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Abstract— Implicit communication plays such a crucial role
during social exchanges, that it must be considered for a good
experience in human-robot interaction. This work addresses
implicit communication associated with the detection of physical
properties, transport, and manipulation of objects. We propose
an ecological approach to infer object characteristics from
subtle modulations of the natural kinematics occurring during
human object manipulation. Similarly, we take inspiration from
human strategies to shape robot movements to be commu-
nicative of the object properties while pursuing the action
goals. In a realistic HRI scenario, participants handed over
cups - filled with water or empty - to a robotic manipulator
that sorted them. We implemented an online classifier able to
differentiate careful/not careful human movements, associated
with the cups’ content. We compared our proposed “expressive”
controller, which modulates the movements according to the cup
filling, against a neutral motion controller. Results show that
human kinematics is adjusted during the task, as a function of
the cup content, even in reach-to-grasp motion. Moreover, the
carefulness during the handover of full cups can be reliably
inferred online, well before action completion.Finally, although
questionnaires did not reveal explicit preferences from partici-
pants, the expressive robot condition improved task efficiency.

I. INTRODUCTION

When interacting with another agent, coordination
emerges from the exchange, often independent from will
or consciousness, of implicit signals [1]. This exchange
gives rise to a series of mutual synchronization and an-
ticipation phenomena that drastically reduce the need for
complex verbal instructions and resulting delays [2]; re-
ciprocal understanding elicits coordination [3]. Therefore,
implicit communication is particularly relevant in Human-
Robot Interaction (HRI) field, and robots should be able to
express and interpret non-verbal cues. Within this context,
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Fig. 1: A human handover of a cup with water to a robotic
arm. The robot pours the water into the (orange) bucket and
then places the emptied cup into the (blue) drawer. Human
is wearing an eye-tracking device, infrared motion tracking
markers, and an IMU sensor on the wrist

we address the challenges associated with object properties
detection, transport, and manipulation.

As for deducing object characteristics, instead of relying
on external appearance or complex multi-modal features [4],
[5], [6], [7], [8], we propose an ecological approach that
learns from human strategies [9], [10]. The idea is to interpret
those kinematics modulations that occur when interacting
with items, which have been observed, for instance, in the
manipulation of objects of different weights [11], [12].

Coming to the generation of expressive movements with
robots, communication is seen as an additional layer that
modulates the action without changing its goal [13], [14],
[15]. Such a layer needs to be carefully designed: if the
robot’s motion contradicts biological traits in joint action,
such as by adopting an incorrect velocity profile or tim-
ing, the human ability to anticipate will be compromised,
resulting in a slow and inefficient interaction [16]. Timing
modulation plays an important role even in a simple robotic
action such as carrying a cup, inducing observers to interpret
it as more or less confident, natural, animated, or involving
heavier objects [17].

With this work, we propose a novel and realistic inter-
action between humans and robots where the parts have to
collaborate in handling cups with different content: empty
or filled with water almost to the brim (see Figure 1 for
reference). The robot receives the cups from the human
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(a) Handover (b) Pouring (c) Dropping

Fig. 2: Sequence of actions by the human and robot. From left to right: human-to-robot handover of a full cup (2a); robot
pouring the water content into the bucket (2b); robot placing the emptied cup in the box (2c). When manipulating an empty
cup, after the handover (2a), the robot directly drops the cup in the blue container (2c)

and sorts them, adopting a neutral motion controller or an
expressive one that generates movements designed according
to the cup content, depending on the experimental condition.
We evaluate human kinematics before and during the object
manipulation, to observe how the movement is modulated in
the context of interaction with a robot and expand previous
knowledge on careful handling [9], [10]. We validate the
possibility of detecting the carefulness in human-to-robot
handovers online, relying on kinematic cues that characterize
human movements [18]. We deploy a human-inspired motion
controller based on a generative model, which proved ef-
fective for implicit communication and even solicited motor
contagion [19], in a scenario where the robot needs to handle
full and empty cups appropriately. Finally, we compare the
neutral and expressive robot conditions in terms of task
efficiency and participants’ preferences collected through
questionnaires. To summarize, we set the following research
objectives:

i) study human kinematics associated with object manip-
ulation;

ii) validate an online carefulness classifier based on the
human motion;

iii) implement an expressive motion controller in a human-
to-robot handover scenario;

iv) confront neutral and expressive conditions.
The dataset collected during the experiments has been

made publicly accessible. It consists of synchronized data
from marker-based motion capture, an inertial sensor on the
wrist, an eye-tracker system, and annotated labels that define
the main phases in each trial. It also includes the footage of
the experiments from an external camera.

