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Abstract— We present an implementation of an online op-
timization algorithm for hitting a predefined target when
returning ping-pong balls with a table tennis robot. The online
algorithm optimizes over so-called interception policies, which
define the manner in which the robot arm intercepts the ball.
In our case, these are composed of the state of the robot
arm (position and velocity) at interception time. Gradient
information is provided to the optimization algorithm via the
mapping from the interception policy to the landing point of
the ball on the table, which is approximated with a black-box
and a grey-box approach. Our algorithm is applied to a robotic
arm with four degrees of freedom that is driven by pneumatic
artificial muscles. As a result, the robot arm is able to return
the ball onto any predefined target on the table after about
2-5 iterations. We highlight the robustness of our approach by
showing rapid convergence with both the black-box and the
grey-box gradients. In addition, the small number of iterations
required to reach close proximity to the target also underlines
the sample efficiency. A demonstration video can be found here:
https://youtu.be/VC3KJoCss0k.

I. INTRODUCTION

A. Background

Reinforcement learning (RL) has proven to be a power-
ful and general framework that has many applications in
robotics [1], [2], [3], [4], [5] and beyond [6]. However,
modern RL approaches rely on deep neural networks [7]
and often require a large number of interactions with the
environment until a reasonable policy is found. The search
for a good policy is therefore often supported with numerical
simulations which can be time-consuming and computation-
ally expensive.

Another downside is that the performance of RL algo-
rithms is often sensitive to hyperparameter tuning, which
requires extensive supervision by engineers, and limits their
online applicability. Nevertheless, online adaptation is impor-
tant for many real-world applications, where the environment
or the robot dynamics may (gradually) change [8].

In the following article, we propose an online optimization
algorithm that mitigates some of these disadvantages. The
algorithm uses gradient descent and allows for the incorpo-
ration of prior knowledge. We will evaluate our framework
on a challenging robotic control task with a four-degrees-
of-freedom robot arm driven by pneumatic artificial muscles
(PAMs), see [9]. Our task is to enable the arm to return
a ping-pong ball that is played to the robot back to any
predefined target on the table. Our algorithm will iteratively
update and learn the interception policy, where we take
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advantage of an already existing low-level controller that
drives the robot arm, see [10]. We demonstrate that due to
the inclusion of prior knowledge, our online optimization
framework can be implemented in a data-efficient and robust
manner.

B. Related Work

Most of the recent and competitive table tennis robots
use an adaptation of RL for their control. The authors
of [11] combine an RL algorithm that is trained to adjust
the robot’s joint trajectory with a regression model that
predicts the ball’s trajectory and the robot’s joint trajectories.
A combination of RL and imitation learning has been used
by [12] and [13] and has shown strong results in terms of
interception rates and landing point control, whereby [12]
explicitly evaluates performance for different target locations
on the table. To facilitate and accelerate the learning process,
[14] developed a hybrid RL approach that simultaneously
learns from a simulation and from executing a policy on the
real-world system. The method is evaluated on a soft robot
actuated by PAMs, which allows for safe exploration and
thus removes the need for sophisticated policy initialization.
All of these proposed methods use a high-dimensional action
space that is searched through extensive trial and error,
typically requiring thousands of iterations.

Online optimization, which can be seen as an instance
of online learning, was popularized by [15] and has mostly
been used in theoretical settings to derive sample-complexity
bounds, convergence guarantees, and convergence rates for
learning algorithms. What makes the formulation of online
optimization interesting is that it allows for unknown and
even adversarial cost functions. This is in line with our
setup, where the incoming ball trajectories are different from
execution to execution and the system dynamics are assumed
to be unknown and potentially slowly time-varying.

