unaware of impedance control, i.e., this method does not
exploit the priors of impedance control. Here, the impedance
control unaware linear dynamics is specified as: xt = ẋt,
ut = (∆xt,F t), and

Aj = diag(a1, a2, · · · , a6) ∈ R6×6, (30)

Bj = (diag(b1, b2, · · · , b6),diag(b′1, b′2, · · · , b′6)) ∈ R6×12.
(31)

With this formulation, we estimated the dynamics parameters
and segment identifiers by optimizing Eq. (13) using the EM
algorithm.

The above two methods are hereafter referred to as GMM
and SLD. Unless otherwise specified, π-BO was not applied
to the baseline methods during the Bayesian optimization
process.

C. Simulation Evaluation

The effectiveness of the proposed method was investi-
gated through simulations. We also evaluated the sensitivity
to parameter settings. For each setting, we conducted ten
simulated trials with different random seeds, and then we
compared the results with the statistics (i.e., the means and
standard deviations).

1) Comparison with the baselines: Figure 3 shows the
optimization progress obtained by the proposed method and
baseline methods, where the hypervolume indicator IH(Y ∗

1:n)
is used as the metric. For Wipe and Door, M was set
to be M = 2 and M = 3, respectively. In addition,

https://robotics.tokyo/products/torobo/
https://3dconnexion.com/jp/product/spacemouse-compact/
https://3dconnexion.com/jp/product/spacemouse-compact/
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the hyperparameter β of π-BO was set to be β = 1 for
the proposed method. As shown in Fig. 3, the proposed
method optimized the metrics most efficiently, achieving
convergence within approximately 100 trials, corresponding
to approximately one hour of learning3.

Fig. 4 shows the segmentation results of the compared
methods for the Door task. As can be seen, the proposed IC-
SLD method successfully found three interpretable phases
of the task, i.e., (1) approach, (2) turn handle, and (3)
open, which indicates that this segmentation can improve
the compliance objective by assigning a lower stiffness to
phase (1).

2) Ablation study: This analysis was conducted to clarify
which components of the proposed method (IC-SLD and π-
BO) contributed to the above improvement. For this purpose,
variants of the proposed method and baselines were prepared,
i.e., the proposed method without π-BO, and baselines with
π-BO. For the baseline variants, the prior {Kπ

j } was com-
puted by optimizing Eq. (13) with fixed segmentation results
obtained by GMM and SLD. Table I summarizes the ablation
analysis, demonstrating that involving both IC-SLD and π-
BO contributed to performance improvement.

3) Parameter Sensitivity: Figure 5 summarizes the sensi-
tivity analysis for the hyperparameters M and β. As can be
seen, M = 2 and M = 3 performed best on the two tasks for
the proposed method, and insufficient or too many divisions
resulted in reduced performance. Although increasing M
contributes to the expressiveness of the control, optimization
becomes increasingly difficult as the dimensionality of the
input increases. In addition, Fig. 5 shows that, although
optimization performance can be improved using the priors

3A single episode takes within the 30s.
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Fig. 5. Sensitivity analysis of hyperparameters M and β. The error bars
indicate the means and standard deviations at n = 100.

by setting β > 0, overconfidence in the priors (i.e., higher
β) led the optimizer to a local optimum.

4) Tradeoff Analysis: Figure 6 shows the Pareto solutions
obtained by the optimization presented in Fig. 4, indicating
that the proposed method obtained better Pareto solutions.
We also show the behaviors realized by different Pareto
solutions θ1,2,3 on the Door task. While the operation
with θ1 failed to open the door due to its low stiffness,
the operations with θ2,3 could open the door with strong
force produced by higher stiffness. In addition, although θ3
opened the door somewhat faster than θ2, the difference was
negligible.

D. Evaluation in a Real-world Environment

An evaluation was conducted to verify the proposed
method in a real-world environment. In addition, a com-
parison was performed using GMM as a baseline method.
Figure 7 shows the segmentation results. As can be seen,
the proposed IC-SLD successfully identified interpretable
task phases. Figure 8 summarizes the experimental results,
highlighting that the proposed method found better Pareto
solutions than the baseline method even in the real world.
The results of a tradeoff analysis (Fig. 8, right) demonstrated
that high stiffness reduced the oscillation in the z-axis. Based
on this analysis, users can select which solution to utilize
regarding acceptable oscillation and compliance.

VI. CONCLUSION

This paper has proposed a novel stiffness learning method
to safely reproduce a human demonstration with impedance
control. Considering task and compliance objectives, the
proposed method optimizes the stiffness parameters using
multi-objective Bayesian optimization. The proposed IC-
SLD determines the search space for the Bayesian op-
timization, which effectively segments the demonstration



TABLE I
ABLATION STUDY. HYPERVOLUME INDICATORS (×103 , MEAN ± STD) AT n = 100. BOLD AND UNDERLINED VALUES INDICATE THE BEST RESULTS,

AND UNDERLINED VALUES SHOW THE SECOND-BEST RESULTS.

Segmentation IC-SLD GMM SLD
π-BO (β = 1) ✓ ✓ ✓

Wipe 618.58±18.49 593.98±22.67 590.04±22.74 592.40±22.76 596.31 ± 38.38 595.12±14.75
Door 955.92±68.54 923.05 ± 82.57 675.97±319.80 638.04±290.82 904.02±131.36 902.80±103.24
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Fig. 6. (Two left) Pareto solutions (plotted non-transparently) for two simulated tasks, and (Right) behaviors of the different Pareto solutions on the
Door task. For brevity, we showed only the behaviors related to the y-axis and focused on the phases of (2) and (3) illustrated in Fig. 4.

0

5

Fo
rc

e 
[N

] Fx
Fy
Fz

IC
-S

LD (1) (2) (3) (4)

0 100 200 300 400 500
Time @ 20Hz

GM
M

(1) Approach (2) Contact & Pause (3) Wipe (4) Release
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into task phases suitable for switching stiffness impedance
control. In addition, the optimization is performed using
the prior parameters obtained through the IC-SLD model
identification. The proposed method was evaluated experi-
mentally using both simulated and real-world robot tasks,
and results demonstrate that the IC-SLD-based segmentation
and prior utilization significantly improved optimization ef-
ficiency compared with previous baseline methods.

In this study, we assumed the stiffness matrix to be
diagonal; however, the effectiveness of nondiagonal stiffness
matrices has been demonstrated in recent studies [17], [18].
Thus, it would be interesting to extend the proposed method
to the nondiagonal setting by scaling the Bayesian opti-
mization in high-dimensional input space. Another impor-

tant research topic is automatically determining the optimal
number of segments M . For this purpose, the nonparametric
Bayesian inference [35], [48] could be a promising approach.
In addition, joint optimization of M and stiffness is an
attractive alternative.
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