II. HUMAN-ROBOT EXPERIMENT

This section describes the human-robot interaction exper-
iments, details the sensors used for the dataset acquisition,
and presents administered questionnaires.

A. Scenario

Participants stand in front of a table with four identical
plastic cups placed in a row, equidistant from each other.
These cups differ in content, being two empty and two filled

with water almost to the brim, constituting two types of
objects to be handover: empty or full. Participants faced
a Kinova Gen3 robot fixed to a table with two distinct
recipients at the robot side. As seen in Figure 1, on the left
side of the robot, there is an orange bucket meant to contain
water, while the blue drawer on the right stores the empty
(or emptied) cups.

The experiment is presented as a collaborative task, where
the human should help the robot clean the table by handing
over the cups, from the rightmost cup to the leftmost, one at
a time. The robot receives the cup (see Figure 2a); in case
the cup contains water, it pours the content into the orange
bucket (Figure 2b), and finally, it places the empty cup in
the blue drawer (see Figure 2c).

We adopted a within-subject study design where partici-
pants are exposed, in a randomized order, to two conditions
associated with the controller used by the robot to complete
the task: a neutral motion and an expressive motion. More
details on the motion controllers will be provided in Section
III. In each condition, participants completed 12 handovers
to the robot, divided into three blocks, with the experimenter
resetting the setup and the four cups on the table at the
end of each block. The sequence of empty and full cups
to be handed over was balanced but changed in every block.
The naturalness of the human-to-robot handover was made
possible by constantly tracking the 3D wrist pose with a
motion capture system, without requiring a pre-determined
and fixed location. The robot’s gripper position was com-
puted using the forward kinematics, and a threshold was set
to grasp the cup when the distance between the gripper and
the participant’s wrist was below a certain value.

B. Sensors and Data Description

Movements’ kinematics and visual information were
recorded throughout the experiment. Pupil Labs head-
mounted glasses [20] were used to track eyes’ movements
providing 2D gaze fixation on a POV perspective and infor-
mation on pupil dilation. For more information on the Pupil
Labs data acquisition, consult the repository1. An OptiTrack

1Pupil-Labs software repository:
https://docs.pupil-labs.com/core/software/pupil-player

https://docs.pupil-labs.com/core/software/pupil-player/#raw-data-exporter


TABLE I: Sensor specifications and size of recordings.

Sensor Type of data Frequency (Hz) Total Size
OptiTrack Motion Tracking 120 ∼1.1 GB
Pupil Labs Eye Tracking {30, 120} ∼100 GB
LPMS-B IMU 400 ∼320 MB
GoPro Video output 60@1080p ∼40 GB
Note: The PupilLabs streams 30 Hz@720p for the gaze fixation
and 120 Hz@320p for the pupil detection system of each eye.

motion capture (MoCap) system, consisting of 12 infrared
cameras around the room, tracked the position of head,
shoulder, and wrist, through reflective rigid bodies suitably
designed. Additionally, an Inertial Measurement Unit (IMU),
LPMS-B model2, was placed on the participants’ wrists. The
acquisition with the three sensors was synchronized through
ROS, providing a synchronized timestamp. Moreover, the
main events in each trial were manually annotated during the
experiment, providing labels for human grasping, handover,
robot pouring, and object release. Finally, an external RGB
camera recorded the experiments from the viewpoint pictured
in Figure 2. Table I presents the sampling frequency for each
sensor and the corresponding total amount of data3.

Our study involved 15 right-handed participants (8 fe-
males, 7 males, 26.6± 6.2 years old) who provided written
informed consent. They were all naive regarding the purpose
of the experiments and not directly involved in our research.
The self-reported level of knowledge in robotics was: 40.0%
professional or advanced, 33.3% average, and 26.7% little or
none. 360 actions were recorded and performed successfully
without dropping the cup or spilling the content. Due to
ambiguities or missing data from the MoCap system, in the
kinematic analyses of the current study, we considered a
total of 310 trials, 76 and 82 handovers for empty cups,
respectively, in neutral and expressive conditions, and 70 and
82 trials, involving full cups for neutral and communicative,
respectively.

