
Lightweight Neural Path Planning
Jinsong Li, Shaochen Wang, Ziyang Chen, Zhen Kan, and Jun Yu

Abstract—Learning-based path planning is becoming a promis-
ing robot navigation methodology due to its adaptability to
various environments. However, the expensive computing and
storage associated with networks impose significant challenges
for their deployment on low-cost robots. Motivated by this prac-
tical challenge, we develop a lightweight neural path planning
architecture with a dual input network and a hybrid sampler
for resource-constrained robotic systems. Our architecture is
designed with efficient task feature extraction and fusion modules
to translate the given planning instance into a guidance map.
The hybrid sampler is then applied to restrict the planning
within the prospective regions indicated by the guide map. To
enable the network training, we further construct a publicly
available dataset with various successful planning instances.
Numerical simulations and physical experiments demonstrate
that, compared with baseline approaches, our approach has
nearly an order of magnitude fewer model size and five times
lower computational while achieving promising performance.
Besides, our approach can also accelerate the planning con-
vergence process with fewer planning iterations compared to
sample-based methods. The code and the dataset are available
at https://github.com/LeeXiaosong/Lightweight-planning

I. INTRODUCTION

Planning a collision-free path from an initial location to
the destination in complex environments is a long standing
problem [1], and also the basic element in applications, such as
autonomous driving [2] and human–robot collaborations [3].
Classical path planning methods include potential field based
methods [4], graph-based methods (e.g., Dijkstra [5] and A*
algorithm [6]), and sampling-based methods (e.g., probabilistic
roadmap method (PRM) [7], rapidly exploring random tree
(RRT) [8], RRT* [9], and their variants). However, potential
field based methods can suffer from local minimum and graph-
based methods are generally computationally expensive due
to the abstraction of the environment into a grid world and
thus can only be used for low-dimensional spaces. Due to
the probabilistic completeness and scalability, sampling-based
methods have been widely applied for the path planning
of mobile robots, but they converge slowly to a feasible
(optimal if RRT* is used) path, since many unnecessary
samples are drawn from regions that optimal paths are not
likely to exist. Recently, learning-based methods that lever-
age deep neural networks to encode the environment have
achieved promising results in path planning. However, most
existing learning-based methods are resource demanding and
require enormous computing resources and storage space. As
resource-constrained robotic systems are more involved in our

This work was supported in part by the National Natural Science Foundation
of China under Grant 62173314 and U2013601.

J. Li, S. Wang, Z. Chen, Z. Kan, and J. Yu (corresponding author) are
with the Department of Automation, University of Science and Technology
of China, Hefei, China.

(a) Ours (b) RRT*

Fig. 1. Path planning using our lightweight learning-based algorithm and
traditional RRT* on mobile robot platforms.

daily life (e.g., home service and healthcare), the low power
consumption, as well as limited computation and storage,
are imposing significant challenges for learning-based path
planning approaches. Intensive computing resources and real-
time requirements become the barriers for the implementation
of deep-learning-based technologies in robotic systems. There-
fore, this work is particularly motivated to design a learning-
based path planner for resource-constrained robotic systems
with good performance but low computational footprint, real-
time implementation, and lightweight model size.

Learning-based path planning is a recent research focus
[10]. The works of [11] and [12] leverage reinforcement
learning (RL) to model the interactions between the robot and
environment to address real-time path planning problems. RL
is also integrated with temporal logic specifications in [13]
and [14] for motion planning of complex tasks. Since RL
[15] suffers from low sampling efficiency, especially for long
learning processes, supervised learning is exploited to guide
the planning processes or directly generate viable paths. For
instance, OracleNet [16] encodes the trajectory history and
predicts the next location at each step by learning from expert
trajectories. Convolutional neural networks (CNNs) are also
widely adopted for path planning. In [17], a novel data-driven
search method was developed by designing a convolutional
encoder to form an end-to-end trainable neural network for
path planning problems. In [18], the conditional variational
autoencoder (CVAE) is utilized to generate potential distribu-
tions of promising states from demonstrations and used as a
module in RRT* for optimal path planning. In [19], generative
adversarial network (GAN) was exploited to facilitate the
prediction of promising regions used in non-uniform sampling.
The work of [19] is then extended in [20] and [21] for
path planning in 3-D spaces with improved connectivity of
promising regions. Despite recent progress of guiding the
sampling of RRT/RRT* via deep neural networks (e.g., CNNs,
GAN, etc.), these approaches generally require considerable

ar
X

iv
:2

30
7.

