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Abstract— Gestures form an important medium of commu-
nication between humans and machines. An overwhelming
majority of existing gesture recognition methods are tailored to
a scenario where humans and machines are located very close
to each other. This short-distance assumption does not hold
true for several types of interactions, for example gesture-based
interactions with a floor cleaning robot or with a drone. Meth-
ods made for short-distance recognition are unable to perform
well on long-distance recognition due to gestures occupying
only a small portion of the input data. Their performance is
especially worse in resource constrained settings where they
are not able to effectively focus their limited compute on the
gesturing subject. We propose a novel, accurate and efficient
method for the recognition of gestures from longer distances. It
uses a dynamic neural network to select features from gesture-
containing spatial regions of the input sensor data for further
processing. This helps the network focus on features important
for gesture recognition while discarding background features
early on, thus making it more compute efficient compared
to other techniques. We demonstrate the performance of our
method on the LD-ConGR long-distance dataset where it
outperforms previous state-of-the-art methods on recognition
accuracy and compute efficiency.

I. INTRODUCTION

Gestures are an efficient non-verbal method for directing
traffic from a distance, interacting in public places and
communicating with the deaf. Gestures are an important part
of human-machine interaction (HMI) where they provide a
natural and friendly way to interact with robots and machines
[1]–[3] at homes, offices, airports, hospitals and in automo-
biles. Recent advances in AR/VR and fitness technologies
have increased the use of wearable devices (headsets, smart
watches, health trackers) where hand, face and eye gestures
[4]–[6] are a contact-less way to collect user input and intent.

Gesture recognition can be broadly categorized [7] into
short-distance and long-distance based on the distance
between the sensors and the gesturing subject. Short-
distance applications, such as car infotainment systems and
desktops/laptops, have the subject within a 1m distance
from the sensors. Long-distance applications include service
robots (floor cleaning, warehouse, lawn mowing), confer-
ence/meeting rooms, home automation and IoT devices (ad-
just lights, TV controls), AR/VR and video games, where
the subject is typically far away (1-4m) from the sensors. In
some of these applications, such as the mobile floor cleaning
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Fig. 1. Example applications of our proposed method for long-distance
gesture recognition.

robot, short-distance recognition is not an option due to a
very low camera position which forces the subject to stand
farther away to be in its field-of-view (FOV). Fig 1 illustrates
some of these long-distance applications.

Self-occlusions, finger similarity and uncertainty of ges-
ture duration are some of the common challenges faced by
gesture recognition methods. Deployment of such methods
in resource and compute constrained robots and devices
requires us to consider the computational complexity and
efficiency, in addition to accuracy, of the method. Long-
distance scenarios pose an additional challenge of a large
FOV in which the hands appear small, making it harder
to recognize the gesture. Longer distances lead to reduction
in signal strength and increased blur for the gesture, which
further deteriorate performance.

We address these challenges by proposing a new method
that uses modern convolutional neural networks (CNNs) for
recognizing hand gestures from visual data (RGB video). We
leverage the efficiency and structural adaptability of dynamic
neural networks [8], [9] for long-distance applications.

The main contributions of this paper are:
• A novel dynamic neural network based gesture recog-

nition method for long-distance applications.
• Extensive experiments and evaluation on a long-distance

dataset. We show that our method is 3.5% more accurate
and 28.5% more compute-efficient compared to the
previous best method (Table I).

The rest of the paper is organized as follows: We review
previous work in gesture recognition and dynamic neural
networks in Section II. Section III describes the details of
our method and Section IV presents a thorough evaluation
and analysis of our method compared to previous state-of-
the-art techniques. Finally, we summarize and conclude in
Section V.
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II. RELATED WORK

A. Gesture Recognition

Gesture recognition methods are typically based on input
from motion, visual or range sensors of human bodies, hands
and legs. In this section, we focus on reviewing hand gesture
recognition methods using visual and range data streams.

Hand gestures are broadly divided into two types: static
gestures and dynamic gestures. Static gestures are gestures
which involve only a specific hand pose, and can be rec-
ognized using only spatial sensor data. Dynamic gestures
involve specific movements of the hand, and can be recog-
nized only by considering both spatial and temporal data.
Most popular datasets for hand gesture recognition [6], [7],
[10], [11] consist of both static and dynamic gestures.