C. Questionnaires

Together with a quantitative kinematic description of the
human motion, we were interested in investigating if and
how the controller conditions would affect how participants
explicitly perceived the task. For this reason, we conducted
a pre-questionnaire to understand the general perception and
propensity to robotics; we then administered the same set of
scales after each of the two robot controller conditions and
finally conducted a post-questionnaire to assess the global
perception of the experimental conditions. All the items
were based on a 5-point Likert scale, except for the post-
questionnaire. Indeed, at the end of the experiment, we asked
participants to think about the two interactions experiences
they had with the robot and express their preferences con-
cerning a list of 9 items, such as “In which one of the two
parts you were more comfortable in interacting with the

2IMU sensor datasheet: https://www.lp-research.com/wp-
content/uploads/2013/06/LpmsBUsersGuide1.2.7.pdf

3The human-to-robot handover actions dataset is publicly available on
the institution’s website.

robot?” or “Which one of the two parts of the interaction
you enjoyed the most?”. We also included a speed-bump
item in the questionnaires after each interaction to check the
participants’ level of attention during the completion. See
Section IV-C and Table II for further details on the scales.
We used Jamovi4 to analyze the data collected in the survey
by using Wilcoxon rank-sum tests, correlation analysis, and
binomial proportion tests.

III. HUMAN-ROBOT COMMUNICATION

We designed two robot conditions, neutral and expressive,
to compare the efficacy and the effect on the interaction
of adding a communicative layer to the generated actions.
Moreover, we assess the detection of carefulness in the
human manipulation of cups.

A. Robot Motion Controller

We use a 7 Degrees of Freedom (DOF) Kinova Gen3
robotic manipulator with the Robotiq 85 two-finger gripper5

to accomplish the challenging task of handling cups that
may be filled with water. Our architecture is implemented in
ROS with the package kortex ros6, which provides a velocity
controller in Cartesian space, moving the end-effector at 40
Hz frequency for linear (m/s) and angular (rad/s) velocities.

Our primary interest is to test and deploy a controller
that mimics what happens naturally in human manipula-
tions, being communicative of the object properties while
remaining task-oriented. Its expressive ability has already
been tested in a previous study [19], where participants could
grasp the implicit message conveyed by the robot’s gestures
and even showed the effects of motor contagion, although
the robot was not humanoid. In this study, participants act
instead as givers and perfectly know the characteristics of the
object beforehand. Hence, the impact of the robot’s implicit
communication is reduced. However, even in a context where
the manipulator’s role is passive, we hypothesize that human-
inspired motions can benefit the interaction, making it more
fluid, smooth, and desirable to the human partner.

1) Neutral condition (NEU): In the neutral condition,
the actions were always designed with the same approach,
generating a constant velocity profile throughout the trials
with a simple proportional controller. The value of the
adopted velocity was empirically chosen to be suitable for
transporting all the cups. The choice of always using the
same constant velocity granted the successful transport of
all the full cups without any content spilling but was not
optimized for the transport of the empty ones, which posed
no risk instead.

2) Expressive condition (EXP): To produce the robot’s
actions adapted to the properties of the object involved -
careful if full of water, not careful if empty - we modulated

4https://www.jamovi.org/
5Official website of the gripper:

https://robotiq.com/products/2f85-140-adaptive-robot-gripper
6Official repository of the Kinova Gen3 ROS package:

https://github.com/Kinovarobotics/ros kortex

https://www.lp-research.com/wp-content/uploads/2013/06/LpmsBUsersGuide1.2.7.pdf
https://www.lp-research.com/wp-content/uploads/2013/06/LpmsBUsersGuide1.2.7.pdf
https://vislab.isr.tecnico.ulisboa.pt/datasets_and_resources/#hcups_water
https://www.jamovi.org/
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://github.com/Kinovarobotics/ros_kortex


the end-effector velocity, using velocity profiles norms gener-
ated by the Generative Adversarial Networks (GANs). Such
a model, trained on human motions, can synthesize novel
and meaningful velocity profiles belonging to the desired
class of motion and avoid a mere copy of the human (see
[19], [21], [22] for further details on the model, its training
and its deployment in robotics). Another advantage of using
synthetic velocity profiles is to capture the natural variability
of human actions and avoid producing stereotyped motion.
However, in this specific study, to avoid introducing a not
controlled variable that may impact the comparison with
the neutral condition, we randomly selected one velocity
profile for careful and one for the not careful movement
to be replicated by the Kinova robot. We used a careful
attitude to transport the full cup from the handover position
to the orange bucket, where the robot emptied the content.
The designed not careful velocity profile was used instead
to take the empty cups from the handover position or the
orange bucket to the blue drawer where the cup is released.