10
55

5v
1 

 [
cs

.R
O

] 
 2

0 
Ju

l 2
02

3

https://github.com/LeeXiaosong/Lightweight-planning


Planning problem Guidance map Hybrid Sampler Satisfactory pathPlanner

uniformbias uniformbias

(1) generate guidance map (2) Perform hybrid sampler and produce the path

Deployment

Instruction

Environment

Extraction

CNN Generator

Accelerated planning process

Fig. 2. The Schematic diagram of our lightweight neural path planning architecture. (1) The generator takes the extracted planning map as input and outputs
a guidance map. (2) The sampled states are concentrated in the promising regions by the hybrid sampler.

computing resources and storage space and thus are hard to
be deployed on resource-constrained robotic systems.

In this work, we develop a lightweight learning-based path
planning algorithm for resource-constrained robotic systems
with limited computation and storage capabilities. Specifically,
to facilitate the training of neural networks, we first construct
a rich dataset containing 80, 000 planing scenarios including
mazes, corridors, chambers, junctions, and common objects
(e.g., columns, triangles, squares). Each scenario contains
expert trajectories generated by RRT as the ground truth. By
trading off the network size, inference time, and planning per-
formance, we then develop a lightweight neural path planning
architecture based on a fast CNN generator and a hybrid state
sampler for improved sampling efficiency. As highlighted in
Fig. 1, our approach can focus on promising regions while
conventional RRT has to sample over the entire workspace.
In addition, the lightweight design enables the deployment
on resource-constrained robotic systems and can be flexibly
integrated with other sampling-based approaches to accelerate
path planning.

The main contributions can be summarized as follows:
• Construct a public dataset with abundant successful path

planning examples, which can be used as training scenar-
ios for learning-based methods or verification examples.

• Develop a lightweight neural path planner for resource-
constrained robotic systems.

• Demonstrate its efficiency over SOTA methods and vali-
date its effectiveness in physical experiments.

II. PROBLEM FORMULATION

Let X represent a d-dimensional configuration space of the
mobile robot A. The obstacles are denoted by Xobs and the
obstacle-free space is denoted by Xfree = X\Xobs. The initial
state and goal state of the robot are denoted by xinit ∈ X and
Xgoal ⊂ Xfree, respectively. A continuous path σ : [0, 1] →
Rd is called feasible if σ(0) ⊂ Xinit, σ(1) ⊂ Xgoal, and
σ(τ) ∈ Xfree for all τ ∈ [0, 1]. Let Φ = {σi}ni=1 be the
set of feasible paths. Given the tuple (X , xinit,Xgoal) and a
cost function υ : Φ → R≥0, the goal of this work is to find
an optimal path σ∗ such that σ∗ = argminσ∈Φ υ(σ). In this
work, we define the cost υ(σ) as the geometric Euclidean
distance of the path σ ∈ Φ.

III. APPROACH

As illustrated in Fig. 2, the proposed lightweight path
planning method consists of two main components: 1) a CNN
generator that outputs a guidance map and 2) a hybrid sampler
that selects the state in the promising region with higher
probability.

A. Generator Network

In learning-based methods, deep neural networks are lever-
aged to accelerate the sampling process to allow for faster
path planning. Hence, a CNN generator is developed, which
learns the sampling distribution from successful planning
experience and predicts a prospective sampling region Mg

(i.e., the guidance map) from the start point to the target point
by feeding the task instance (X , xinit,Xgoal) into network.
To achieve a lightweight design, the guidance maps Mg is
generated based on the pix2pix method [22] that includes
a lightweight generator model with a dual input branch, a
PatchGAN discriminator, and a joint objective function.

