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Local and Global Information in Obstacle Detection on Railway Tracks

Matthias Brucker2,∗, Andrei Cramariuc1,∗, Cornelius von Einem1,∗, Roland Siegwart1, and Cesar Cadena1

Abstract— Reliable obstacle detection on railways could help
prevent collisions that result in injuries and potentially damage
or derail the train. Unfortunately, generic object detectors do
not have enough classes to account for all possible scenarios,
and datasets featuring objects on railways are challenging to
obtain. We propose utilizing a shallow network to learn railway
segmentation from normal railway images. The limited receptive
field of the network prevents overconfident predictions and
allows the network to focus on the locally very distinct and
repetitive patterns of the railway environment. Additionally, we
explore the controlled inclusion of global information by learning
to hallucinate obstacle-free images. We evaluate our method
on a custom dataset featuring railway images with artificially
augmented obstacles. Our proposed method outperforms other
learning-based baseline methods.

I. INTRODUCTION

With rising global demand for transportation by rail, both
due to increasing global trade and changing consumer behav-
ior, railway networks are reaching their operational capacities.
To ensure the safe operation of trains on increasingly busier
tracks, upgrades to the railway control systems are required in
the form of reliable communication, continuous and accurate
localization [1], and environmental awareness in the form of
obstacle detection systems. Life-threatening risks to humans
and extensive disruptions to the railway network operation
can be prevented through the reliable detection of humans,
animals or any unknown objects on the train tracks.

High vehicle speeds, low braking forces, and the great
weight of trains result in braking distances exceeding several
hundreds of meters, out of the range of common obstacle
detection sensor systems, such as LiDAR or stereo vision.
We thus propose a novel active long-range obstacle detection
system, consisting of a zoomable high-focal length camera on
an actuated platform [2], to detect potential obstacles, even
at great distance [3] as shown in Figure 1. A critical aspect
of such a system is the accuracy of the visual detection of
known and unknown entities on the railway. So far, most
research has focused on detecting pre-defined categories,
such as humans or other trains, by training object detection
networks on custom railway obstacle datasets [4]–[8]. These
systems are, however, by design limited to this pre-defined
set of categories and fail to generalize to unknown obstacle
types. Moreover, the models must be trained on datasets
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Fig. 1. Concept of a zoomable view enhancement with obstacle detection.

Fig. 2. Railway obstacle detection on the FishyRails dataset. Annotated in
blue are the synthetically placed obstacles and our detection of them.

containing artificially inserted obstacles or datasets out of
the railway domain, as real images containing obstacles on
rails are challenging to obtain. This leads to strong biases
in the detectors and raises doubts about their capabilities in
real-world applications.

In this work, we focus on the task of data-driven anomaly
detection, where instead of learning to detect a predefined
set of obstacle categories, we learn to recognize the railway
environment and by exclusion everything that does not belong,
i.e. an anomaly, is also a potential obstacle. From here on,
we will use the term anomaly detection to refer to generic
obstacle detection, where the object category is not known at
training time. Beyond the ability to detect generic obstacles,
another advantage of our approach is that the training does
not require real or artificially created examples of obstacles on
railways. While visual anomaly detection has been extensively
studied in the context of industrial inspection [9]–[11] and
autonomous driving [12], [13], Boussik et al. [14] are the
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only ones addressing the problem of anomaly detection for
railway environments. They proposed training a series of
Auto-Encoders (AEs) and using their reconstruction errors
as a metric for anomalies. In our experiments, we find that
using reconstruction errors for obstacle detection fails, for
example, for small obstacles or obstacles with colors that
match the background.

We propose a novel data-driven approach to anomaly de-
tection in railway environments by reformulating the problem
as a local segmentation task, where the global information
available to the network is restricted. This bottlenecking
limits over-confident predictions in the very well-defined and
structured railway environment. We train a network with
a limited receptive field (the patch size around a pixel the
network sees) to segment railways from the background.
We also include random (non-railway) images as negative
examples in the training procedure. Inspired by Boussik et
al. [14], we also study the incorporation of limited global
information through obstacle-free images hallucinated by a
neural network. Our models are trained on an obstacle-free
training set consisting of a subset of RailSem19 [15] and
evaluated on an obstacle-enhanced version of it (see Figure
2), following a procedure proposed by Blum et al. [12]. We
summarize our contributions as follows:

• A novel approach using shallow networks to perform
visual anomaly detection that is ideal for the highly
structured environment of railways. Additionally, our
method does not require hard-to-obtain images of real
anomalies on railways.

• We explore the inclusion of global information through
the use of hallucinated obstacle-free reconstructions and
reformulate the anomaly detection problem as a semantic
difference detection task.

• An extensive evaluation on an object-enhances version
of the RailSem19 dataset [15] comparing our solution
to multiple baselines and evaluating the advantages and
disadvantages of each method.

