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Fig. 1: By integrating our proposed implicit SDF into the trajectory optimization, the swept volume of the box robot can avoid obstacles.
Taking advantage of our formulation, our algorithm applies to robots of any shape and achieves continuous collision avoidance.

Abstract— Optimization-based trajectory generation methods
are widely used in whole-body planning for robots. However,
existing work either oversimplifies the robot’s geometry and
environment representation, resulting in a conservative trajec-
tory, or suffers from a huge overhead in maintaining additional
information such as the Signed Distance Field (SDF). To bridge
the gap, we consider the robot as an implicit function, with its
surface boundary represented by the zero-level set of its SDF.
Based on this, we further employ another implicit function
to lazily compute the signed distance to the swept volume
generated by the robot and its trajectory. The computation is
efficient by exploiting continuity in space-time, and the implicit
function guarantees precise and continuous collision evaluation
even for nonconvex robots with complex surfaces. Furthermore,
we propose a trajectory optimization pipeline applicable to the
implicit SDF. Simulation and real-world experiments validate
the high performance of our approach for arbitrarily shaped
robot trajectory optimization.

I. INTRODUCTION

Whole-body planning is critical for robots in dense en-
vironments. To this problem, optimization-based trajectory
generation approaches are effective and have received much
attention, with critical considerations including the shape of
robots and leveraging environment information from maps.

Two main methods exist for representing a robot’s shape:
enclosing it in simple geometric shapes, such as ellipsoids,
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cylinders, polyhedrons [1, 2] or using surface samples to
represent its geometry [3]. The former lacks precision and the
represented shape is often larger than the actual size of the
robot, resulting in conservative trajectories. The latter is lim-
ited by the resolution, potentially resulting in collision risks
at low resolution or complex representation at high resolu-
tion. For map representations, optimization-based trajectory
planning methods typically require additional information to
be recorded in maps to construct safety constraints, such as
SDFs [4] and safe corridors [5] of the environment. However,
this introduces extra computational and memory overhead.
Furthermore, SDFs with a low resolution cannot represent
the complex environment precisely, thus adversely affecting
the robot’s trajectory planning in dense environments. Safe
corridors sacrifice a lot of solution space.

In conclusion, existing methods suffer from the following
two problems:

1) It is hard to model a robot in a general and efficient way
for whole-body planning since the robot’s shape may be
complex e.g., non-convex or even changing over time.

2) Trajectory optimization usually requires additional in-
formation such as SDFs or safe corridors to construct
safety constraints, with their corresponding drawbacks.

Based on the above issues, we find that there is still no
unified framework that can effectively handle the trajectory
generation for arbitrarily shaped robots.

To bridge this gap, we propose a novel approach to whole-
body trajectory generation using a continuous implicit SDF
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representation. Our approach does not rely on simplification
using simple geometric shapes or surface sampling to rep-
resent the robot. Instead, we use the original geometry to
achieve accurate modeling. The key insight is that the surface
boundary of any robot is represented by the zero-level set of
its SDF. Moreover, our approach is applicable to different
environment representations. We don’t need to compute or
store SDF for the whole map, is independent of resolution,
and also enjoys much more solution space due to our formu-
lation. We combine an implicit SDF representation with the
concept of swept volume in computational geometry inspired
by [6]–[8]. Based on this, we formulate a continuous implicit
function and implement an optimization-based pipeline for
any-shape robot trajectory generation.

Swept volume refers to the three-dimensional space oc-
cupied by an object as it moves through its entire range of
motion. Our approach can evaluate the safety of the swept
volume of an arbitrarily shaped robot and ensure that the
interior of the swept volume remains free from contact with
any obstacles, thus achieving the generation of collision-
free trajectories. The SDF is implicitly constructed based
on the swept volume and lazily evaluated only at some
interested obstacle points with known coordinates. Therefore,
it is applicable to different environment representations, such
as point cloud maps, feature maps, and grid maps, as long
as the coordinates of the obstacles are known. Moreover, no
additional information from maps is required. To verify the
feasibility and capability of the proposed approach, we per-
form simulation and real-world experiments on a quadrotor
platform. The proposed algorithm is less conservative and
offers a wider solution space in optimization, and does not
require any complex environment representation. Moreover,
benefiting from the continuous implicit SDF, our method can
achieve continuous collision avoidance.