B. Carefulness Detection Controller

To detect the carefulness of the human manipulation of
cups during the transport phase in handovers, we used the
carefulness detection controller presented in [18]. It first
learned a model of two types of motion behaviors, careful
and not careful, trained on human handovers of cups in
two conditions, empty and full of water. The model input
x ∈ D ⊂ R+ is the norm position ||⃗x|| =

√
x2 + y2 + z2

and denotes the distance between the human wrist and the
handover location. The model is defined as a mixture of
Gaussians such that ẋ = fff(x), one for the not careful and
another for the careful behavior. The model used in this paper
is the one from [18], which showed the best accuracy for
detecting full cup handovers as careful behaviors and empty
ones as not careful behaviors.

The controller reads the human wrist during the human-
to-robot handover, and it can classify online the carefulness
of the motion by comparing the learned model behaviors and
the human wrist position. The classification runs in real-time
by taking at each time step t

X =
ẋt − ẋt−1

xt − xt−1
Yi =

v⃗ẋ
v⃗x

where X is the input wrist data and Yi are the learned careful
and not careful eigenvector components v⃗ = [v⃗ẋ, v⃗x]

T from
the Gaussian covariance matrix Σv⃗ = λv⃗. The classifier is
based on the belief system B [23] where B = [b1, b2] is
initialized as [50%, 50%] and it computes the error e =
X −

∑2
i=1 b

t
iYi. B is updated as bt+1

i ← bti + ḃti∆t
given ḃti = ϵ(eT + (bti − 0.5)Y 2

i ) and ϵ ∈ R+. During
the cup transportation, the classification will reach either
b1 = 100% (not careful) or b2 = 100% (careful). However,
the robot does not use this information to produce appro-
priate movements during the interaction. Indeed, we want
to evaluate independently from the classification outcomes
the generative expressive motion controller against the non-
biological neutral one. This is to prevent unpredictable false

Fig. 3: Hand mean velocities and standard deviation, in
transparency, associated with the reaching (first peak) and
transportation phase (second peak) of full and empty cups,
in shades of blue and red, respectively. The robot controller
used to transport the cup at a later time did not influence the
human behavior as a giver

negative classifications that may result in catastrophic water
spills compromising the interaction.

IV. RESULTS AND DISCUSSION

In this section, we will present our findings relative
to the analysis of human kinematics during the task, the
performances of the online carefulness classifier in detecting
the human attitude in both the reaching and transport move-
ments, the results from the questionnaires, and the metrics
assessing the task efficiency.

A. Human motion

Figure 3 represents participants’ hand velocity when mov-
ing towards the cup to grasp it (first velocity peak) and then
its transportation toward the robot gripper (second peak).
This representation results from applying a second-order
Butterworth low pass filter with a cut-off frequency of 8
Hz to the hand velocities derived from the 3D trajectories
recorded with the MoCap system for each trial. The velocity
profiles were resampled to the median duration for each
class, and their mean was computed for every time instant,
together with the standard deviation. A noticeable difference
in the velocity adopted depends on the cup involved: empty
cups, associated with not careful motions, elicit quicker
motions with higher speed magnitude. Instead, full cups
require careful actions to avoid spilling the content, resulting
in slower movements with lower accelerations. The robot
controller does not influence how participants took the cup
and handed it over, as could be expected from their role
as givers. These observations from Figure 3 were confirmed
by running a mixed model with Jamovi GAMLj module7

separately on the reaching and the transport actions. We
assumed the maximum velocity of participants’ movements
as the dependent variable, the subjects as cluster variables,
and the content of the cup, requiring or not care, the

