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Abstract— While federated learning (FL) improves the gen-
eralization of end-to-end autonomous driving by model aggre-
gation, the conventional single-hop FL (SFL) suffers from slow
convergence rate due to long-range communications among
vehicles and cloud server. Hierarchical federated learning
(HFL) overcomes such drawbacks via introduction of mid-point
edge servers. However, the orchestration between constrained
communication resources and HFL performance becomes an
urgent problem. This paper proposes an optimization-based
Communication Resource Constrained Hierarchical Federated
Learning (CRCHFL) framework to minimize the generalization
error of the autonomous driving model using hybrid data and
model aggregation. The effectiveness of the proposed CRCHFL
is evaluated in the Car Learning to Act (CARLA) simulation
platform. Results show that the proposed CRCHFL both accel-
erates the convergence rate and enhances the generalization of
federated learning autonomous driving model. Moreover, under
the same communication resource budget, it outperforms the
HFL by 10.33% and the SFL by 12.44%.

I. INTRODUCTION
Vision-based autonomous driving vehicles, such as Tesla,

are increasingly prevalent in our life, but the generalization
needs to be continuously enhanced because the embedded
autonomous driving model cannot generalize to all scenarios.
Federated learning (FL) is an emerging paradigm to over-
come the domain shifting issue to enhance generalization [1]
in end-to-end autonomous driving (FLEAD). Despite the fact
that many efforts have been invested in developing FLEAD
techniques [2]–[10], a number of technical challenges still
need to be properly handled: I) Limited communication
resources. Current FLEAD designs aim to maximize the
driving performance without any communication constraints,
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thus ignoring the interdependency between driving perfor-
mance and practical communication conditions. II) Tradeoff
between learning performance and communication cost.
How can we effectively allocate the network resources to
different vehicles, edge servers and cloud server to maximize
the FL model performance while satisfying the stringent
communication constraints?

To tackle these challenges, currently there are three
methods mainly to compress model parameters or gra-
dient size: quantization-based, sparsification-based, and
distillation-based strategies [11]. Specifically, quantization-
based methods [12] try to quantize continuous model pa-
rameters or gradient into a discrete set to reduce the bits.
For sparsification, it converts parameters or gradient to a
sparse one or zero according to importance of corresponding
elements. Top-k and rand-k sparsification are two widely uti-
lized approaches [13]. Distillation [14] is proposed to transfer
a large model (teacher) to a small model (student) without
obvious performance loss. In summary, these mainstream
methods to mitigate the FL communication overheads is by
reducing the model parameters or gradient size, leading to
some performance loss [15] compared to the case without
any compression.

In this paper, we propose to maximize the hierarchical
federated learning (HFL) model performance under con-
strained communication resources from a completely differ-
ent perspective: optimization-based communication resource
scheduling under limited budgets. To the best of our knowl-
edge, this is the first work to integrate constrained throughput
scheduling and HFL in FLEAD. To begin with, we pro-
pose an optimization algorithm to distinguish the priorities
of different HFL stages and perform resource scheduling
with consideration of both data and model transfer. This
algorithm supports both sample size and FL round plan-
ning. In addition, based on this optimization algorithm, we
elaborate communication resources constrained HFL frame-
work (CRCHFL) to enhance convergence and generalization
by leveraging both data and model parameter aggregation.
Specifically, it consists of: I). cloud pretraining stage to
collect data from vehicles to cloud server for centralized
pretraining and then to release pretrained model to all edge
servers and vehicles to accelerate FL convergence; II). edge
federated learning stage to aggregate model parameters of
all associated vehicles; and III). cloud federated learning
stage to aggregate model parameters of all edge servers. In
particular, our main contributions are:
(1) We propose CRCHFL framework to maximize the
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model performance under constrained communication
resources.

(2) Evaluation and analysis of our proposed approach on
simulation dataset.

(3) Implementing the proposed CRCHFL scheme located at
(https://github.com/WeibinKOU/CRCHFL.git) based on
the high-fidelity CARLA [16] simulator.