We summarize our contributions as follows:
1) We consider a robot as an implicit function and propose

an algorithm to efficiently obtain the SDF of a swept
volume by exploiting the continuity in space-time.

2) We propose an optimization-based planning pipeline for
any-shape robots, which is based on the continuous im-
plicit SDF and enables continuous collision avoidance.

3) We will open source our algorithm1 for the reference
of the community.

II. RELATED WORKS

A. Geometric Shape Representations For Motion Planning

Geometric representations and computations play an im-
portant role in robotics [9], especially for whole-body plan-
ning. Most research focuses on using some convex geometric
shapes such as ellipsoids, polyhedrons, or cylinders to model
configuration space or robots for efficient performance, but
this sacrifices some solution space.

1https://github.com/ZJU-FAST-Lab/
Implicit-SDF-Planner

Fig. 2: The swept volume generated by a UFO robot moving along
a trajectory with its corresponding SDF is shown here. For ease of
visualization, only the horizontal plane at z=0 is rendered and the
signed distance is displaced using rainbow colors.

To represent configuration space, using sets of polyhedrons
to construct safe corridors has been widely adopted by some
work [10]–[12]. This representation can be utilized to impose
safety constraints for robots in motion planning. However,
this simplification may be too conservative for some robots
with non-convex shapes due to the introduced gap in collision
evaluation. Recently, Tracy et al. [13] use ellipsoids, cap-
sules, boxes, and their combinations as collision primitives
to approximate complicated rigid bodies. By formulating a
distance minimization problem and using its corresponding
derivatives, whole-body planning is achievable. However,
this method introduces approximation errors and the gra-
dient computation is cumbersome and relatively expensive.
Similarly, Wang et al. [14] model obstacles and robots as
polyhedrons and use scale optimization to achieve collision
evaluation and whole-body planning. While being exact and
having no gap, this method is not suitable for non-convex
robots or obstacles.

B. SDF Representations in Robotics

The SDF provides useful information about the distance
between a robot and nearby obstacles, which has great
potential for motion planning. Most work generates the SDF
on pre-constructed maps. For example, the SDF can be con-
structed on grid maps using the method in [15]. [16] and [17]
proposed a kind of fast incremental SDF construction method
that can be applied in a dynamic environment. However, in
robotics, such approaches have several drawbacks. First, con-
structing the SDF for an entire map consumes a significant
amount of memory resources, making it a challenging task in
terms of memory overhead. Second, such approaches require
a specific resolution to strike a balance between system
overhead and accuracy, which limits their applications in
complex and complicated environments. Third, the SDF of
a entire map is considered redundant, which is discussed in
detail in [18]. Therefore, in robotics, lazy querying is much
more attractive to minimize unnecessary computational or
memory overhead.

III. CONTINUOUS IMPLICIT SDF GENERATION

A trajectory in SE(3) consists of a position trajectory
p(t) and an attitude trajectory R(t), where p ∈ R3 and

https://github.com/ZJU-FAST-Lab/Implicit-SDF-Planner
https://github.com/ZJU-FAST-Lab/Implicit-SDF-Planner
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Fig. 3: SVB(t) of a UFO robot is shown in Fig.c with its correspond-
ing SDF shown in Fig.a. Fig.b shows the value of SDFB(t)(xob)
in the time domain when a query point xob is given. Points P1 and
P2 along with their respective f∗sdf and t∗ values are shown here.

R ∈ SO(3). Given a robot representation B, its configuration
in SE(3) can be computed as B(t) = R(t)B + p(t). The
swept volume generated by the motion of B during its rigid
transformation can be denoted as SVB(t).

As mentioned in chapter I, the idea of our algorithm is
to guarantee that the SVB(t) does not collide with obstacles.
Therefore, a metric is needed to evaluate the safety of the
SVB(t). Signed distance is a commonly used safety metric
in robotics and is very easy to be applied in trajectory
optimization. In this chapter, we will effectively compute
the signed distance of SVB(t) by exploiting the continuity
in space-time. The lazily computed signed distance will be
used for trajectory optimization in chapter IV to achieve safe
trajectory generation for any-shape robots.