The soft robotics actuation principle of PAMs has seen
application in a broad range of fields. Examples include
exoskeletons for assistance and rehabilitation [16], [17], [18],
[19], [20], legged locomotion [21], [22], [23], [24] and
various aerospace applications [25]. A collection of different
designs and additional application examples can be found
in [26], [27]. Many first-principle models of PAMs have
been built in order to facilitate their control, and a detailed
summary of such modeling approaches is found in [27].
Other control approaches that avoid utilizing sophisticated
physical models include iterative learning control [10], [28]
and RL [14].
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C. Contribution

The main contribution of our work is to propose a robust
and data-efficient online optimization algorithm for solving
learning tasks that arise in robotic systems. This contrasts
traditional applications of online optimization algorithms,
which mainly consist of machine learning applications such
as recommendation systems, packet routing, or spam filter-
ing [29]. More precisely, we apply our framework to a four-
degrees-of-freedom robot arm that is driven by PAMs and
is illustrated in Figure 1. The algorithm takes advantage of
an existing low-level controller and is able to return balls
to predefined targets with an accuracy of about 25 cm. An
important aspect of our framework is to build a mapping that
connects the interception policy, which is defined as the state
of the robot arm at interception time, to the Euclidean dis-
tance between the target and the landing point of the ball. The
distance between the target and the landing point defines the
loss in the online optimization and is measured by a vision
system [30]. At each iteration, i.e., after each returned ball,
the interception policy will be updated online by a gradient
descent method, where the gradients are approximated with
either a black-box or a grey-box approach.

Fig. 1: The figure shows the structure of the robot arm with
its four rotational degrees of freedom (DoFs). Each joint is
actuated by a pair of PAMs.

We note that the lack of gradient information due to the
unknown underlying system dynamics is a key bottleneck,
not only when applying online optimization algorithms to
robotic systems, but also for RL in general. The traditional
approach of using (stochastic) finite differences is often
biased and has a high variance, which considerably slow
down the optimization. Therefore, an important contribution
of our work is to propose both a grey-box and a deep learning
approach that approximate the mapping from the interception
policy to the loss. We compare the results when employing
either of the two mappings and find that in both cases the
distance error converges toward zero (on average) at similar
rates and with a similar variance.

Compared to existing RL algorithms for robotic systems
such as Q-learning or actor-critic methods, our framework is
very data efficient. In our extensive experiments that include

different initial policies and different targets, our algorithm
required only about 2-5 iterations to hit a target with an error
below 25 cm. The algorithm is therefore directly applied
to the real-world robotic system and does not require a
simulator (although a simulator could be used to warm-
start the online optimization, which would further reduce the
number of iterations needed).

D. Structure

This article is structured as follows: In Section II, we
formulate the task of finding interception policies as an
online optimization problem and describe the gradient de-
scent algorithm that we use subsequently. In Section III,
we describe two fundamentally different approaches for
predicting the landing points (either grey-box or black-box),
which will provide important gradient information to the
optimization algorithm. The performance of both approaches
will be evaluated in real-world experiments as described
in Section IV. The article concludes with a summary in
Section V.

II. ONLINE OPTIMIZATION

A. Problem Formulation

In our work, the robot arm learns to hit and return a ball
shot from a launcher (presented in [31]) onto a predefined
target rtarget ∈ R2 on the table. We ensure that the z-
coordinate of the global coordinate system stands orthogonal
to the table, and unless otherwise specified, all the following
calculations take place in the global coordinate system. The
target is then within the x-y plane at table height, that is,
rtarget = (xtarget, ytarget)

T. Our approach can easily be extended
to aim at a three-dimensional target in space.

In the following, θj and θ̇j denote the angle and angular
velocity of degree of freedom j ∈ {1, 2, 3, 4}. The landing
point rlanding ∈ R2 after the ball is returned, also within the x-
y plane at the table height, is dependent on the interception
policy ϕ ∈ K ⊆ R2, where K denotes the feasible set as
described below. As illustrated in Figure 2, for a given ball
trajectory the angle θ1 uniquely determines the interception
time point, tic, as well as the angles θ2 and θ3 of the
remaining degrees of freedom at time tic. At the interception
time point, we fix the velocity θ̇1 = 6 rad s−1 and set the
velocities θ̇2, θ̇3, and θ̇4 to zero (this amounts to a straight
return that does not induce extra spin). The algorithm works
in the same way when θ̇1, θ̇2, or θ̇3 are set to different values.
Our interception policy therefore controls the interception
time point and the angle of the return with θ1 and the distance
of the return with θ4. We also conducted experiments where
both θ4 and θ̇1 were used to control the distance, but found
that θ4 was the dominant factor, which led us to the choice

ϕ = (θ1(tic), θ4(tic))
T
.