II. RELATED WORK

Current autonomous driving (AD) systems can be divided
into two categories: modular-based [17], [18] and learning-
based [4]–[9], [19]–[23]. Modular-based methods result in er-
ror propagation and inaccuracies in both problem modelling
and solving stages. End-to-end learning-based approaches
can address this error propagation issue. These methods
generally map the onboard sensor data, such as LiDAR point
clouds and camera images, into driving actions, such as
throttle, brake and steer directly. However, such learning-
based methods would have generalization issue intrinsically
and work only in limited scenarios.

FL is an emerging paradigm to improve the generalization
of end-to-end learning-based methods via model parameter
aggregation or data collaboration [9]. In the context of EAD,
FL leverages vehicular networks to integrate knowledge from
different vehicles located in various scenarios. As such, when
an EAD system enters a new scenario, it can convey the
knowledge of new samples or corner cases to other vehicles
and remote servers while preserving data privacy [4]–[9],
[22]. For example, in [22], a cloud federated robotic system
is proposed to enhance the behaviour cloning method, gen-
erating accurate control commands based on RGB images,
depth images and semantic segmentation images.

Nonetheless, such single-hop federated learning (SFL)
converges slow owing to its long communication latency
[24]. HFL can accelerate the training procedure since edge
servers are closer to vehicles and more communication-
efficient than cloud server. On the other hand, for HFL,
there exists frequent communication flows among different
nodes, such as vehicles, edge servers, and cloud server.
Such communications among nodes in [4], [6]–[9], [22] are
assumed to be perfect, which does not hold for practical EAD
systems with limited resources. The mainstream approaches
address the constrained communication resource problem of
HFL in practical situations by compressing the model param-
eter or gradient size. There are now three main approaches:
quantization-based method (e.g., [25]), sparsification-based
method (e.g., [26]), and distillation-based method (e.g., [27]).
It is worth noting that most of these methods come at the
expense of a certain amount of performance. Therefore,
it becomes imperative to develop associated methods to
allocate the limited network resources for HFL to minimize
the generalization error of deep neural networks (DNNs)
without any performance loss. This inspires us to design
a CRCHFL framework, which fuses both data and model
parameters and optimizes limited communication resources,
to maximize the FLEAD convergence and generalization
performance.

Fig. 1: Illustration of a cloud-edge-vehicle system. Red
bars represent wireless flows. Blue bars represent wireline
flows. The size of each bar represents the communication
throughput of its associated link.

III. SYSTEM FRAMEWORK

We consider a cloud-edge-vehicle system shown in Fig. 1.
The proposed CRCHFL framework is shown in Fig. 2, which
consists of an end-to-end imitation learning pipeline (i.e., top
of Fig. 2), a three-stage training procedure (i.e., middle of
Fig. 2) and an optimization-based communication resource
scheduler (i.e., bottom of Fig. 2). Specifically, for the k-th
vehicle (1 ≤ k ≤ Kn) in the n-th town (1 ≤ n ≤ N), denoted
vehicle (n,k), its DNN model fn,k(·|mn,k) with parameter
vector mn,k is an inference mapping from a frame of sensor
data (e.g., images) sn,k to a driving actions (i.e., throttle,
steer and brake) an,k, i.e., an,k = fn,k(sn,k|mn,k). To optimize
model parameters mn,k, we need to define loss function
L

(
mn,k,sn,k,an,k

)
, and the ego-vehicle training is given by

min
mn,k

Ln,k =
1
|Tn,k| ∑(

s(i)n,k,a
(i)
n,k

)
∈Tn,k

L
(

mn,k,s
(i)
n,k,a

(i)
n,k

)
(1)

where Tn,k is the training dataset at vehicle (n,k).
Since the generalization of fn,k increases with the size

of dataset Tn,k, it is necessary to exploit Tn,k for all (n,k).
However, directly aggregating all datasets would lead to high
communication costs and data privacy issues. To this end,
a three-stage training procedure is proposed, which can be
divided into cloud pretraining (i.e., stage I), edge FL (i.e.,
stage II), and cloud FL (i.e., stage III).