A. Implicit SDF Representation of Robots

Recall that the surface boundary of any robot is repre-
sented by the zero-level set of its SDF. Thus we use it as
an implicit continuous function SDFB : R3 → R to repre-
sent an arbitrarily shaped robot that takes a negative value

inside B
(
SDFB(xob) < 0 : xob ∈ B

)
. The implementation

of SDFB simply relies on off-the-shelf libraries.
In computational geometry, the method of using triangular

meshes is the most general and mature way to represent
an arbitrary shape [19]. For robot geometry representation,
triangular meshes are used here to achieve accurate shape
modeling. The implicit SDF is realized by using the winding
number signed distance field [20]. Off-the-shelf algorithms
such as generalized winding number [21] and semi-general
purpose axis-aligned bounding box hierarchy within the
LIBIGL2 allow the computation of an implicit SDF along
with its gradient. With this representation, given a robot B
of any shape, the signed distance SDFB(x) and the gradient
∇SDFB

∣∣
x

at any query point x can be computed efficiently
with little overhead.

B. Implicit SDF Representation of Swept Volume

The time-invariant function SDFB transforms into a time-
varying function as a result of the robot’s motion:

fsdf (xob, t)=SDFB(t)(xob)=SDFR(t)B+p(t)(xob). (1)

Based on the relativity of motion, equation (1) can be
rewritten as:

fsdf (xob, t) = SDFB(R−1(t)(xob − p(t)), (2)

and its derivative with respect to t is:

ḟsdf
∣∣
xob

=(∇SDFB
∣∣
xrel

)T (R−1ṘR−1(p− xob)−R−1v).

(3)

The term xrel refers to R−1(xob − p) and the symbol v
represents the velocity, namely ṗ. As Figure.3 shows, for
any given query point xob, SDFB(t)(xob) is a time-variant
function due to the motion of B. Intuitively, if fsdf (xob, t)
reaches its minimum value in the time domain and the
corresponding moment is t∗, then SDFB(t∗)(xob) is the
signed distance of xob to the SVB(t). Assuming that p(t) and
R(t) are continuous then SDFB(t)(xob) enjoys continuity in
space-time, which makes it easy to obtain the minimum value
of fsdf by some numerical methods.

Denote the signed distance of xob with respect to SVB(t),
namely the minimum value of fsdf as follows:

f∗sdf (xob) , min
t∈[tmin,tmax]

SDFB(R−1(t)(xob − p(t)), (4)

where the associated argmin time is denoted as follows:

t∗(xob), argmin
t∈[tmin,tmax]

SDFB
(
R−1(t)(xob−p(t))

)
. (5)

We employ a continuation technique to tackle the problem
in equation (4). Rather than computing the minimum value
directly, we focus on its associated argmin since we have
observed that t∗ exhibits piecewise continuity over the spatial
domain as shown in Fig.4. The computation of f∗sdf at xob
with respect to SVB(t) yields a new implicit function. This
involves identifying the argmin t∗ that corresponds to the
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Fig. 4: The function SDFB
(
R−1(t)(xob − p(t))

)
exhibits conti-

nuity in both the space and time domains. Furthermore, the argmin
t∗ exhibits piecewise continuity. The proximity of the yellow and
green points in space is also reflected in the proximity of their
respective argmin values, t∗1 and t∗2 in time as shown here.

minima of the implicit value, evaluated relative to the motion
of the body B along the entire trajectory.

C. Space-time Continuation Efficient SDF Computation

We compute t∗ in equation (5) by a combination of
gradient descent and Armijo line search [22] method. The
convergence speed of the algorithm depends on the choice
of the initial value tinit. We perform trajectory sampling at
uniform time intervals, calculate the shortest distance from
xob to the sampled robot B along the trajectory, and obtain
the corresponding moment as tinit, which is closed to t∗. In
addition,when calculating f∗sdf at several neighboring query
points near xob, we use t∗ of xob as tinit . These strategies
substantially improve the efficiency of the computation,
making each query take only microseconds. The complete
computation can be stated as Algorithm 1.