7General analyses for linear models Jamovi module:
https://gamlj.github.io/

https://gamlj.github.io/


controller type, and their interaction as a factor. The effect
of condition resulted significant for both the action phases
(Reaching: Full − Empty, estimate = −0.202m s−1,
SE = 0.032, t = 56.6, p < 0.001, Transport: Full −
Empty, estimate = −0.276m s−1, SE = 0.037, t =
−7.49, p < 0.001). This result shows that the modulation
in human action appears not only when directly interacting
with the object, when we observe a decrease of the velocity
magnitude of 0.276m s−1 if the cup content is full, but even
before touching the object; indeed, participants adapt the
motion according to the presence of water, with an estimate
of 0.202m s−1 of velocity reduction when preparing to grasp
a full cup. These observations confirm previous results in the
analysis of human kinematics associated with the carefulness
feature [9], [10], but interestingly extend the effect of object
properties also to the kinematics of reach-to-grasp actions.
It is the first time we have observed anticipated motor
adaptation in this context; further investigations need to be
conducted to understand why this anticipatory effect arose:
it may be ascribed to the standing posture of participants or,
even more interestingly, to the collaborative setting. Indeed,
the intention to communicate and make predictable and
readable gestures in a social context is well-described by
the signaling theory [15]. For instance, it has been proved
that the emerging kinematic pattern in grasping gestures
differs between individual and social conditions [24]. In any
case, the possibility of accessing this implicit information
in advance, already in the action preparation, is relevant to
plan the activity of the artificial agent accordingly, and its
feasibility will be discussed in the following paragraph.

B. Carefulness Classification

The classification is accomplished using the best model
from [18] with hyperparameter ϵ = 0.14. It achieved an
accuracy of 90%, 87%, and 77% for full cups classified as
careful motions, for EPFL [25], QMUL [26], and IST [27]
datasets, respectively. As for empty cups, they were classified
as not careful in 55%, 50%, and 52% for EPFL, QMUL, and
IST handovers, respectively. As explained in previous papers
[10], [18], [19] the handover of empty cups does not elicit a
cautious behavior as full cups do, i.e. the risk of spilling. As
such, the handover of empty cups is freely decided upon the
user’s handover preference, which may resemble a careful
attitude or not and complicate the detection. Figure 4 show
the classification results for the reaching and transport phase.
In the transport phase, the accuracy resembles the results
obtained previously, with 79% of full cups classified as care-
ful and 60% of empty cups as not careful. Considering that
this is a human-to-robot handover and the model was trained
on human-human handovers, this shows the model’s efficacy
with new scenarios, participants, and interaction designs. The
accuracy in the classification for reaching motions is lower.
However, it should be noted that the model was trained on
handovers, and it is the physical interaction with the cup
that mainly influences the kinematics modulation. Moreover,
Figure 3 shows that the adjustment in the reach-to-grasp
action is principally related to the magnitude of the velocity,

Fig. 4: Carefulness classification in reaching and transport
motions for both empty and full cup’s motions as careful
or not careful behaviors. The accuracy is measured as the
number of motions with full cups correctly predicted as
careful behaviors and the motions with empty cups correctly
predicted as not careful behaviors.

Fig. 5: The classifier output B for empty and full cup’s
motions over time. For each human transport of either cup,
the B reaching 0% or 100% refers to the classification of C
(careful) or NC (not careful) behaviors, respectively. The µ
and σ are the mean and the ∼84% confidence interval for
the true positive cases of the binomial distribution.

as mentioned previously, whereas its duration is comparable
for empty and full cups, differently to what happens during
the transportation phase.

The results of the classification for the object transport
phase can be further analyzed in Figure 5. The carefulness
detection controller ran in real-time, and the belief system B
is updated at each time step t, providing a decision - careful
or not careful - before the handover is completed. Figure 5
shows that after 1 second (120 time steps) 97% of empty
cups are classified, and after 157 time steps (∼1.3 seconds)
97% of full cups are classified. In Figure 3 the handovers
lasted 1.62±0.5 and 2.32±0.59 seconds for empty and full,
respectively. This provides the robot with the information of
whether the human is careful or not before the cup is in
the robot’s gripper (1 second beforehand or more for longer
durations), potentially allowing it to plan accordingly and in
advance its actions. In this study, we assume that the reason



TABLE II: Questionnaire’s scales, N=15

Scale Item example Condition Cronbach’s α Mean±SD p

Positive Attitudes About Robots (PARS) [28] I think the use of robots can have a positive impact on society Pre .83 4.50± 0.57 -
Negative Attitudes About Robots (NARS) [29] I would feel uneasy if I was given a job where I had to use robots Pre .02 - -
Anxiety (Anx.) [30] I would be anxious about the kind of movements the robot would make Pre .72 2.33± 0.73 -

Anxiety (Anx.) [31] I was afraid to make mistakes with the robot NEU .63 1.47± 0.44 0.23EXP .64 1.57± 1.50

Competence (Comp.) [32] I think that the robot was competent NEU .91 3.92± 0.84 0.90EXP .88 3.87± 0.83