The feasible set K is introduced to ensure that the intercep-
tion policy does not exceed the physical limits of the robot
arm and is chosen as K = {ϕ ∈ R2| − π

2 ≤ θ1(tic) ≤
π
2 ,−

π
4 ≤ θ4(tic) ≤ π

4 }. The set is convex and thanks to the
high compliance and power-to-weight ratio of the PAMs [9],



it is large enough to cover the entire range of interception
policies needed in practice. In the following, we assume that

incoming ball
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(a) Top-down view
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θ3(tic)

x

yz d

(b) 3D view

Fig. 2: The figure shows a sketch of the robot arm. Subigure
(a) illustrates how θ1 defines the interception point and
subfigure (b) shows how this subsequently fixes θ2 and θ3
as well.

rlanding can be divided into a deterministic part, r̃landing, and
an additive disturbance as follows:

rlanding (ϕ, n) = r̃landing (ϕ) + n,

where the disturbance is non-repetitive and captures the
fluctuation of the different incoming ball trajectories and the
process noise of the robot arm. We note that according to
the online learning/online optimization framework, [29], the
disturbance is not necessarily required to be stochastic and
zero mean for our framework to perform well.

For any fixed target, the learning task will be formulated
as the following online optimization problem:

N∑
i=1

Li(ϕi)→ min,

where ϕi ∈ K, Li(ϕi) =
1

2
|rlanding(ϕ

i, ni)− rtarget|2,

for all i = 1, . . . , N,

(1)

where N denotes the number of iterations (not necessarily
fixed). We denote by | · | the Euclidean distance and by
the superscript (·)i the iteration number. The non-repetitive
disturbance ni leads to an iteration-dependent loss function
with the interception policy as its only argument. We note
that at the iteration i the optimization algorithm has only
access to the data from previous iterations l = i − 1, . . . , 1
while the disturbance ni is unknown.

B. Online Gradient Descent

We optimize (1) by applying online gradient descent,
where according to the chain rule, the gradient of the loss
function at each iteration is calculated as follows:

∇Li(ϕi) =

(
∂r̃landing

(
ϕi
)

∂ϕ

)T

︸ ︷︷ ︸
Part 1

(rlanding
(
ϕi, ni

)
− rtarget)︸ ︷︷ ︸

Part 2

,

with i = 1, . . . , N . We note that the value of Part 2 can be
easily obtained because rtarget is predefined and fixed, and
rlanding

(
ϕi, ni

)
at the i-th iteration is observed by the vision

system. In contrast, the value of Part 1 is more difficult to
determine, since the mapping from interception policies to
landing points is unknown a priori. To resolve this issue,
we will use either a grey-box or a black-box approach for
predicting the landing point as a function of ϕ, which will
be denoted by g(ϕ). This provides us with the following
approximations:

r̃landing (ϕ) ≈ g (ϕ) ,
∂r̃landing (ϕ)

∂ϕ
≈ ∂g(ϕ)

∂ϕ
.

The grey-box and the black-box models will be discussed in
detail in Section III.

The implementation of our online gradient descent scheme
is summarized in Algorithm 1. We note that ΠK denotes the
projection onto the feasible set, which can be evaluated in
closed form. INTERCEPTION denotes the physical process
of ejecting a ball from the ball launcher, intercepting it with
the racket in a manner defined by the current policy, and
observing the landing point on the table.