Algorithm 1 Efficient Computation for argmin and SDF

Require: Implicit function SDFB, R(t), Ṙ(t), x(t), v(t)
1: Initialize: t← tinit, x← xob, η ← 0.02, c← 0.5
2: procedure PROPAGATE(t) . line 2
3: search direction: d← −ḟsdf

∣∣tk
x

. using 3

4: while fsdf (x, tk+ηd) > fsdf (x, t
k)+ cηdḟsdf

∣∣tk
x

do
. using 2

5: η ← η/2
6: end while
7: update iterate tk+1 ← tk + ηd
8: go to line 2 unless the condition of convergence or

termination is satisfied
9: get t∗ and corresponding f∗sdf

10: end procedure

2https://libigl.github.io/

IV. OPTIMIZATION-BASED TRAJECTORY GENERATION

We use whole-body planning of quadrotors as a case study
here. Quadrotors have the property of differential flatness,
which allows the attitude trajectory to be derived from the
position trajectory, thus reducing the dimensionality of the
trajectory optimization problem [23].

A. Trajectory Representation

In this work, we adopt TMINCO [12] to represent trajecto-
ries, which is a minimum control effort polynomial trajectory
class defined as:

TMINCO ={p(t) : [0, TΣ]→ Rm|c =M(q,T),
q ∈R(M−1)m,T ∈ RM>0},
c =(cT1 , ..., c

T
M )T ∈ R2Ms×m,

q =(q1, ...,qM−1) ∈ R(M−1)×m,

T =(T1, T2, ..., TM )T ∈ RM}.

(6)

The trajectory p(t) is an m-dimensional polynomial with
M pieces and degree N = 2s − 1, where s is the order
of the relevant integrator chain. c is polynomial coefficients
and q is intermediate waypoints. The time allocated for each
piece is given by T, and the total time is TΣ =

∑M
i=1 Ti.

The parameter mapping M(q,T) is constructed based on
Theorem 2 in [12].

An m-dimensional M -segment trajectory is described by
the function as:

p(t) = pi(t− ti−1) ∀t ∈ [ti−1, ti), (7)

where the ith segment of the trajectory is represented by a
polynomial of degree N = 5:

pi(t) = cTi β(t) ∀t ∈ [0, Ti). (8)

ci ∈ R(N+1)×m is the coefficient matrix, β(t) =
[1, t, ..., tN ]T is the natural basis, and Ti = ti − ti−1 is the
time duration of the ith segment. The trajectory representa-
tion TMINCO is uniquely determined by the pair (q,T). The
mapping c =M(q,T) converts the representation (q,T) into
(c,T), allowing any second-order continuous cost function
J(c,T) to be expressed as H(q,T) = J(M(q,T),T). As
a result, the partial derivatives ∂H/∂q and ∂H/∂T can be
obtained from ∂J/∂c and ∂J/∂T with ease.

B. Optimization Problem Formulation

In this paper, we focus on trajectory generation for robots
with quadrotor dynamics. To summarize, trajectory gener-
ation can be constructed as the following unconstrained
optimization problem:

min
c,T

λsJs + λmJm + λdJd + ρJt, (9)

where the terms Js, Jm, Jd, Jt are the safety, smoothness,
dynamic feasibility, and total time penalties respectively.
λs, λm, λd and ρ are their corresponding weights.

Typically, the safety penalty term Js for optimization
is a safety evaluation integral over the entire trajectory,
e.g. Js =

∫ tmax

tmin
Js(c,T, t) dt. Since the integral result has

https://libigl.github.io/


no analytical form, it is often approximated by discrete
summation in practical applications. However, obtaining
safety penalties by discrete sampling along the trajectory
poses a risk of missing collisions between sampled instants,
leading to the occurrence of the tunneling phenomenon [24].
Moreover, in a sparse environment, many sampling points
are safe enough, evaluating these points is thus redundant,
which reduces efficiency. In contrast, our approach does not
require sampling along the trajectory. Due to the properties
of the signed distance to the swept volume, we only need
to evaluate the corresponding f∗sdf at obstacle points. This
approach theoretically avoids the tunneling phenomenon and
has higher efficiency.