Cognitive Trust in HRI (Cogn.) [33] I would feel a need to monitor the robot’s work NEU .71 3.76± 0.50 0.06EXP .82 3.90± 0.56

Affective Trust in HRI (Affect.) [33] This robot would act cooperatively NEU .51 - -EXP .79 4.09± 0.64

Evaluation of Robot Movements (Eval.) [34] The robot’s movements looked natural NEU .79 4.08± 0.39 0.26EXP .83 4.13± 0.39

Note: The p value, when reported, refers to a Wilcoxon rank sum test between Neutral and Expressive robot conditions

for being careful has to do with the cup containing a liquid
that may spill, however, this has many other applications,
such as moving fragile or dangerous objects which due to the
aforementioned properties require a more attentive (careful)
handling.

C. Questionnaires

The items used in the questionnaires were short versions
adapted from validated scales. Cronbach’s α was used to
evaluate the internal consistency and reliability of each of
them and is reported in Table II. If the value of α was
above 0.60, unit indices were produced by averaging the
responses to the individual items included in each scale. The
“NARS” and “Affective Trust in HRI” scales presented a low
Cronbach’s value (α = 0.02; 0.51 respectively); hence they
were not considered in the analyses. We also ran Shapiro-
Wilk’s tests to verify the normality of the samples. When
the distribution resulted gaussian, we employed parametric
tests; otherwise, we used the non-parametric versions. Before
starting the experiment, we asked participants to answer a
few items to better characterize the population sample. Their
mean values are reported at the beginning of Table II. Not
surprisingly, we found a positive correlation between the self-
reported knowledge of robotics and the PARS scale (Spear-
man’s rho: 0.457, p < 0.05). By administering a set of scales
after each interaction with the robot, we wanted to assess
if the participants perceived the two conditions differently.
As previously mentioned, the order of the conditions was
balanced and randomized to avoid introducing possible bias;
however, as reported in Table II, we found no significant
difference. Only the Cognitive Trust in HRI scale reported
a slight preference for the expressive condition, but still
not statistically meaningful. Considering separately single
items and using again a Wilcoxon rank sum test to compare
the two conditions, we found two significant differences:
“This robot would act consistently” (NEU : 3.73 ± 1.03,
EXP : 4.20±0.68, p < .05); “The robot moved too slowly”
(NEU : 2.80 ± 1.20, EXP : 2.20 ± 0.78, p < .05). The
percentages associated with participants’ preferences in the
post-questionnaire, after experiencing the two experimental
conditions in random order, are reported in Figure 6. In this
case, the distribution of the answers was binomial, so we

Fig. 6: Post-questionnaire preferences between the Neutral
and the Expressive GAN-based robot conditions

ran a two outcomes proportion test. We found a significant
difference in the item “In which one of the two parts was
the robot more efficient in transporting the empty cups?”
(p < .05). The robot was perceived as more efficient when
controlled with the Not Careful GAN’s velocity profile. We
can also observe a tendency to choose the neutral controller
instead when dealing with the full cup. This can be under-
stood by referring to Section III-A, where we explained that
in the design of the neutral condition, we chose a velocity
profile intermediate between careful and not that still allowed
to complete the task successfully with no spilling; in this
sense, the neutral robot was faster when transporting the cup
with water. A trend is also noticeable in the Comfort and
Proficiency items, where the participants well received the
expressive controller.
The general questionnaire’s outcome does not allow us to

conclude about a strong preference of participants between
the two conditions. The experiment design required the two
agents to collaborate in any case, and the drive to comply
and adapt may have overshadowed the differences in robot
movements. At the end of the experiment, 12 participants
out of 15 reported perceiving a distinction between the two
blocks, but only 7 (46.7%) attributed it to a difference in
the velocity; the others referred, for instance, to the pouring
angle, the gripper strength, or the position of emptying or



Fig. 7: Difference in the block duration considering only the
human contribution

handover, which did not actually change. However, we can
further reason that participants did not consciously recognize
or, at least, did not explicitly appreciate the added value
of communicative movements. In a previous study, where
the robot had the active role of giver, its human-inspired
actions accomplished the goal of communicating carefulness
associated with object properties and even elicited motor
adaptation [19]. In this scenario, the participants’ role as
givers made them fully aware of the object’s properties. In
this sense, the robot had nothing to communicate except to
accomplish the task without failures, which happened in both
conditions. Therefore, in such a collaborative task, the robot
must first function properly to be accepted, while commu-
nicative movement is not necessarily perceived overtly as
better.