As illustrated by the framework of the CNN generator in
Fig. 3, the pair x = (m, p) composed of the environment map
m ∈ Me and the initial and target points p ∈ P are taken
as input to the generator. The UNet-like structure is leveraged
to design the generator network by combining a lightweight
feature extracting module and a novel convolutional module
to obtain long contextual information. The generated regions
Mg = G(x) will then be utilized via biased sampling to enable
efficient path planning.

Lightweight design: An ordinary convolution kernel (Dk×
Dk × n) applied to an image with size H ×W ×N usually
takes Dk×Dk×N×n parameters. As for depthwise separable
convolution (DWConv) [23], only Dk × Dk × N + N × n
parameters are needed to produce the same size, which is
1/(1/N + 1/Dk

2) ≈ Dk
2 of ordinary convolution. Thus, we

propose a lightweight backbone modified from the basic UNet
[24] for the trade-off between model size and accuracy .

Instead of using 3 × 3 ordinary convolution, our model
makes use of a shuffle unit consisting of DWConv and 1× 1
Conv as feature extractors in the main encoding path. As
shown in Fig. 4, the input feature is split into two branches.
Half of the channels goes through the 1 × 1 Conv layer, the
3 × 3 DWConv layer, and the 1 × 1 Conv layer in turn,



Skip Connections

Concat

Generator Discriminator

CBAM

Feature Fusion

Atrous Conv, D=2

Atrous Conv, D=3

Atrous Conv, D=5

Atrous Conv, D=1

Map

Concat

}

G (x)

True region yPoints

Maps

ConvTranspose2d

Output(Two Conv 1×1)

Two DWConv 3×3

MaxPoolingConv 3×3

Shuffle Unit Feature Fusion

Fig. 3. Overall architecture of the proposed guidance map generator.

1×1 Conv

3×3 DWConv
（stride=2）

1×1 Conv

BN ReLU

BN

BN ReLU

Concat

Channel 
Shuffle

Channel Split

(a)

1×1 Conv

3×3 DWConv
（stride=2）

1×1 Conv

3×3 DWConv
（stride=2）

1×1 Conv

BN ReLU

BN

BN ReLU

BN

BN ReLU

Concat

Channel 
Shuffle

(b)

Fig. 4. The feature extractor used in our model. (a) The basic block. (b) The
downsampling block

while the rest channels are unchanged in the basic block as
shown in Fig. 4(a). In the downsampling block in Fig. 4(b),
two successive operations including 1 × 1 Conv layer and
3 × 3 DWConv layer are performed on the input features,
respectively. The channel shuffle operation is then executed
after concatenating these branches. In the decoding path, the
skip connection is employed, and we stack two 3×3 DWConv
and ConvTranspose2d in an interlaced way as an up-sampling
layer. Thus, the computational cost of the overall network is
lowered while maintaining the output quality, due to the shuffle
unit and the lower parameters of DWConv.

Multi-scale feature fusion: Lightweight techniques can
reduce parameters, but it may lead to incomplete extraction of
some obstacle features in distant regions in the encoding phase,
resulting in degraded quality of predicted guidance regions.
A common approach to address this issue is to increase the
receptive field size of networks by stacking ordinary convolu-

tion layers or adopting larger convolution kernels; however
it will lead to larger model size and more computational
budge, limiting its applicability in resource-constrained robots.
In order to reduce the model size without sacrificing planning
accuracy, we design a feature fusion module to effectively
capture long-range information. Since the atrous convolution
can increase the convolution area without using an excessive
amount of parameters, motivated by the works of DeepLab
family [25], a fusion module is introduced behind the input
interface of environment maps that uses four concurrent atrous
convolutions with 3 × 3 kernel but different dilation rates
(rate = 1, 2, 3, 5). The resulting features from four branches
will be concatenated to a multi-scale feature map before
subsequent processing.