1) Safty Penalty Js : The purpose of the trajectory op-
timization is to ensure that the swept volume completely
avoids obstacles, i.e. that the corresponding f∗sdf at all ob-
stacle points are greater than a safety margin sthr. Therefore,
we construct a safety penalty using t∗ and f∗sdf derived from
III-C to deform our trajectory. The penalty function is:

Js =

Nobs∑
i=1

C
(
Gs(xiob)

)
, (10)

Gs(xob) =

{
0, f∗sdf (xob) > sthr,

sthr − f∗sdf (xob), f∗sdf (xob) ≤ sthr,
(11)

f∗sdf (xob)=SDF
B (R−1(t∗)(xob − p(t∗))

)
, (12)

p(t∗) = cTl β(t
∗−T0−T1 · · ·−Tl−1) located at lth piece,

(13)

where sthr is the safety threshold. xob is the obstacle point
near the trajectory selected by the Axis-aligned Bounding
Box (AABB) algorithm and Nobs is the number of points
selected. C(·) = max{·, 0}3 is the cubic penalty.

The gradients are:

∂Js
∂c

= 3

Nobs∑
i=1

Q
(
Gs(xiob)

)
·
(
∂Gs(xiob)

∂c

)∣∣∣∣
t∗i

, (14)

∂Js
∂T

= 3

Nobs∑
i=1

Q
(
Gs(xiob)

)
·
(
∂Gs(xiob)
∂T

)∣∣∣∣
t∗i

, (15)

∂Gs(xob)
∂c,T

=

{
0, f∗sdf (xob) > sthr,

−∂f
∗
sdf (xob)

∂c,T , f∗sdf (xob) ≤ sthr,
(16)

(17)

where Q(·) = max{·, 0}2 is the quadratic penalty.
For optimization purposes, we use a normalized quater-

nion, represented by q = [w xy z]T to denote the rotation.
The corresponding rotation matrix R, is given as:

R=

 1− 2
(
y2+z2

)
2(xy−wz) 2(xz+wy)

2(xy+wz) 1−2
(
x2+z2

)
2(yz−wx)

2(xz−wy) 2(yz+wx) 1−2
(
x2+y2

)
 .
(18)

Recall that R−1(t)=R(t)T . Given this property, the partial
derivatives of R−1(t) and R(t) with respect to q.∗ can
be easily obtained, where ∗ denotes the elements w xy z
in quaternions. Differentiating the equation (2) with respect

Fig. 5: This figure shows a trajectory snapshot along with its swept
volume during the optimization process. A UFO robot manages to
fly through narrow gaps, requiring whole-body planning. Red dots
represent obstacles that do not satisfy safety constraints.

to p(t) and q(t) gives the gradients of the signed distance
evaluated at xob with respect to rotations and translations:

∂fsdf (xob)

∂p
= −(∇SDFB

∣∣
xrel

)T ·R−1(t), (19)

∂fsdf (xob)

∂q.∗
= (∇SDFB

∣∣
xrel

)T · ∂R
−1(t)

q.∗
· (xob − p(t)),

(20)

where ∇SDFB
∣∣
xrel

is the gradient of the SDF of the robot
body B at the point xrel.

By choosing s = 3 as the integrator chain and using
the differential flatness property of quadrotors, it is possible
to propagate the gradients with respect to rotation q.∗ to
position, velocity, acceleration, and jerk. Furthermore, the
gradients of the signed distance evaluated at xob with respect
to ck,Tk can be derived as follows, where ζ denotes position,
velocity, acceleration, and jerk, respectively.

∂f∗sdf (xob)

∂ck
=

∑
ζ=p, v, a j

∂f∗sdf (xob)

∂ζ
· ∂ζ(t)
∂ck

, (21)

∂f∗sdf (xob)

∂Tk
=

∑
ζ=p, v, a j

∂f∗sdf (xob)

∂ζ
· ∂ζ(t)
∂Tk

. (22)

Note that the trajectory deformation causes t∗ to be
different for the same xob. Therefore, t∗ is also a function of
the optimization variables c,T. However, since t∗ is obtained
from an optimization problem, it is difficult to explicitly
derive the derivatives of t∗ with respect to c,T. Fortunately,
sufficient conditions for optimality for deriving t∗ allow
us to obtain these derivatives implicitly. In essence, in the