The state-of-the-art techniques for gesture recognition use
deep convolutional neural networks (CNNs) that take a
stream of visual and/or range data as input, and finally predict
a gesture type. They are broadly divided into networks which
estimate hand poses before predicting the gesture type, and
networks which directly classify the input signal into a
gesture type. Techniques which estimate a 2D hand pose
use 2D CNNs, either to regress the exact co-ordinates of
hand keypoints [12], [13], or to generate a rough heatmap for
hand keypoint locations [14], [15]. These techniques are less
suited to long-distance applications where estimating exact
hand keypoints is difficult.

Techniques which directly classify the input make use of
3D CNN architectures [16]–[18](for example 3D ResNets
[19]) to effectively utilize and fuse both spatial and temporal
features for gesture recognition. Some of these techniques
have additional modules made of custom CNNs to fuse
different modalities [20]. Other methods [21] make use of
recurrent neural networks (LSTMs) to model the temporal
dependencies, while using CNNs to extract spatial features.
Methods based on extracting and utilizing optical flow [22]
have also been used for hand gesture recognition.

Some recognition methods [23] include a separate light-
weight detection module to help decide if the main gesture
classifier is to be used on an input data stream or not. Such a
light-weight detector improves the efficiency of most of the
methods described previously.

Our results suggest that these techniques fail to accurately
recognize gestures when the subject is far away (> 1 meter)
from the capturing system. The gesture occupying only a
small spatial region of the sensor’s field-of-view (FOV) is
one of the main reasons for this reduction in accuracy.

B. Dynamic Neural Networks

Most deep neural networks perform inference using a
static computational graph and static set of parameters, which
remain the same for all inputs. Dynamic neural networks on
the other hand, adapt their computational structure based on
the input. This helps them be more efficient, interpretable and
generalizable than their static counterparts [8], [9]. Broadly,
dynamic neural networks are categorized into spatially dy-
namic and temporally dynamic networks [24].

Temporally dynamic networks [25] are used on sequential
data such as videos, text and audio. They use a recurrent
neural network (RNN) to decide the computation path for
an input sample. Typically in video recognition, the input
stream is preprocessed through a series of convolutional
layers before being fed to an RNN which decides if this
video segment requires further processing or not.

Spatially dynamic neural networks perform dynamic com-
putation by helping the network focus on more meaning-
ful regions of image and video inputs. They are further
subdivided into pixel-wise and region-wise dynamic net-
works, based on their level of spatial adaptability. Pixel-
wise dynamic networks include networks with dynamic
sparse convolution, which has been used for increasing the
efficiency and performance of image classification [26], [27].
Region-wise dynamic networks include either the use of hard
attention with RNN’s [28] to choose patches of the input,
or the use of other methods like class activation maps for
determining most informative regions [29]. Our proposed
network is a type of region-wise spatially dynamic neural
network.

III. METHOD

Our network is a spatially dynamic neural network, which
is patch-wise adaptable. It operates on a continuous stream
of visual data (RGB video), taking as input a set of T
frames at a time and sliding this window of T frames across
the stream. The video input block in Figure 2 depicts our
network working on such a video stream using the sliding
window style of operation.

Specifically, our network operates on a 4 dimensional input
of size T ×C ×H ×W , with T representing the number of
frames, C representing the number of channels (usually 3),
and H, W representing the spatial resolution of the image.
For each such input I, our network produces a gesture label
yI ∈ N , where N is the number of gesture types in the
dataset. Our network consists of 3 main blocks:

1) Preliminary feature extractor
2) Patch selection subnetwork
3) Patch gesture classifier

Figure 2 illustrates the high level structure of our network,
including the connections between these blocks. The input
I first goes to the preliminary feature extractor, which
is connected to the patch selection subnetwork, which is
followed by the patch gesture classifier. We describe the
structure and function of each of these blocks in detail in
the following subsection.

A. Structural Blocks

1) Preliminary Feature Extractor: This block consists
of a shallow network made of 3D convolutional layers
acting on the input I. The preliminary feature extractor
fθ, parameterized by θ, extracts low level spatio-temporal
features fθ(I) from the full input I. These low level spatio-
temporal features are used by the next block to select a patch
of features with maximum gesture information.
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Fig. 2. The proposed dynamic neural network consists of 3 blocks: 1) The preliminary feature extractor, 2) Patch selection subnetwork and, 3) The patch
gesture classifier.
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Fig. 3. The patch selection subnetwork takes the preliminary features as
input, splits them into spatial patches and then selects the patch with the
most useful features to be forwarded to the next block of the network.