D. Global metrics

One of our hypotheses when designing a human-inspired
robot controller was that it would improve the smoothness
and efficiency of the interaction when adopting the appro-
priate level of carefulness. For this reason, we decided to
examine a quantitative metric: the interaction duration over
the block of four consecutive cup handovers. In this case,
we are interested in a fluency metric that, regardless of the
time taken by the robot, which can vary depending on the
condition and the cup handed, measures the human efficiency
in the task. Hence, we annotated from videos the duration of
the robot’s action. We considered the net time by subtracting
from the total duration of each block the time taken by the
robot’s movements from each completed handover to the
end of the trial, i.e. when it released the empty glass into
the blue container. Figure 7 illustrates the corresponding
results, where we find a significant difference in the net
duration of the blocks, in seconds, confirmed by a Wilcoxon
rank sum Test (NEU : 49.5 ± 4.35, EXP : 44.4 ± 3.06,
p < .001). This result is extremely interesting because it
proves that, even if not consciously perceived by participants,
the expressive modulation of the robot’s actions makes the
overall interaction smoother and more fluid, with a reduction
of 5 seconds on the net duration. The impression we had
observing the videos is that when the robot exhibited a
human-inspired behavior, the latency time between each trial
was reduced.

V. CONCLUSION

In this study, we presented a realistic scenario where a
human and a robot successfully collaborate in handling full

and empty cups, with the goal of understanding how to
infer human carefulness during handover actions, as well
as to generate similarly “expressive” robot movements. In a
dynamic interaction scenario, it may be impractical to predict
the contents of every single cup directly from an object’s
appearance or sound features [4], [5], [6]. In our approach,
the key to successfully inferring the cup properties relies on
the interaction itself. We explore the natural adaptations that
occur in human motion when handling cups with different
filling levels which we observed, for the first time, not only
during the transportation but also in the reach-to-grasp move-
ments. This result, together with the ability of the classifier
to infer an action’s carefulness by observing just its initial
part, allows the robot to prepare the most appropriate motion
strategy in advance. We found interesting insights comparing
a proportional neutral controller and our human-inspired ex-
pressive one. When the robot was not expressive, keeping the
same velocity for the whole experiment regardless of the cup
content, participants perceived it as less consistent and found
its actions generally too slow. Compared to an oblivious
robot that makes no assumptions about the cup’s properties,
our approach mimics the human strategy: being careful when
needed and speeding up otherwise. Although participants
have not acknowledged this difference explicitly, we found
a quantitative measure of the interaction efficiency in the
experiment duration. Indeed, with the robot showing human-
like behavior, humans reduce the time required to complete
their tasks, thus improving the fluency and smoothness of
the collaborative interaction.

To conclude, this study validates a framework for action
perception and generation in HRI. In future works, the
complete architecture should be tested in a dyadic interaction
where both the human and the robot have an active role in
carrying objects. In such a context, the classification output
could be directly used to plan adequate robot motions with
GANs.

REFERENCES

[1] G. Knoblich, Butterfill, Stephen, and N. Sebanz, “Psychological re-
search on joint action: Theory and data,” in Advances in Research and
Theory, vol. 54 of Psychology of Learning and Motivation, pp. 59–
101, Academic Press, 2011.

[2] E. Bicho, L. Louro, and W. Erlhagen, “Integrating verbal and non-
verbal communication in a dynamic neural field architecture for
human–robot interaction,” Frontiers in neurorobotics, vol. 4, 05 2010.

[3] A. Sciutti, M. Mara, V. Tagliasco, and G. Sandini, “Humanizing
human-robot interaction: On the importance of mutual understanding,”
IEEE Technology and Society Magazine, vol. 37, no. 1, pp. 22–29,
2018.

[4] Y. L. Pang, A. Xompero, C. Oh, and A. Cavallaro, “Towards safe
human-to-robot handovers of unknown containers,” in 30th IEEE
International Conference on Robot & Human Interactive Communi-
cation (RO-MAN), (Virtual), pp. 51–58, August 2021.

[5] A. Modas, A. Xompero, R. Sanchez-Matilla, P. Frossard, and A. Cav-
allaro, “Improving filling level classification with adversarial training,”
in 2021 IEEE International Conference on Image Processing (ICIP),
pp. 829–833, IEEE, 2021.