Dual input branch: To guarantee the matching between the
task and generated area, an additional path is used to extract
the task information, e.g., the start and end points in the task
map. In the generator block of Fig. 3, the branch is divided into
four stages, each of which consists of an ordinary convolution
followed by a max pooling operation. After the convolution
process, the task feature is delivered to the corresponding
stage of the backbone and concatenated with the environment
map feature. The purpose of this structure is to allocate as
few computational resources to encode task points features
while ensuring the generator’s performance, instead of simply
concatenating or summing these two maps.

B. Discriminator Network

When training the generator G, an efficient discriminator D
modified from Patch-GAN is employed, since it can produce
a N × N probability matrix instead of a single 0/1 scalar
at once. In Fig. 3, the environment map and task points, as
well as the generated G(x) or the ground truth y, are fed into
a four-layer convolutional network, where each layer consists



of Conv+Norm+ReLU block and max pooling operation. And
it finally outputs a matrix of 1 or 0, indicating whether each
patch is real or fake. Furthermore, an attention module CBAM
[26] is introduced to the second layer following the basic block
to help focus on important features.

C. Training objective

The network is desired to not only generate prospective
planning regions but also can be generalized to new envi-
ronments that have not been trained. Thus, a joint objective
function is constructed in this section.

Adversarial loss: The generator G is trained to minimize
the objective function, while the discriminator D is trained to
maximize it. Hence, the loss function is designed as

LcGAN (G,D) = Ex,y[logD(x, y)]

+ Ex,z[log(1−D(x,G(x, z)))].
(1)

In (1), to learn a mapping from the random noise z to the target
image y conditioned on x = (m, p), G aims at minimizing
Ex,z[log(1 − D(x,G(x, z)))] through producing real-looking
images. In turn, D evaluates input images as fake/real to
maximize Ex,y[logD(x, y)].

To avoid unstable training and the global distortion with
free low frequency patterns, the L1 loss function is defined as

LL1
(G) = E(∥y − G(x)∥1), (2)

which is optimized during the training process to constrain
the proximity of generated areas G(x) and the planned paths
y (also referred to as ground truth). Since the boundary of
path areas is matched by calculating the L1 distance, the
generator is capable of capturing the whole appearance of
robot planning regions more correctly, which is suitable for
area reconstruction of the guidance map Mg .

Auxiliary loss: The dominating term bias in the loss func-
tion may be caused by the imbalance of positive and negative
samples of guidance maps, such as smaller predicted areas and
bigger blank backgrounds. To alleviate this, the Dice Score
Coefficient (DSC) [27] is employed as

LDSC(G) = 1− 2(1− p̂)p̂ · y + γ

(1− p̂)p̂ · y + γ
, (3)

where p̂ = G(x) denotes the predicted output and y is the
ground truth. The parameter γ is added to prevent (3) from
undefined cases such as y = p̂ = 0.

Based on (1), (2), and (3), the final objective function is
written as

L(G,D) = λ1LcGAN (G,D) + λ2LL1
(G) + λ3LDSC(G) (4)

where the weighting factors λ1, λ2, λ3 indicate relative impor-
tance. The generator G∗ is obtained by solving the following
optimization problem

G∗ = argmin
G

max
D

L(G,D). (5)

D. Hybrid Sampler

Inspired by the work of [19], a hybrid sampler is developed.
As outlined in Algorithm 1, sampling from the guidance
map Mg forces the planner to select the state xrand in
the region connecting the initial and target points. Besides
sampling from Mg , states can also be uniformly sampled
from the environment, though redundant states may be added.
The BiasFactor is a tuning hyper-parameter that balances
the efficiency and exploration via flexible switching between
biased sampling and uniform sampling, while ensuring the
probabilistic completeness.

Algorithm 1 : Hybrid Sampler
Input: environment map Me, guidance map Mg

Output: state xrand

1: if Rand() < BiasFactor then
2: xrand ← RandomSample(Me)
3: else
4: xrand ← RandomSample(Mg)
5: return xrand

IV. RESULTS

Numerical simulations and physical experiments are carried
out in this section to demonstrate the developed learning-based
path planning algorithm.