In Stage I, vehicles upload data samples to the cloud
server. The cloud server uses collected data to train an initial
model, which is then released to all the vehicles and edge
servers for subsequent FL. The stage I training is given by

min
mcloud,P

N

∑
n=1

Kn

∑
k=1

1
|T I

n,k|
∑

(s(i)n,k,a
(i)
n,k)∈T

I
n,k

L
(

mcloud,P,s
(i)
n,k,a

(i)
n,k

)
(2)

where T I
n,k is the uploaded dataset from vehicle (n,k) to the

cloud server. The number of samples ∑ |T I
n,k| is denoted as

pretrain_batch, which depends on the associated communi-
cation resources allocated to Stage I.

In Stage II, each edge server collects models from as-
sociated vehicles and aggregates them according to FedAvg
[28], and then delivers the aggregated model to all associated
vehicles. The stage II training is given by

Vehicle :min
mn,k

Ln,k, ∀k,n, (3)

https://github.com/WeibinKOU/CRCHFL
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Fig. 2: The structure of the proposed CRCHFL. The first layer (top layer) is overview of imitation learning pipeline, including
input sensor data, imitation learning DNN model and predicted output driving actions. Second layer showcases the CRCHFL-
involved nodes, i.e., autonomous vehicles, edge servers and cloud server. The third layer is about the communication of
CRCHFL, including data and model upload (UL) and download (DL). The fourth layer (bottom layer) focuses on optimization
algorithm to schedule communication resources.

Edge : min
mn,1=···=mn,Kn

Ledge,n =
Kn

∑
k=1

|Tn,k|
∑

Kn
k=1 |Tn,k|

Ln,k (4)

Equations (3) and (4) are executed iteratively and each
vehicle local training iterations between two adjacent edge
aggregations is denoted as edge_interval, which determines
the associated communication resources allocated to Stage
II.

In Stage III, cloud server collects models from edge
servers to aggregate together also using FedAvg for produc-
ing global model. Then the global model is released to all
edge servers and vehicles. The stage III training is given by

min
medge,1=···=medge,N

Lcloud =
N

∑
n=1

∑
Kn
k=1 |Tn,k|

∑
N
n=1 ∑

Kn
k=1 |Tn,k|

Ledge,n (5)

The Stages III and II are executed iteratively and the edge
aggregation times of each edge server between two adjacent
cloud aggregations is denoted as cloud_rounds, which deter-
mines the associated communication resources allocated to
Stage III.

Our proposed CRCHFL framework aims to mini-
mize the generalization error by setting four hyper-
parameters: edge_interval, cloud_interval, pretrain_batch
and cloud_rounds which determines the limited communi-
cation resource distribution, are needed to optimize by an
optimization algorithm. The entire procedure of CRCHFL is
summairzed in Algorithm 1. The next section will present
details of the resource optimization algorithm.

IV. RESOURCE OPTIMIZATION FOR CRCHFL
This section presents how to model the resource optimiza-

tion algorithm for the proposed CRCHFL. This algorithm is
designed to schedule communication resources to transfer
model parameters medge,n, mcloud , and mn,k in stage II
and III, as well as pretraining data in stage I by opti-
mizing edge_interval, cloud_interval, pretrain_batch and
cloud_rounds.

Let the vector u= [u1,u2]
T represents the communication

throughput allocation for data transfer and model transfer.
Vector u satisfies u1 + u2 ≤ Usum, where Usum (Unit: GB)
is the total throughput budget. The number of samples and
federated learning rounds are determined by their associated
communication resources and there exists a tradeoff among
stages. For data transfer, data samples should be uploaded
from all vehicles to the cloud server. The number of samples
x is constrained by communication throughput as x ≤ u1

D ,
where D (Unit: MB) is the size of each sample. For model
transfer, the number of cloud aggregation t is constrained
by t ≤ u2

2EM , where E (Unit: MB) is the size of DNN
model, M is the number of model transfer among nodes
(including vehicles, edge servers and cloud server) between
two adjacent cloud aggregations, number 2 means that uplink
and downlink are both considered. The total number of
effective samples y in stages II and III is proportional to
M.