Fig. 6: The real-world indoor experiment: The quadrotor must traverse three consecutive circles while precisely avoiding nearby obstacles.
We highlight the most critical frames when the robot is closest to the obstacles.
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Fig. 7: The UAV platform and the obstacle in the experiment are shown in Fig.a and Fig.b.The velocity and acceleration of the drone in
the real experiment are shown in Fig.c.

equation (3), ḟsdf ≡ 0 when t = t∗. By utilizing this identity
equation, the required gradients can be derived. [25] has a
description of this method. Implementation details can be
found in Appendix VII.

2) Smoothness Penalty Jm : To ensure the smoothness
of the trajectory, we minimize the integral of the third-order
derivative of the trajectory:

Jm =

∫ TΣ

0

j2(t)dt, (23)

where TΣ =
∑M
i=1 Ti is the total time, j(t) denotes jerk.

The gradients are:

∂Jm
∂c,T

= 2

∫ TΣ

0

j(t)
∂j(t)

∂c,T
dt. (24)

3) Dynamical Feasibility Penalty Jd : To satisfy the
dynamic constraints of the robot, we limit the maximum
velocity and thrust:

Jd =

∫ TΣ

0

C (Gd(ξ(t))) dt, (25)

Gd(ξ(t)) =

{
0, ξ ≤ ξmax,
ξ − ξmax, ξ > ξmax,

(26)

where ξ denotes velocity and thrust respectively. The gradi-
ents are:

∂Jd
∂c,T

= 3

∫ TΣ

0

Q (Gd(ξ(t)))
∂ξ(t)

∂c,T
dt. (27)

4) Total Time Penalty Jt : We minimize the total time
Jt =

∑M
i=1 Ti to improve the aggressiveness of the trajec-

tory, the gradients are ∂Jt/∂c = 0 and ∂Jt/∂T = 1.
To solve this optimization problem, we use a numerical

algorithm. Fig.5 shows the deformation of the trajectory for
different iterations and the corresponding swept volume of
the UFO robot.

V. RESULTS

A. Implementation details

We validate the approach on a quadrotor platform. Some
additional structures are mounted on the quadrotor to sim-
ulate a vehicle with complex shapes. All computations are
performed on an onboard computer: Nvidia Xavier NX.

We choose the L-BFGS3 algorithm [26] as a highly
efficient quasi-Newton approach for solving numerical op-
timization problems and use the Lewis-Overton line search
[27] to address instances of non-smoothness in the scale that
may arise during the optimization process.

B. The Real-World Experiment

We conduct a real-world experiment in an indoor environ-
ment. Fig.7a shows the quadrotor robot in our experiment.
We deliberately install a structure on the robot to give it
a complex shape. We hang the obstacle shown in Fig.7b
inside a ring so that the robot has to cross the ring from
the correct position to ensure that it does not collide. The

3https://github.com/ZJU-FAST-Lab/LBFGS-Lite/

https://github.com/ZJU-FAST-Lab/LBFGS-Lite/


maximum safe distance is only 2cm, thus testing the accuracy
of our algorithm. In this experiment, the maximum speed and
acceleration of the quadrotor are limited to 2m/s and 3m/s2

Fig.6 and Fig.7c shows the result.

C. Simulation Experiments
To further validate the capability of the proposed algo-

rithm, we construct more complex environments for simu-
lations with a variety of robot shapes. Similarly, a dynamic
model of quadrotors is used for optimization.

Two different shapes of robots denoted as BX and BY
are shown in Fig.8. In the first experiment, the environment
consists of randomly generated dense obstacles, and the
robots traverse this area separately. It is worth noting that
our algorithm also works for robots with a hollow shape like
BY . In the second experiment, the environment consists of
three sloping narrow gaps, and BX traverses the three gaps
in turn while avoiding collisions. Fig.9 and Fig.10 show the
swept volume corresponding to the final trajectory. Due to the
limitations of the visualization, we recommend watching our
video4 for a more detailed view of the experimental result.