[6] V. Iashin, F. Palermo, G. Solak, and C. Coppola, “Top-1 corsmal
challenge 2020 submission: Filling mass estimation using multi-modal
observations of human-robot handovers,” in Pattern Recognition. ICPR
International Workshops and Challenges, pp. 423–436, 2021.



[7] M. Dimiccoli, S. Patni, M. Hoffmann, and F. Moreno-Noguer, “Rec-
ognizing object surface material from impact sounds for robot manip-
ulation,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 9280–9287, 2022.

[8] T. Apicella, G. Slavic, E. Ragusa, P. Gastaldo, and L. Marcenaro,
“Container localisation and mass estimation with an RGB-D camera,”
in the 32nd IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), (Singapore), pp. 9152–9155, June 2022.

[9] N. F. Duarte, K. Chatzilygeroudis, J. Santos-Victor, and A. Billard,
“From human action understanding to robot action execution: how
the physical properties of handled objects modulate non-verbal cues,”
in 2020 Joint IEEE 10th International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob), (Valparaiso,
Chile), pp. 1–6, IEEE, Oct. 2020.

[10] L. Lastrico, A. Carfı̀, A. Vignolo, A. Sciutti, F. Mastrogiovanni,
and F. Rea, “Careful with That! Observation of Human Movements
to Estimate Objects Properties,” in Human-Friendly Robotics 2020,
(Cham), pp. 127–141, Springer International Publishing, 2021.

[11] F. Campanella, G. Sandini, and M. C. Morrone, “Visual information
gleaned by observing grasping movement in allocentric and egocentric
perspectives,” Proceedings of the Royal Society B: Biological Sciences,
vol. 278, no. 1715, pp. 2142–2149, 2011.

[12] A. Hamilton, D. Joyce, J. Flanagan, C. Frith, and D. Wolpert, “Kine-
matic cues in perceptual weight judgment and their origins in box
lifting,” Psychological research, vol. 71, pp. 13–21, Feb 2007.

[13] R. A. Knepper, C. I. Mavrogiannis, J. Proft, and C. Liang, “Im-
plicit communication in a joint action,” in Proceedings of the 2017
ACM/IEEE International Conference on Human-Robot Interaction,
HRI ’17, p. 283–292, 2017.

[14] A. D. Dragan, S. Bauman, J. Forlizzi, and S. S. Srinivasa, “Effects
of robot motion on human-robot collaboration,” in Proceedings of the
Tenth Annual ACM/IEEE International Conference on Human-Robot
Interaction, HRI ’15, p. 51–58, 2015.

[15] G. Pezzulo, F. Donnarumma, and H. Dindo, “Human sensorimotor
communication: A theory of signaling in online social interactions,”
PLoS ONE, vol. 8, no. 11, 2013.

[16] A. Curioni, G. Knoblich, and N. Sebanz, Joint Action in Humans:
A Model for Human-Robot Interaction, pp. 2149–2167. Springer
Netherlands, 2019.

[17] A. Zhou, D. Hadfield-Menell, A. Nagabandi, and A. D. Dragan, “Ex-
pressive robot motion timing,” in Proceedings of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction, HRI ’17,
p. 22–31, 2017.

[18] N. F. Duarte, A. Billard, and J. Santos-Victor, “The Role of Ob-
ject Physical Properties in Human Handover Actions: Applications
in Robotics,” IEEE Transactions on Cognitive and Developmental
Systems, pp. 1–1, 2022.

[19] L. Lastrico, N. F. Duarte, A. Carfı́, F. Rea, F. Mastrogiovanni,
A. Sciutti, and J. Santos-Victor, “If You Are Careful, So Am I! How
Robot Communicative Motions Can Influence Human Approach in a
Joint Task,” in Social Robotics, (Cham), pp. 267–279, Springer Nature
Switzerland, 2022.

[20] M. Kassner, W. Patera, and A. Bulling, “Pupil: An Open Source Plat-
form for Pervasive Eye Tracking and Mobile Gaze-based Interaction,”
arXiv:1405.0006 [cs], Apr. 2014. arXiv: 1405.0006.

[21] L. Garello, L. Lastrico, F. Rea, F. Mastrogiovanni, N. Noceti, and
A. Sciutti, “Property-Aware Robot Object Manipulation: a Generative
Approach,” in 2021 IEEE International Conference on Development
and Learning (ICDL), (Beijing, China), pp. 1–7, IEEE, Aug. 2021.

[22] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series Generative
Adversarial Networks,” in Advances in Neural Information Processing
Systems (H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc,
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