An important difference compared to the online opti-
mization formulation in [29] is that we only rely on an
approximation of the gradient, which contains a part that
can be measured directly (Part 2) and a part that is modeled
either from first principles or in a data-driven manner. This
gradient approximation is a key innovation in our work and is
the main driving force that makes our approach data efficient.

Algorithm 1: APPROXIMATE ONLINE GRADIENT
DESCENT

Given: target rtarget, N , step lengths
{
αi
}N
i=1

Input: initial policy ϕ1

1 for i← 1 to N do
2 rilanding ← INTERCEPTION(ϕi) ;

3 ϕ̃i+1 ← ϕi − αi∂g(ϕi)/∂ϕT
(
rilanding − rtarget

)
;

4 ϕi+1 ← ΠK

(
ϕ̃i+1

)
;

5 end

III. LANDING POINT PREDICTION MODEL

As mentioned in the previous section, an approximate
mapping from the interception policy ϕ to the landing point
is required to provide gradient information to our online
learning framework. In this section, we discuss a grey-box
and a black-box approach for approximating this mapping.

A. Grey-Box Model

We use first principles to predict the landing point as a
function of ϕ, which includes an impact model between the
ball and the racket as well as a model of the ball in free flight.
First of all, we introduce the position vector p[k] ∈ R3 and



the velocity vector v[k] ∈ R3 of the ball as discrete variables
parameterized by the index k that captures the time evolution,

p[k] = (px[k], py[k], pz[k])
T
,

v[k] = (vx[k], vy[k], vz[k])
T
.

The impact with the racket is assumed to be an instan-
taneous event, where the variables right before and after
the impact are denoted by (·)− and (·)+, respectively. The
rotation matrix that describes the orientation of the racket
with respect to its rest configuration is denoted by Γ(ϕ) ∈
R3×3. The racket velocity expressed in the global coordinate
frame is denoted by vR(ϕ) ∈ R3. Both of these variables
are derived from the kinematics of the robot arm. Thus, the
racket impact model can be summarized as

p+ = p−,

v+(ϕ) = Γ (ϕ)MRΓ (ϕ)
T (

v− − vR (ϕ)
)︸ ︷︷ ︸

relative velocity

+vR (ϕ) , (2)

where MR = diag (0.75,−0.75, 0.75) is a linear impact
model. The negative component in MR is aligned with the
normal direction of the racket’s surface in its rest position.

For modeling the free flight of the ball we introduce
ξ[k] ∈ R6, which combines the position and velocity, i.e.,
ξ[k]T =

(
p[k]T, v[k]T

)
. In principle, the full state of the ball

also includes the ball’s spin. However, the spin influences
the free-flight motion of the ball only slightly through the
Magnus effect [32]. The purpose of our model is to compute
gradients for our online optimization algorithm, and we
therefore favor low complexity over detailed modeling and
omit the ball’s spin. As a result, the free-flight dynamics are
approximated as follows:

ξ[k + 1] = q (ξ[k])

= ξ[k] + Ts
(
v[k]T,−kD|v[k]|v[k]T + gT

0

)T
, (3)

where kD = 0.106m−1 denotes the drag coefficient and g0 =
(0, 0,−9.8m s−2)T denotes the gravitational acceleration.
We write Ts for the time step. The initial condition for (3)
is given by the ball’s state after the impact with the racket,
that is, p[0] = p+, v[0] = v+(ϕ), and ξ[0] = ξ+(ϕ).

The evolution stops once the predicted trajectory intersects
the x-y plane at the table’s height, which is denoted as
pz,table. At each index k, we predict the remaining time until
the ball reaches the table height based on a simplified evolu-
tion of the ball’s z-coordinate, which neglects aerodynamic
drag, as

Tr (ξ [k]) =
vz[k]

ĝ
+

√(
vz[k]

ĝ

)2

+ 2 · pz[k]− pz,table
ĝ

,

(4)
where ĝ = 9.8m s−2. Once Tr (ξ [k]) is less than or equal to
Ts, we perform the next and last step with the shortened step
length of Tr (ξ [k]) instead of Ts and terminate the evolution.
The last index k before this shortened step will be referred
to as kmax, and we refer to the last time step as Tlast =
Tr (ξ [kmax]).