The generalization loss of DNNs is proved to be a
monotonically decreasing function of the number of effective
samples [29]. Effective samples refer to non-repeated data
that is in-the-distribution of the target application domain.
Therefore, the key is to compute the number of effective
samples S in CRCHFL framework. Ideally, S is the summa-
tion of the number of samples in all stages, i.e., S = x+ y.
However, due to the practical limitations of pretraining and
federated learning, the following discounting factors should
be added:

1) Pretraining in stage I is at the cloud, but inference is at
the vehicles. Therefore, a discounting factor α ∈ [0,1]
should be applied to x owing to domain shifting. Here
x actually corresponds to pretrain_batch.

2) Federated learning is iterative procedure and its conver-
gence rate is O( 1

t ) [30]. We need to apply discounting
factor (1− dt−1) to y for finite iterations, where d is
parameter representing the convergence rate of federated



Algorithm 1: CRCHFL

Input: sn,k, an,k, T I
n,k, where n = 1,2, · · · ,N, and k =

1,2, · · · ,Kn
Output: cloud model parameters mcloud

1 run CVXPY to output edge_interval, cloud_interval,
cloud_rounds and pretrain_batch

2 initialize cloud model randomly mcloud = mrand
3 collect pretraining data {T I

n,k}
4 model centralized pretraining to get mcloud,P
5 model release: m1,1 = · · ·= mN,KN = medge,1 = · · ·=

medge,N = mcloud,P
6 for round i = 1, · · · ,cloud_rounds do
7 for Edge Server n = 1, · · · ,N in parallel do
8 for edge_agg τ2 = 1, · · · ,cloud_interval do
9 for Vehicle k = 1, · · · ,Kn in parallel do

10 for epoch τ1 = 1, · · · ,edge_interval do
11 model updates: mn,k←{sn,k,an,k}
12 if τ1 == edge_interval then
13 mn,k⇒ Edge Server n

end
end

end
14 if τ2 == cloud_interval then
15 medge,n = ∑

Kn
k=1

|Tn,k|
∑

Kn
k=1 |Tn,k|

mn,k

16 medge,n⇒Cloud Server
end

17 else
18 medge,n = ∑

Kn
k=1

|Tn,k|
∑

Kn
k=1 |Tn,k|

mn,k

19 medge,n⇒ All associated Vehicles
end

end
end

20 mcloud = ∑
N
n=1

∑
Kn
k=1 |Tn,k|

∑
N
n=1 ∑

Kn
k=1 |Tn,k|

medge,n

21 mcloud ⇒ All Edge Servers ⇒ All Vehicles
end

learning. For CRCHFL, t is decomposed into three fac-
tors Ie, Ic and T . Here Ie corresponds to edge_interval,
Ic corresponds to cloud_interval and T corresponds to
cloud_rounds.

3) Even if the federated learning converges, there exists
a gap between its performance and that of centralized
learning due to the distributed datasets. Therefore, dis-
counting factors γ ∈ [0,1] is applied to y.

Combining the above observations, the joint resource allo-
cation is formulated as

P : max
{x, Ie, Ic, T}

αx+ γ(1−d(IeIcT )−1)y

s.t. x≤ u1

D
, 0 < T ≤ u2

2EM
,0 < Ic < Ie,

x≥ 0, y≥ 0, u1 ≥ 0,u2 > 0,
u1 +u2 =Usum. (6)

Since S is a concave function of (x, IeIcT ) and the constraints
are linear, P can be solved by tree search over (Ie, Ic)

and off-the-shelf numerical solvers CVXPY [31]. We should
note that the outputs of optimization algorithm x, Ie, Ic,T are
utilized to set pretrain_batch, edge_interval, cloud_interval
and cloud_rounds, respectively.

V. EXPERIMENTAL RESULTS

This section is divided into four parts: A. General setup.
In this part, a detailed setup of experiments is introduced,
including data sampling, adopted imitation learning (IL)
model structure and so forth. B. Performance comparison
of CRCHFL, HFL and SFL. In this part, we will verify
whether the highly elaborated CRCHFL framework can stand
out compared to HFL and SFL. C. Simulation comparison
of CRCHFL, HFL and SFL. In this part, we will simulate
CRCHFL, HFL and SFL on CARLA platform to further
verify the effectiveness and robustness of our proposed
CRCHFL. D. Ablation study of CRCHFL. In this part,
we will compare the performance of different settings of
CRCHFL, and also analyze the results.