The preliminary feature extractor acts on the full spatial
input and is hence designed to be shallow to minimize the
compute required by it.

2) Patch Selection Subnetwork: The patch selection sub-
network, shown in Figure 3, receives low level features fθ(I)
of size T ′ × C ′ × H ′ × W ′ from the preliminary feature
extractor, and divides it into m× n non-overlapping spatial
patches. We denote these patches formed from the full set
of features fθ(I) as {p1,1, . . . , p1,n, p2,1, . . . , p2,n, . . . pm,n},
with each patch having a size T ′ × C ′ × hpatch × wpatch.
The spatial size of the patches (hpatch × wpatch) should be
large enough to allow a single patch to contain sufficient
information to recognize the gesture.

The patch selection subnetwork selects a single patch from
these m×n patches to forward to the next stage for gesture
classification. It uses a small 3D CNN gψ , parameterized by
ψ, as a binary classifier for patch selection. Each patch pi,j
is assigned a confidence score Spi,j defined by,

Spi,j = gψ(pi,j), (1)

where gψ(pi,j) represents the confidence with which the
subnetwork gψ predicts that the patch pi,j contains a gesture-
performing hand. A single feature patch is selected as,

pmax ← argmax
pi,j

Spi,j , (2)

where pmax is the patch associated with the maximum
confidence score Smax. The patch selection greatly reduces
the size of the input features forwarded to the most compute
intensive block - the patch gesture classifier.

3) Patch Gesture Classifier: The patch gesture classifier
hϕ, parameterized by ϕ, consists of 3D convolutional layers
which receive features (computed by the preliminary fea-
ture extractor) from a single patch selected by the patch
selection subnetwork. The selected input patch pmax has
a size T ′ × C ′ × hpatch × wpatch, for which the gesture
classifier outputs a distribution hϕ(pmax) over N possible
gesture classes. The class with the highest probability is
predicted as the recognized gesture. The smaller size of the
patch features as compared to complete input features (by
a factor H′×W ′

hpatch×wpatch
) helps save a significant amount of

compute in this part of the network.
The patch gesture classifier can be chosen to be any

common 3D convolutional backbone such as 3D ResNet,
3D ResNext, 3D MobileNet [19], [30], etc, after appropriate
modification to receive C ′ channels of the patched input.

B. Training

The whole network, including the patch selection subnet-
work and the patch gesture classifier, is trained end-to-end as
a single unit. This allows our loss to be expressed as a sum
of cross entropy terms, which can be effectively optimized.
The loss L is a sum of the cross entropy loss for gesture
recognition, and the cross entropy loss for patch selection. It
is defined as,

L = H(hϕ(pmax), yI) + λ
∑
i,j

H(gψ(pi,j), ypi,j ). (3)

Here, λ is a relative weight hyperparameter, while H(a, b)
depicts the cross entropy between a and b. ypi,j is the label
for patch pi,j indicating if it has a hand gesture or not.

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of our method for long-
distance gesture recognition using the LD-ConGR dataset
[7]. The dataset consists of 542 RGB-D videos at 30 fps
with a video resolution of 1280 × 720. We use only the
RGB channels for our experiments, as inexpensive cameras
are more common in robots and consumer devices. Each
video has a subject seated in a conference room performing
gestures belonging to one or more of 10 gesture categories.



The subject is seated at a long-distance (> 1 meter and < 4
meters) from the capture device. The gesture categories in-
clude both static and dynamic gestures. In addition to frame-
wise gesture type annotations in the videos, the dataset also
provides rough bounding box annotations of the gesturing
hand, which we use to train the patch selection subnetwork.
Performance on the dataset is measured using the Top-1
Accuracy for framewise predictions made by the network.