Thus, by combining the racket impact model and the free-
flight model, we can predict the landing point r̃landing. This
concludes the landing point prediction model.

Next, we will show how to calculate the required gradient
∂r̃landing/∂ϕ, which is naturally included in ∂ξlanding/∂ϕ. We
apply the chain rule and conclude

∂ξlanding
∂ϕ

=
∂ξlanding
∂ξ[kmax]

∂ξ[kmax]

∂ξ+
∂ξ+

∂ϕ
.

We will evaluate each of the three terms individually,
starting with ∂ξ+/∂ϕ. Deriving (2) with respect to ϕ yields

∂v+

∂ϕ
=

(
∂Γ

∂ϕ
MRΓ

T − ΓMR
∂Γ

∂ϕ

T
)
(v− − vR)

− ΓMRΓ
T ∂vR
∂ϕ

+
∂vR
∂ϕ

,

where the terms ∂Γ/∂ϕ and ∂VR/∂ϕ can be computed based
on the system’s kinematics.

For the term ∂ξ[kmax]/∂ξ+, we recall that ξ[kmax] is calcu-
lated by repeatedly applying the evolution function q (ξ[k])
with a constant time step starting from ξ+. For each index
k we apply the function q, which yields

∂ξ[k]

∂ξ[k − 1]
=

∂q(ξ)

∂ξ

∣∣∣∣
ξ=ξ[k−1]

, k = 1, . . . , kmax,

where ∂q(ξ)/∂ξ can be directly calculated based on (3). We
get

∂ξ[kmax]

∂ξ+
=

kmax∏
k=1

∂q(ξ)

∂ξ

∣∣∣∣
ξ=ξ[k−1]

.

For evaluating the last term dξlanding/dξ[kmax], we recall the
functional dependence of the last evolution before the table
impact as ξlanding = ξlanding (ξ[kmax], Tlast) and expand
∂ξlanding/∂ξ[kmax] as follows:

∂ξlanding
∂ξ[kmax]

=
∂ξlanding
∂ξ[kmax]

+
∂ξlanding
∂Tlast

∂Tlast

∂ξ[kmax]
,

where ∂ξlanding/∂ξ[kmax] and ∂ξlanding/∂Tlast can be rewritten
as ∂q(ξ)/∂ξ and ∂q(ξ)/∂Ts evaluated at ξ = ξ[kmax] and
Ts = Tlast, respectively. The remaining term ∂Tlast/∂ξ[kmax]

is directly calculated from (4).

B. Black-Box Model

We use a black-box model as an alternative approach for
predicting the landing point. More precisely, we employ
a neural network gNN with only fully connected layers,
which predicts the landing point on the table based on a
given interception policy, that is, r̃landing = gNN(ϕ). The
architecture consists of four hidden layers, each of them with
four nodes, and the hyperbolic tangent function is used as
the activation function for all layers except for the output
layer. We collected a dataset of about 3000 data points that
cover the relevant range of ϕ ∈ K, where each data point
corresponds to a successful return with the robot arm (if
the ball only hit the edge of the racket or the robot missed
the ball, the trajectory was discarded). We trained the neural



network using pytorch, which required about 500 epochs
with the Adam optimizer [33]. The gradient of the landing
point with respect to the interception policy is then computed
with pytorch.

IV. RESULTS

We will use the following metrics for analyzing the
performance of our online optimization algorithm:

r̄i =
1

i

i∑
j=1

rjlanding, ϵi = |rtarget − r̄i| ,

σi =

√√√√1

i

i∑
j=1

∣∣∣rjlanding − r̄i

∣∣∣2, i = 1, . . . , N,

(5)

where r̄i denotes the mean landing point for the first i
iterations and ϵi denotes the distance error between the
target and the mean landing point. The standard deviation
of landing points up to iteration i is denoted by σi.