VI. CONCLUSION AND FUTURE WORK

We present a novel approach to implicitly, lazily, and
efficiently compute the signed distance to the swept volume
constructed by a robot and its trajectory using the continuity
in space-time. Furthermore, we also integrate the continuous
implicit SDF into the whole-body optimization problem
using quadrotors as a case study.

In principle, our methodology does not impose any restric-
tions on the class, shapes, or trajectories of robots. Taking
advantage of the implicit representation and the analytic form
of gradients, this method can also be implemented for any
trajectory except polynomials, as long as it is differentiable
with respect to time. It is also worth mentioning that we
will consider time-variant deformable robots of any shape
described by the implicit function. We will also validate this
pipeline for different robots with different dynamics for the
completeness of planning.

VII. APPENDIX

According to the differntial flatness, there is Ṙ = Rω̂ for
quadrotors , we can simplify the equation (3) as follows:

ḟsdf
∣∣
xob

= (∇SDFB
∣∣
xrel

)T (ω̂RT (p− xob)−RT v). (28)

For simplicity, we use some symbols to represent some
formulas above as follows:

X (R, p) ,
(
∇SDFB

∣∣
xrel

)T
, (29)

Y(R, ω̂, p, v), ω̂RT (p−xob)−RT v, (30)

F(t∗, ζ) , ḟsdf
∣∣
xob

= X · Y ≡ 0, (31)

4https://drive.google.com/file/d/
1-QQZILtCd5WudsjGIY2Y1KUItSsiGuco/view

Fig. 8: Two robots with complex shapes in simulation experiments.
For convenience, we call the robot in Fig.a BX and the robot in
Fig.b BY .

a

b

initial 
state

final 
state

internal view

Fig. 9: The results of the first simulation experiment. Pink spheres
represent obstacles. Fig.a and Fig.b denote the swept volume of the
optimized trajectory of BX and BY separately. Since BY is hollow,
there are also some cavities within its swept volume. The close-up
of Fig.b shows the obstacles inside these cavities, demonstrating
that our algorithm can make full use of the feasible space.

initial 
state

final state

Fig. 10: The result of the second simulation experiment. Since the
gaps are narrow, the robot must perform a large attitude maneuver
to get through them.

https://drive.google.com/file/d/1-QQZILtCd5WudsjGIY2Y1KUItSsiGuco/view
https://drive.google.com/file/d/1-QQZILtCd5WudsjGIY2Y1KUItSsiGuco/view


where ζ denotes p, v, ω,R. Deriving the above equations we
can obtain:

∂X
∂t∗

=

(
∇2SDFB

∣∣
xrel

(
∂RT

∂t
(xob − p)−RT v

))T
,

∂Y
∂t∗

=
∂ω̂

∂t
(RT p) + ω̂(

∂RT

∂t
p+RT v)−RTa

− ∂RT

∂t
v − ω̂ ∂R

T

∂t
xob −

∂ω̂

∂t
RTxob.

(32)

Recall that:
F(t∗(ζ), ζ) ≡ 0, (33)

dF
dζ

=
∂F
∂t∗

∂t∗

∂ζ
+
∂F
∂ζ
≡ 0. (34)

∂t∗

∂ζ
= −∂F

∂ζ
/
∂F
∂t∗

, (35)

∂F
∂t∗

= X ∂Y
∂t∗

+
∂X
∂t∗
Y. (36)

Finally, we can get the corresponding gradients associated
with t∗ as follows:

K , (X ∂Y
∂t∗

+
∂X
∂t∗
Y),

∂t∗

∂v
= (XRT )/K, (37)

∂t∗

∂ω
= −

(
X ∂ω̂
∂ω

RT (p− xob)

)
/K, (38)

∂t∗

∂p
=
(
∇2SDFB

∣∣
xrel

RTY + X ω̂RT
)
/K, (39)

∂t∗

∂q.∗
=

(
∇2SDFB

∣∣
xrel

∂RT (t)

q.∗
(xob − p)Y

)
/K

+

(
X (ω̂ ∂R

T (t)

q.∗
(p− xob)− v))

)
/K. (40)

Similar to equation (21), the final gradient ∂t∗/∂c,T can
be obtained by the differential flatness property.
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