A. Datasets Construction

Due to the lack of high-quality datasets of environment
maps with successful planning experience for deep learning
techniques, we construct a dataset consisting of environment
maps and points maps with expert knowledge. Table I gives
a brief presentation of the dataset, which includes 80, 000
scenarios abstracted from tough environmental features includ-
ing mazes, corridors, chambers, junctions, to other common
objects (e.g., columns, triangles, squares). The maps are in
RGB format with the obstacle-free space Xfree and obstacle
regions Xobs represented in white and black, respectively. For
each map in the dataset, RRT was executed 50 times with
randomly selected start and end points (i.e., blue and red point
in the map, respectively). The generated feasible paths are
stacked together to form the guidance map (i.e., the green
area in the map). The above process was performed on the
whole dataset, producing 68, 000 training and 12, 000 test set.
The dataset has been released1.

B. Evaluation Metrics

The following metrics are used to evaluate the model’s
effectiveness and improvement over sampling-based methods.

Lightweight and accuracy metrics: To measure the
performance of image generation, the mean Dice Coeffi-
cient (mDice) and the mean Intersection over Union (mIoU)
are employed. Given the goal of lightweight design for
resource-constrained robot platforms, the number of param-
eters, GFLOPs, and the inference time are also evaluated.

1The dataset is publicly availible at: https://drive.google.com/file/d/1
XBhPdxuhU pVKeXqC3br3T9Wcw-MnVt/view

https://drive.google.com/file/d/1_XBhPdxuhU_pVKeXqC3br3T9Wcw-MnVt/view
https://drive.google.com/file/d/1_XBhPdxuhU_pVKeXqC3br3T9Wcw-MnVt/view


TABLE I
A BRIEF EXHIBITION OF OUR DATASET

Scene Map Point Task Guidance Overview

Maze

Corridor

Rooms

Junction

Columns

The following widely-used methods are selected as base-
lines.

1) Original UNet [24]: A network with five layers of the
contracting and expanding paths.

2) Res-UNet [28]: Incorporate residual blocks into original
UNet to prevent the network degradation.

3) Nest-UNet [29]: Redesign skip connections to enable
flexible feature fusion.

4) Fast-FCN [30]: Use Joint Pyramid Upsampling (JPU) to
reduce time and memory consuming.

Planning efficiency metrics: By introducing the hybrid
sampler, the developed Guided-RRT and Guided-RRT ∗

are compared with original RRT and RRT ∗ to validate its
performance of optimizing the path length and sampling cost.

C. Implementation Details

All numerical experiments are performed on a computer
with Intel i9-10940X CPU and GeForce RTX 3090 GPU,
which runs Ubuntu 18.04 and PyTorch version 3.7. The images
fed to the networks are cropped to 128 × 128 pixels and
the size of input batch is (N,C,H,W ) before training. The
generator and discriminator are trained using Adam optimizer
with a learning rates of 0.005 and 0.001, respectively. The best
model of each generator is selected after 25 training epochs.
The BiasFactor is set to 0.9 and the step-size of the planning
algorithm is set to 2 throughout the path search phase.

D. Evaluation Results

Comparison to CNNs models: Our method is compared
with SOTA methods, such as Orig-Unet, Res-Unet, Nest-Unet,
and Fast-FCN in this section. These baseline networks have
the same feature scale and output layer made up of two 1 ×
1 convolutions for consistency. Since these networks have a
single encoding path, the environment map and task points are
represented on a single image and fed to these networks. The
best results in terms of mIou, mDice, GFLOPs, and Params
are selected and listed in Table II.

Overall, our model outperforms these baselines in terms of
the image similarity, i.e., 71.6% mIoU and 82.2% mDice.

Our model also shows substantial decrease in network size,
i.e., only 4.42M parameters and 3.22 GFLOPs, enabling
implementations on mobile robot platforms. Nest-Unet gets
the second-best score for image accuracy but it requires heavy
computing resources. While feeding 128× 128 images to the
network, a little gap exists between our model and UNet in the
process time on GPU, which may be caused by the dual input
design. However, our model shows the advantage of faster
processing at 256×256 image resolution, i.e., the time cost is
decreased by 35.2% over the fastest baseline method (UNet).