A. General Setup

We adopt Town01 and Town02 maps in CARLA to
generate training and testing dataset for verification of our
proposed CRCHFL scheme. Datasets, both including raw im-
ages and actions, are recorded simultaneously when the vehi-
cles driven by CARLA auto-pilot mode are moving forward.
To be specific, 2 vehicles are spawned in different zones of
Town01 to record 5856 training samples (i.e., each vehicle
contains 2928 training samples) and 3 vehicles spawned
in Town02 record 2586, 2587, and 1555 data samples,
respectively. The testing dataset contains 2081 samples in
total, with 1061 from Town01 and 1020 from Town02. Each
sample consists of a 3D action vector (throttle, steer, brake)
produced by expert drivers treated as ground truth and 4 im-
ages captured by cameras CamH, CamF, CamR and CamL.
The relative position of these cameras w.r.t. ego-vehicle
is represented by a 6D tuple (X, Y, Z, Pitch, Yaw, Roll)
(X/Y/Z Unit: m, Pitch/Yaw/Roll Unit: degree). Four cam-
eras are given by (1.5,0,1.5,0,0,0), (2.5,0,1.5,−50,0,0),
(1.0,1.2,0.5,−50,90,0), and (1.0,−1.2,0.5,−50,−90,0),
respectively. We place one edge server at the center of
each town, which is denoted as Edge01 for Town01 and
Edge02 for Town02. Two edge servers are connected to cloud
server that acts as a global fusion center. Vehicles inside the
same town are directly connected with each other via the
associated edge server, while vehicles in different towns have
no direct link, i.e., their model sharing is based on multi-hop
communications via the edge servers and cloud server.

The EAD PyTorch framework by NVIDIA [32] is adopted
as a reference to propose our imitation learning model. Our
implementation slightly differs from that in [32]: we adopt
two branches of individual neural network for predicting
steer and throttle/brake, respectively. Each branch calcu-
lates its loss, gradient, and back-propagation using Adam
optimizer separately. This is because that the steer task is
more complex than the throttle/brake task. Note that only
image from CamH is fed to Branch I for throttle/brake task,



Fig. 3: Illustration of entire training and inference process of autonomous driving vehicle. Digitizer is used to quantize the
steer action into 7-level digital signal, while DAC is utilized to convert the predicted digitized steer to an analogical steer
to drive the ego-vehicle. The proposed Model contains two mutually independent branches where Branch I is responsible
for brake and throttle signal and Branch II is used to predict the steer signal.

while images from CamF, CamL, and CamR are combined
together to build a 9-channel image into Branch II for steer
task. The entire training and inference process of autonomous
driving vehicle is demonstrated as in Fig. 3. The system
hardware/software configurations and training configurations
are listed as Table. I and Table. II, respectively.

TABLE I: Hardware/Software Configurations
Items Configurations
CPU AMD Ryzen 9 3900X 12-Core
GPU NVIDIA GeForce 3090 × 2
RAM DDR4 32G

DL Framework PyTorch @ 1.13.0+cu116
GPU Driver 470.161.03

CUDA 11.4
cuDNN 8302

TABLE II: Training Configurations
Items Configurations

Loss nn.MSE (Branch I)
nn.CrossEntropyLoss (Branch II)

Optimizer Adam
Adam Betas (0.9, 0.999)

Weight Decay 3e-3
Batch Size 32

Learning Rate 1e-4
cloud_interval 1

In addition, we adopt two metrics for further quantitative
evaluation of CRCHFL hereafter. The first metric is the loss
summation of Branch I and Branch II and is called Loss,
and the second metric is the accuracy of Branch II and is
termed Accuracy.

B. Performance Comparison of CRCHFL, HFL and SFL

In this part, we will compare CRCHFL with other two
benchmarks under fixed communication throughput budget
(i.e., 20G) : 1) HFL [33], which does not collect data
samples for pretraining and has no optimization to schedule
constrained communication resources; 2) SFL [8], which
only shares the model parameters; 3) CRCHFL, which is
our proposed scheme. For each case, training is stopped when
remaining communication throughput is not enough to trans-

fer model parameters once, and then the best performance
model from the saved results is then used for testing.