We use the first 2 layers of the 3D ResNeXt-101 CNN
[19] as the preliminary feature extractor. The patch selection
subnetwork consists of the following sequence of layers with
3×3×3 3D convolutions kernels : conv3d bn relu(str 1) |
avgpool(str 2) | conv3d bn relu(str 1) | linear. Our patch
gesture classifier is the 3D ResNeXt-101 CNN [19] with
C ′ input channels. The patch gesture classifer is initialized
from models trained on the Jester dataset [10]. The low level
features of size T ′=16, C ′=64, H ′=56, W ′=56 received by
the patch selection subnetwork are divided into 6 patches.
Additionally, following previous work [20], [23], we set
T=32, C=3, H=112, W=112. The network parameters are
trained to optimize the combined loss defined in Equation 3
using SGD with momentum for 70 epochs on 4 NVIDIA
V100 GPUs. Initial learning rate was set to 10−3 and it
was decayed using cosine annealing throughout training. The
relative weight parameter λ = 2. The above hyperparameters
apply to all experiments unless specified otherwise.

A. Performance on LD-ConGR

We compare our method with state-of-the-art gesture
recognition methods listed below. Due to the absence of hand
keypoint annotations in the LD-ConGR dataset, we do not
compare with techniques that predict hand pose or keypoints
in an intermediate step.

1) 3D ResNeXt-101 [19] is the 3D ResNeXt-101 CNN
without our dynamic patch selection subnetwork.

2) SlowFast [17] uses a combination of high and low
frame rate 3D CNNs (based on the 3D ResNeXt-101)
for better and more efficient gesture recognition.

3) C3D [18] is a popular 3D CNN baseline for gesture
and activity recognition.

4) Temporal Segment Networks [22] use separate net-
works to extract spatial and temporal features.

As can be seen in Table I, our method achieves state-of-
the-art gesture recognition accuracy on LD-ConGR as com-
pared to other methods. It does so while using a significantly
lower amount of compute (GFLOPS) than other methods.
This is due to the fact that our network discards early on, a
bulk of features which have no gesture information.

B. Performance in a resource constrained environment

We also evaluate the performance of our method in a
resource (power, compute, memory) constrained environment
which provides a more realistic indicator of its performance
when used for real-world applications like controlling mobile
robots and smart home devices. We replace the 3D ResNeXt-
101 backbone with the 3D MobileNet [30]. We use a 4 patch
(2 × 2) version of our network, with a single layer deep

Method Compute
(GFLOPS) Top-1 Accuracy (%)

Ours 10 89.94
3D ResNeXt-101 [19] 16 85.33

C3D [18] 12 82.38
SlowFast [17] 18 83.87

TSN [22] 14 86.91

TABLE I
OUR METHOD OUTPERFORMS OTHER REPRESENTATIVE BASELINES ON

THE TASK OF LONG-DISTANCE GESTURE RECOGNITION EVALUATED ON

THE LD-CONGR DATASET

preliminary feature extractor to ensure that the number of
parameters in our network is similar to the 3D MobileNet
baseline. This helps ensure that both networks being com-
pared have similar compute requirements and are deployable
on resource constrained robots and edge-devices.

Our method is able to vastly improve (by 17.4%) on the
performance of the current state-of-the-art light weight 3D
MobileNet CNN, as can be seen in the results in Table II.
C3D [18], Slowfast [17] and Temporal Segment Networks
[22] are not included in this comparison because they do
not have any comparable lightweight versions available.
These results demonstrate the importance of early rejection
of background features by our dynamic neural network,
helping focus the limited compute on features with gesture
information.

Method Compute
(GFLOPS) Top-1 Accuracy (%)

Ours (3D MobileNet) 1.5 76.68
3D MobileNet [30] 1.5 65.33

TABLE II
UNDER A CONSTRAINED COMPUTE BUDGET, OUR METHOD IS ABLE TO

OPTIMALLY USE THE COMPUTE ON FEATURES OF INTEREST LEADING TO

MUCH BETTER PERFORMANCE

C. Analyzing performance for different gestures

Table III tabulates the accuracy achieved by our network
and the comparable 3D ResNeXt-101 CNN at recognizing
each of the 10 different gestures in the LD-ConGR dataset.
Our method outperforms the baseline on most of the ges-
ture types. We observe significant gains in performance for
gestures such as Click and Pinch that are relatively difficult
to identify, and need finer detection of finger movements.
We hypothesize that the gains in performance are due to
the early discarding of background features by our method,
which helps the patch gesture classifier learn finer features.