Considering the DWConv and the difference in computa-
tional logic and data transferring [31], our model achieves
significant improvement on the CPU. We select four typical
samples from the test set and display the visual comparison
in Fig 5, which shows our model outperforms others in terms
of the connectivity and similarity of planning areas.

Ground truth Ours Fast-FCN Orig-Unet Res-Unet Nest-UnetOverview

Fig. 5. The visualized planning areas (i.e., green areas) using our method
and other baseline approaches.

Generalization on other Dataset: To show the generaliza-
tion capability of our model in new environments, we adopt
new maps from two datasets, the Motion Planing (MP) dataset
[32] and City/Street Map (ASM) Dataset [33], which have
never seen before to our model. Since the images in ASM
have higher resolution, we randomly crop areas from these
images as input. Besides, all maps are resized to 128 × 128
with a pair of start and end points. Fig. 6 and Fig. 7 show that
our model performs well in new environments by generating
connected areas between the start point and the end point,
which is necessary for the planning of a feasible path.

Fig. 6. The generated guidance maps on the Motion Planing (MP) dataset.

Comparison to classical methods: The effectiveness of
our method is compared with classical methods, such as RRT,
in terms of the path length and number of samples in path



TABLE II
COMPARISON OF DIFFERENT NETWORKS IN MIOU, MDICE, GFLOPS, PARAMS AND INFERENCE TIME.

Network mIoU mDice GFLOPs Params Inference time(in GPU) Inference time(in CPU)
128× 128 256× 256 128× 128 256× 256

Orig-Unet 0.57 0.72 16.15 34.17 M 4.0 ms 8.8 ms 79.4 ms 258.2 ms
Res-Unet 0.61 0.75 17.17 44.67 M 4.1 ms 9.5 ms 73.1 ms 257.9 ms

Nest-UNet 0.67 0.79 34.68 36.63 M 5.4 ms 18.5 ms 118.6 ms 476.7 ms
Fast-FCN 0.56 0.70 65.66 85.31 M 13.1 ms 16.9 ms 80.2 ms 262.0 ms

Ours 0.72 0.82 3.22 4.42 M 4.5 ms 5.7 ms 54.5 ms 192.0 ms

Fig. 7. The generated guidance maps on the City/Street Map (ASM) Dataset.

planning. The path length denotes the distance that the robot
travels from the start point to the end point, and the number
of samples is a measure of efficiency indicating how many
points were sampled from the map until the appropriate path
was discovered.

The searching capabilities of RRT and Guided-RRT are
evaluated on a set of different task instances, as shown in Fig.
9. In particular, both methods have been executed 50 times
with identical step size. The statistical results of finding the
first path and the path search procedure are displayed in Fig.
8 and Fig. 9, respectively. Fig. 8 indicates that utilizing the
designed non-uniform sampling module can encourage path
planning in prospective areas where the path is likely to exist
and thus save computation and storage resources. Fig. 9 shows
the sampling process using RRT and Guided-RRT on six
different types of maps. Clearly, our method is much more
efficient in terms of the environment sampling.

(a) Path length (b) Sampled nodes

Fig. 8. Comparison on path length and sampled nodes

Similar comparisons are also performed for RRT ∗ and
Guided-RRT ∗. The results are listed in Fig. 10. Unlike RRT
and Guided-RRT , it is more concerned with finding the

Ⅰ Ⅱ

Ⅲ Ⅳ

Ⅴ Ⅵ

Fig. 9. Sampling process of Guided-RRT (the left column) and RRT (the
right column) in planning tasks.

(a) Path length (b) Sample nodes

Fig. 10. Comparison on optimal path length and sample nodes

Ⅰ Ⅱ

Ⅲ Ⅳ

Ⅴ Ⅵ

Fig. 11. Sampling process of Guided-RRT ∗ (the left column) and RRT ∗

(the right column) in optimal planning tasks.



optimal path in a finite iterations. Fig. 10 indicates that our
method outperforms RRT ∗ in the sense we can find shorter
paths but with less sampled nodes. Fig. 11 shows the sampling
process using RRT ∗ and Guided-RRT ∗ on a set of different
types of maps. Without sampling the entire map, Guided-
RRT ∗ can converge faster to the optimal path with fewer
sampled nodes. This is more obvious in the complex maps
such as map-III and map-V. In these scenarios, since the robot
needs to traverse a longer space, using the guidance map to
steer the search will significantly improve the planning. In
short, conventional approaches, such as RRT and RRT ∗,
search the entire map, while our method boosts the search by
only focusing on prospective regions where a feasible planning
might exist.