Furthermore, we experimentally determine the inherent
variance of landing points (due to the process noise and
the fluctuations in the incoming ball trajectories) by running
three experiments over 200 iterations each with different
reasonable interception policies that remain fixed. We find
that the inherent standard deviation of landing points for a
fixed policy is around σ = 25 cm. The standard deviation
differs quite significantly along the two axes as shown in
Figure 3 (grey ellipsoid).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
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3
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y
[m

]

black-box grey-box target

Fig. 3: The figure shows the evolution of the mean landing
points r̄i on the x-y plane at the height of the table. The
evolution using the grey-box method is denoted by orange
crosses, while the evolution using the black-box method
is denoted by blue crosses. The grey dashed line provides
an estimate of the standard deviation. We note that the
convergence appears to be slower than it actually is due to
the fact that we plot r̄i.

In the following, we will show the results of different
experiments that characterize the convergence and robustness
properties of the algorithm. For all of the following experi-
ments, step lengths αi = α1

/
√
i, i = 1, . . . , N are employed

in Algorithm 1.

A. Robustness

In this section, we test the robustness of the online
optimization framework by comparing results produced by
either employing the grey-box or the black-box landing point
prediction for approximating ∂g/∂ϕ.

In Figure 3, we show the results from two 200-iteration
experiments with the grey-box or the black-box approach.
The figure shows the evolution of the mean landing points
r̄i within the x-y plane. We notice that although the evolution
directions of the two methods differ, they both converge to
the predefined target point.
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(a) Mean distance error
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Fig. 4: The figure shows the long-term convergence of the
online optimization algorithm when employing either of the
two approaches to deriving a landing point prediction model.
Figure (a) shows the mean distance error ϵi with a graph
O(i− 1

2 ) (scaled to match ϵ1) for reference and figure (b)
shows the standard deviation σi of landing points. The results
in (a) and (b) originate from the same experiment, where step
lengths defined by α1 = 0.05 were used.

In Figure 4, we quantitatively show the evolution of the
distance error ϵi and the standard deviation σi as defined
in (5), respectively. We note that the grey-box and the black-
box gradient approximations result in similar convergence
rates. This implies that our online learning algorithm is
robust to modeling errors. Furthermore, Figure 4b highlights
that the standard deviation σi of our algorithm has converged
to σ (the robot’s inherent variance). Each run with 200



iterations takes roughly 30 minutes in our setup, whereby
no ball was missed.

B. Convergence

In the following experiments we showcase the conver-
gence properties of our algorithm with the black-box model
for varying settings in terms of different target choices
(Figure 5) and different initial guesses for the policy (Fig-
ure 6). Here we increase the step lengths (α1 = 0.15) to
emphasise convergence speed. In conclusion, the results of
our experiments demonstrate the rapid convergence of our
algorithm (about 2-5 iterations) under various conditions,
showcasing its efficiency and effectiveness in learning in-
terception policies.

V. CONCLUSION

In summary, the article proposes a robust and data-efficient
online optimization algorithm and successfully applies it to
return incoming balls to a predefined target with a table ten-
nis robot. We compare two landing point prediction models
based on either a grey-box or a black-box approach, which
are used to approximate the gradient in our optimization
framework. We compare the long-term (200 iterations) policy
learning of the framework and find that in both cases we
converge at similar rates. This highlights the robustness of
our algorithm. Starting from a wide range of initializations
we can hit targets with close to zero mean and a standard
deviation of about 25 cm. The standard deviation of 25 cm
corresponds to the inherent non-repeatability due to the
variance in incoming ball trajectories and the process noise
of our robot, which is driven by soft pneumatic actuators.
By applying our online optimization algorithm, the landing
point converges, starting from any initial policy, quickly to a
predefined target on the table taking 2-5 iterations to reach
an accuracy of about 25 cm.
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