First, Let’s compare the performance of CRCHFL, HFL
and SFL. With the fixed communication throughput budget
(i.e., 20G) and the aforementioned general setup, SFL can
perform 13 rounds of cloud aggregation, while HFL can
only perform 9 rounds of cloud aggregation because of part
of throughput being consumed by communication between
edge servers and cloud server. In contrast, although the
designed CRCHFL consumes part of the communication
throughput when transmitting data samples at the pretraining
stage, it can also perform 9 rounds of cloud aggregation due
to the proposed optimization algorithm that can schedule
communication resources between edge aggregation and
cloud aggregation. The inference performance can be found
in Fig. 4(a) and Fig. 4(b). It is easy to find that our
proposed CRCHFL achieves the best performance in terms
of Accuracy and Loss. Specifically, from Fig. 4(a), we can
find that the Accuracy of CRCHFL is 10.33% higher than
that of HFL and 12.41% higher than that of SFL, and from
Fig. 4(b), we can also find that the Loss of CRCHFL is the
smallest among them. In addition, due to the introduction
of the pretraining stage, it is easy to find that our proposed
CRCHFL converges faster than HFL and SFL, so it can be
inferred that the designed pretraining stage is necessary and
effective.

On the other hand, although the above comparison has
illustrated the advantages of our proposed CRCHFL frame-
work, we will further compare these three methods from
another perspective where performance is compared when
same throughput is consumed by training. Specifically, We
further investigate SFL, HFL and CRCHFL by comparing
their performance as the consumed throughput increases
during one training process. It can be seen from Fig. 5(a) and
Fig. 5(b) that: 1. the performance of all three cases improves
as consumed communication throughput increases, which is
in line with the actual situation; 2. our proposed scheme not



(a) Accuracy (b) Loss
Fig. 4: (a) Comparison of evaluation Accuracy of SFL, HFL and CRCHFL w.r.t FL rounds. (b) Comparison of evaluation
Loss of SFL, HFL and CRCHFL w.r.t FL rounds. These experiments are all conducted under 20GB throughput budget.

(a) Accuracy (b) Loss
Fig. 5: (a) Comparison of evaluation Accuracy of SFL, HFL and CRCHFL w.r.t consumed throughput in one training
process. (b) Comparison of evaluation Loss of SFL, HFL and CRCHFL w.r.t consumed throughput in one training process.
These experiments are all conducted under 20GB throughput budget.

only has better Accuracy and Loss than the other two cases
when consuming the same amount of throughput, but also
has a more stable evolution trend. This further validates the
effectiveness and robustness of our proposed scheme from
another perspective.

In summary, just as Fig. 4 and Fig. 5, we evaluate SFL,
HFL and CRCHFL from two perspectives. Both results
suggest that our elaborated CRCHFL framework has better
generalization and faster convergence rate.

C. Simulation Comparison of CRCHFL, HFL and SFL

In this part, we simulate the outputs of CRCHFL, HFL
and SFL on CARLA platform as well, and the simulation
results are shown as Fig. 6. As it can be seen from Fig. 6(a)
and Fig. 6(d), the CRCHFL-controlled ego-vehicle can pass
the T-junction smoothly, and when there is a deviation of
the trajectory, the actions can be adjusted in time to return
to the correct path. However, as it can be seen from Fig. 6(b)
HFL-controlled vehicle can though react properly when the
trajectory deviates but collide when pass the T-junction,
and from Fig. 6(e) HFL-controlled vehicle collides the pole
beside the road owing to overreaction of deviation. From
Fig. 6(c) and Fig. 6(f) SFL-controlled vehicle collides or
crosses the border while passing through the T-junction. In
summary, we can conclude that CRCHFL outperforms HFL
and SFL at some scenarios in both Town01 and Town02.

In addition, examples of predicted actions by CRCHFL
in inference stage can be checked in Fig. 7. It can be seen

from Fig. 7(a) and Fig. 7(b) that the ego-vehicle stops in
front of a red traffic light and accelerates immediately after
the light turns green. This is because that CRCHFL directly
maps the raw data into action vector (0.028,0.000,0.896) in
Fig. 7(a) and (0.346,0.000,0.000) in Fig. 7(b), thus realizing
the above rule of understanding, and stopping or moving
actions. In Fig. 7(c), the vehicle successfully turns left at the
T-junction by properly combining throttle and steer actions
as (0.393,−0.275,0.000).