E. Real-world Demonstrations

To further demonstrate the path planning capability of
our approach in real-world settings, the trained model is
deployed on the TurtleBot platform, running Ubuntu system.
The turtlebot is localized using the embedded IMU. The start
and end points are assigned randomly, and the guidance map
is generated through the network. After applying the Guided-
RRT∗ algorithm, the generated trajectory is shown in Fig.12.
More details can be found in the experiment video2.

TurtleBot

Real World Planning Result

Fig. 12. Path planning in a physical environment.

V. CONCLUSION

This work presents a learning-based path planning algo-
rithm for resource-constrained mobile robots, which involves
a lightweight deep neural network and a bias-sampling planner.
To improve the search efficiency, the network learns the
guidance map from the demonstration, so that nodes can
be sampled within prospective areas rather than the entire
space. The use of ShuffleNet-units and deeply separable con-
volutions enables the network to achieve fast inference and
better generation of prospective regions while reducing the
complexity and number of parameters, making it possible to be
deployed on resource-constrained robot platforms. In addition,
we construct a publicly available path-planning dataset with
successful experience to foster the development of learning-
based planning methods. Future research will consider ex-
tending the current approach by integrating temporal logic
specifications to address path planning for more challenging
tasks beyond point-to-point navigation.

2Experiment video is available online at: https://youtu.be/pHdR1BHOLcA

REFERENCES

[1] B.K. Patle, Ganesh Babu L, Anish Pandey, et al. A review: On path
planning strategies for navigation of mobile robot. Defence Technology,
15(4):582–606, 2019.

[2] D. González, J. Pérez, V. Milanés, and F. Nashashibi. A review of
motion planning techniques for automated vehicles. IEEE Trans. Intell.
Transp. Syst., 17(4):1135–1145, 2016.

[3] Z. Li, G. Li, X. Wu, Z. Kan, H. Su, and Y. Liu. Asymmetric
cooperation control of dual-arm exoskeletons using human collaborative
manipulation models. IEEE Trans. Cybern., 52(11):12126–12139, 2022.

[4] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. In Proc. IEEE Int. Conf. Robot.
Autom., pages 1398–1404, 1991.

[5] S. LaValle and S. Hutchinson. Optimal motion planning for multiple
robots having independent goals. Proc. IEEE Int. Conf. Robot. Autom.,
14(6):912–925, 1998.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern.,
4(2):100–107, 1968.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. Robot. Autom., 12(4):566–580, 1996.

[8] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning.
Int. J. Robot. Res., 20(5):378–400, 2001.

[9] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for
optimal motion planning. Robot. Sci. Syst. VI, 104(2), 2010.

[10] J. Wang, T. Zhang, N. Ma, et al. A survey of learning-based robot
motion planning. IET Cyber-Syst. Robot., 3(4):302–314, 2021.

[11] M. Everett, Y. F. Chen, and J. P. How. Motion planning among dynamic,
decision-making agents with deep reinforcement learning. In IEEE/RSJ
Int. Conf. Intell. Robot. Syst., pages 3052–3059. IEEE, 2018.

[12] A. Sathyamoorthy, J. Liang, U. Patel, T. Guan, et al. Densecavoid: Real-
time navigation in dense crowds using anticipatory behaviors. In Proc.
IEEE Int. Conf. Robot. Automat., pages 11345–11352, 2020.

[13] M. Cai, H. Peng, and Z. Li Z. Kan. Learning-based probabilistic ltl
motion planning with environment and motion uncertainties. IEEE
Trans. Autom. Control, 66(5):2386–2392, 2021.