D. Effect of number of patches

The number of patches in the incoming preliminary fea-
tures is an important parameter to be selected. We conduct
an experiment to determine its effect on the accuracy and
compute efficiency of the network. Specifically, we train
separate networks with the features divided into 2, 4 and



1 2 1 2

3 4

1 2 3

4 5 6

(a) (b) (c)

1 2 1 2

3 4

1 2 3

4 5 6

Fig. 4. The patch selection subnetwork selects features extracted from the spatial region highlighted in green in the image, and forwards them to the
patch gesture classifier. It discards features from parts of the image highlighted in red. The size of the green region can be varied by changing the number
of feature patches, as seen in (a) 2 patches, (b) 4 patches and (c) 6 patches.

Classes Accuracy (%)
(Ours)

Accuracy (%)
(3D ResNeXt-101)

Pinch 63.21 38.89
Click 93.45 85.45
Palm 85.1 84.9
Fist 83.48 76.35

Thumb up 95.51 98.08
Shift Right 99.26 98.41
Downward 99.10 98.89

Upward 94.54 93.97
Left 91.46 91.28

Right 90.86 91.90

TABLE III
CLASSIFICATION ACCURACIES OF OUR METHOD AND THE 3D

RESNEXT-101 CNN FOR DIFFERENT GESTURES IN THE LD-CONGR
DATASET

Number of patches
(m× n)

Compute
(GFLOPS) Top-1 Accuracy (%)

1× 2 26 86.48
2× 2 18 88.67
2× 3 10 89.94

TABLE IV
CLASSIFICATION ACCURACIES OF OUR METHOD WITH DIFFERENT

NUMBER OF PATCHES USED IN THE PATCH SELECTION SUBNETWORK,
SHOWING THAT A LARGER NUMBER OF PATCHES HELPS IMPROVE THE

NETWORK PERFORMANCE

6 patches and measure the gesture recognition accuracy
achieved by them. We use the ResNeXt-101 backbone in
all of these networks.

The results in Table IV demonstrate that dividing the input
progressively into smaller patches improves the compute ef-
ficiency of the network by helping discard more background
features early on, while also positively affecting its accuracy.
Figure 4 illustrates the regions in the input image from
which the selected feature patches were extracted. The region

highlighted in green shrinks as the number of patches is
increased, hence decreasing the number of features processed
by the patch gesture classifier.

We also observed that though using smaller patches leads
to better performance, this trend only holds as long as the
chosen feature patches are large enough to fit sufficient
gesture information. The preliminary features can also be
divided into overlapping patches to increase the recognition
accuracy at the cost of increased compute. The target appli-
cation influences the accuracy VS efficiency tradeoff.

E. Performance on longer distance videos

The LD-ConGR test set [7] consists of videos in which the
subject is at varying distances (1-4 meters) from the capture
device. We conduct an experiment to evaluate the effect of
distance on the performance of our method. Specifically, we
exclusively test our method on videos from the LD-ConGR
test set where the subject is sitting at the far end of the
conference room. This corresponds to all videos with the
recording spot labels l3 and r3 as defined in [7]. These videos
have the subject at the longest distance from the capture
device (≈ 4 meters). For comparison, we also report the
accuracy of other methods on the same set of videos in Table
V. We observe that the performance of our method shows
a much smaller relative deterioration for longer distance
videos, than that of other methods.

Method Complete
test set

≈ 4 meters
subset

Relative
deterioration

Ours 89.94 85.65 4.77
3D ResNeXt-101 [19] 85.33 74.78 12.36
C3D [18] 82.38 70.25 14.72
SlowFast [17] 83.87 73.53 12.32
TSN [22] 86.91 81.14 7.11

TABLE V
THE TOP-1 ACCURACY OF OUR METHOD SHOWS A LOWER

DETERIORATION (%) FOR LONGER DISTANCE VIDEOS.



V. CONCLUSION

We present a novel dynamic neural network for the task
of long-distance gesture recognition. The early discarding of
background features not only helps the network focus on
important features required for accurate gesture prediction,
but it also reduces the compute requirements and makes the
network conducive to deployment in resource constrained
settings on robots and edge-devices. We perform extensive
experiments and evaluation, and compare against other ges-
ture recognition methods to show the effectiveness of our
approach. Our method achieves state-of-the-art performance
on the LD-ConGR [7] long-distance gesture dataset. As part
of our future work, we intend to explore new neural network
architectures that support adaptive patch sizes while being
efficient enough to be deployed on resource constrained
devices. Another research direction would be the extention
of our method for general activity recognition at arbitrary
distances while taking in multi-modal sensor inputs.
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