As can be seen from Fig. 6 and Fig. 7, both the macro-
scopic comparison of the trajectories of SFL, HFL and
CRCHFL and the microscopic insight of predicted actions
are illustrations of the good performance of our proposed
scheme. On top of V-B, it further proves the feasibility and
effectiveness of our proposed method.

D. Ablation Study of CRCHFL

In experiment V-B and V-C, we have verified that the
proposed CRCHFL is feasible and effective compared with
SFL and HFL in terms of performance and simulation. In
this part, we will do some ablation experiments in different
CRCHFL settings. To investigate how the communication
resource distribution changes across stages, we can change
the conditions of the optimization algorithm to lead to differ-
ent optimization results. By comparing these outcomes, we
can then derive the variation pattern of the communication
resource distribution. To be specific, in our experiments, by
fixing edge_interval to 2,3 and 4 respectively, the commu-



(a) CRCHFL @ Town01 (b) HFL @ Town01 (c) SFL @ Town01

(d) CRCHFL @ Town02 (e) HFL @ Town02 (f) SFL @ Town02

Fig. 6: Simulation Comparison between CRCHFL (a,d), HFL (b,e) and SFL (c,f) on CARLA platform. The boxes in above
figures depict the trajectory of ego-vehicle.

(a) Brake (b) Throttle (c) Throttle and Steer

Fig. 7: (a) Brake action predicted by CRCHFL when the traffic light turns red; (b) Throttle action predicted by CRCHFL
when the traffic light turns green; (c) Throttle-and-steer action predicted by CRCHFL when the vehicle passes through a
T-junction. The boxes in the figure (b) illustrate the Field of View (FoV) of four cameras.

(a) Resources Distribution (b) Loss (c) Accuracy

Fig. 8: (a) Illustration of fixed communication throughput budget (i.e., 20G) distribution across stages for different CRCHFL
settings. (b) Test loss under different CRCHFL settings. (c) Test accuracy under different CRCHFL settings.

nication resources allocated to each stage change and the
distribution is shown in Fig. 8(a).

From Fig. 8(a), we can find that the communication re-
source distribution reveals the pattern of change. Specifically,
as edge_interval increases, communication resources are
allocated more to Stage III whereas less to Stage I and II,
which means that more communication resources are used
for cloud aggregation and less communication resources are
used for pretraining samples transfer and edge aggregation.

In order to explore what happened to the performance of
CRCHFL when communication resource distribution varies,
we can check the Loss and Accuracy of such CRCHFL
settings in Fig. 8(b) and Fig. 8(c). It is obvious that Interval-
4 has the highest Accuracy and the lowest Loss because
it has the largest FL rounds. This means that when more

communication resources are used for cloud aggregation, it
helps to improve the performance of the model, which is
also in line with our expectation. It is also found that the
Accuracy and Loss of the three cases do not differ too
much in the first round of federated learning, especially for
Accuracy, which also indicates that only a small number
of samples are needed to upload in the pretraining stage to
accelerate convergence rate.

In conclusion, through the above experiments and simula-
tions, our proposed framework performs significantly better
than HFL and SFL with limited communication resources,
mainly because: 1. a small number of data samples are
uploaded from each vehicle to the cloud server in the pre-
training stage to form a centralized dataset which is used
to pre-train the model and accelerate its convergence rate; 2.



by using optimization-based method to set edge_interval and
cloud_interval, communication resources can be scheduled
for more rounds of cloud aggregation, which in turn improves
the model performance overall.

VI. CONCLUSION

This paper has proposed a communication resources con-
strained hierarchical federated learning framework, which
aims at finding a trade-off between learning performance and
communication resources. Experimental results of our pro-
posed framework demonstrated that our proposed CRCHFL
algorithm outperforms existing benchmarks especially when
the network budget is tight. However, our framework and
experiments still have limitations, such as no consideration
of communication channel fading, small number of towns
and vehicles, etc. Future directions include multi-modal
CRCHFL and ROS implementation of CRCHFL.
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