[14] M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan. Modular deep
reinforcement learning for continuous motion planning with temporal
logic. IEEE Robot. Autom. Lett., 6(4):7973–7980, 2021.

[15] S. Wang, R. Yang, B. Li, and Z. Kan. Structural parameter space
exploration for reinforcement learning via a matrix variate distribution.
IEEE Trans. Emerg. Topics Comput. Intell., 2022.

[16] M. J. Bency, A. H. Qureshi, and M. C. Yip. Neural path planning: Fixed
time, near-optimal path generation via oracle imitation. In IEEE/RSJ Int.
Conf. Intell. Robot. Syst., pages 3965–3972. IEEE, 2019.

[17] R. Yonetani et al. Path planning using neural A* search. In Proc. Int.
Conf. Mach. Learn., volume 139, pages 12029–12039. PMLR, 2021.

[18] B. Ichter, J. Harrison, and M. Pavone. Learning sampling distributions
for robot motion planning. In Proc. IEEE Int. Conf. Robot. Automat.,
pages 7087–7094. IEEE, 2018.

[19] N. Ma, J J. Wang, Liu, and M. Q. H. Meng. Conditional generative
adversarial networks for optimal path planning. IEEE Trans. Cogn.
Dev. Syst., 14(2):662–671, 2021.

[20] J. Wang, J. Liu, et al. Robot path planning via neural-network-driven
prediction. IEEE Trans. Artif. Intell., 3(3):451–460, 2021.

[21] H. Ma, C. Li, J. Liu, et al. Enhance connectivity of promising regions
for sampling-based path planning. IEEE Trans. Autom. Sci. Eng., 2022.

[22] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation
with conditional adversarial networks. In Proc. IEEE Conf. Comp. Vis.
Pattern Recognit., pages 1125–1134, 2017.

[23] F. Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In Proc. IEEE Conf. Comp. Vis. Pattern Recognit., pages 1251–
1258, 2017.

[24] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. In Proc. Int. Conf. Med. Image
Comput. Comput. Assist. Intervent, pages 234–241. Springer, 2015.

[25] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation. In Proc. Europ. Conf. Comp. Vis., pages 801–818, 2018.

[26] S. Woo, J. Park, J. Lee, and I. S. Kweon. Cbam: Convolutional block
attention module. In Proc. Europ. Conf. Comp. Vis., pages 3–19, 2018.

https://youtu.be/pHdR1BHOLcA


[27] X. Li, X. Sun, Y. Meng, J. Liang, et al. Dice loss for data-imbalanced
nlp tasks. In Proc. Annual Meeting of the ACL, pages 465–476, 2022.

[28] J. Feng, J. Deng, Z. Li, Z. Sun, H. Dou, and K. Jia. End-to-end res-unet
based reconstruction algorithm for photoacoustic imaging. Biomed. Opt.
Express, 11(9):5321–5340, 2020.

[29] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang. Unet++:
Redesigning skip connections to exploit multiscale features in image
segmentation. IEEE Trans. Med. Imaging, 39(6):1856–1867, 2019.

[30] H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Y. Fastfcn. Rethinking
dilated convolution in the backbone for semantic segmentation. arXiv
preprint arXiv:1903.11816, 2019.

[31] H. Li, Z. Wang, X. Yue, et al. An architecture-level analysis on deep
learning models for low-impact computations. Artificial Intelligence
Review, pages 1–40, 2022.

[32] S. Choudhury, M. Bhardwaj, S. Arora, and othrs. Data-driven planning
via imitation learning. Int. J. Robot. Res., 37(13-14):1632–1672, 2018.

[33] N. Sturtevant. Benchmarks for grid-based pathfinding. IEEE Trans.
Comput. Intell. AI Games, 4(2):144–148, 2012.


	Introduction
	Problem Formulation
	Approach
	Generator Network
	Discriminator Network
	Training objective
	Hybrid Sampler

	Results
	Datasets Construction
	Evaluation Metrics
	Implementation Details
	Evaluation Results
	Real-world Demonstrations

	Conclusion
	References