II. RELATED WORK

A. Visual Anomaly Detection

In our case, visual anomaly detection is the task of detecting
abnormalities or unknown entities in images based on the
expected situation of the environment for normal operations.
According to Yang et al. [16], works on visual anomaly
detection can be classified into five categories. Probabilistic
methods such as Gaussian (mixture) models, kernel density
estimation [17], or variational Auto-Encoders (AEs) [18] aim
at estimating the probability distribution of normal images
and detecting the ones that fall out of the distribution. One-
class classification methods follow a similar approach by
constructing a decision boundary either through support
vector machines [19], support vector data descriptors [20]
or deep learning [21], [22]. Reconstruction-based methods
commonly use AEs to learn a low-dimensional representation
from which the original input can be reconstructed [10],
[23]–[25]. Reconstruction errors at test time are then used

as a metric for anomalous image regions. Self-supervised
anomaly detection methods aim to learn significant and
high-level features of normal samples, for example, through
an auxiliary learning task [26], [27]. This avoids the need
to precisely define what an anomaly is and does not require
example data of anomalies. Feature modeling methods do
not detect anomalies in the image space, but in a hand-
crafted or learned feature space, such as features of pre-trained
Convolutional Neural Networks (CNNs) [11], [28], [29]. A
good example is the student teacher distillation framework
proposed by Bergmann et al. [11], which achieved very good
results on industrial images from the MVTec AD anomaly
detection dataset [9]. The utilization of both deep and shallow
CNNs has been explored for various of these methods [30],
and it has been shown that shallow methods can outperform
their deep counterparts in certain scenarios [31].

B. Visual Obstacle Detection on Railways

When developing new railway obstacle detection systems,
it is important to consider the highly structured nature of the
railway environment. The unique shape and color of rails
and rail ties, the well-defined trajectories, and the limited
number of object categories on the train tracks facilitate the
use of classical image processing methods. This contrasts
the more complex case of anomaly detection on roads,
where learning-based methods are more essential [13]. Ristić-
Durrant et al. [32] have performed an extensive review
of existing obstacle detection systems with a wide variety
of sensors. We focus on camera-based systems, which are
directly comparable to our proposed approach. Rüder et
al. [33] introduce a system for track and obstacle detection
using edge detection, optical flow, and statistics of texture
in an approach that is heavily tailored towards domain-
specific grayscale images. However, evaluations regarding
different object categories remain limited. Mukojima et
al. [34], [35] propose a background subtraction-based method,
which is, however susceptible to changes in lighting or
environment. Rodriguez et al. [36] address this problem on the
railway tracks themselves, which are observed using a Hough
transform and a Canny edge detector. Discontinuities in this
detection process signify obstacles on the track, though with
limited robustness, as assumptions about the track geometry
cause this approach to fail in scenarios with curved tracks.
Uribe et al. [37] follow a similar approach with the same
shortcomings. Learning-based object detection methods have
also shown some success in detecting humans, trains, or
luggage [4]–[8], [38]–[41], but they rely on custom datasets
and are limited to a fixed set of object categories.

To this point, there is only little research applying visual
anomaly detection methods to railway obstacle detection.
Gasparini et al. [42] combine unsupervised image reconstruc-
tion with supervised detection of anomalies for nighttime
railway inspection but are thus limited to thermal cameras.
Boussik et al. [14] perform a grid search over AE structures
with different optimizers, activations, and loss functions and
evaluate them on a custom test dataset with artificially inserted
obstacles and one real-world scenario. In our experiments,



Fig. 3. Visual anomaly detection and localization using local segmentation. As input, we have a railway image with a synthetically added object. In the
resulting classification map, the intensity of white represents the confidence that a pixel is anomalous, black denotes the railway, and the gray borders
represent the background which is ignored. The final output is a detected object mask and its centroid.

these AE-based methods fail to detect small obstacles or those
with colors common in the railway environment. Wang et
al. [43] similarly train an AE, but detect anomalies by directly
analyzing the distribution in the latent space and solely utilize
the reconstruction for localizing detected anomalies.

III. ANOMALY DETECTION THROUGH LOCAL
SEGMENTATION

A challenge for data-driven methods is the lack of existing
training data featuring obstacles on railways and the difficulty
of obtaining these images in such a safety-critical environment.
This limits us to obstacle-free railway images and to other
datasets featuring possible obstacles in non-railway scenarios.
Additionally, we cannot limit detection to a fixed set of
object categories, as we cannot predict in advance all possible
obstacles we might encounter. Our approach to visual anomaly
detection allows us to detect obstacles implicitly by exclusion.
If it is on the railway but does not conform to known railway
patterns, i.e. an anomaly, it is a potential obstacle.

We train an anomaly detection network by segmenting
railways from the background as an auxiliary task. What
sets our method apart is how we exploit the very structured
and repetitive nature of our environment. Railway tracks
have a very distinctive structure, which is easily identifiable
even when looking at small patches taken from a larger
image. We use a network with a small receptive field (the
size of the patch around a pixel the network sees) as a
means to restrict the global (i.e. contextual) information we
provide to the anomaly detection network. This information
bottleneck prevents issues of overconfidence in segmentation
and classification tasks [44], examples of which we also show
later in Section VI-A.

To provide negative examples, we include random (non-
railway) images featuring a large variety of objects and scenes.
Note that, in contrast to supervised object detection, we do
not take an opinion on the semantic classes of obstacles
but we label the entire image as background. The network
is trained by minimizing the Binary Cross-Entropy (BCE)
loss LBCE for every pixel. We exclude the loss outside the
track masks for railway images to avoid boundary issues and
mislabeled pixels. Thus, we let all the negative examples
come from non-railway images.

Fig. 4. Railway tracks being re-projected into the camera frame based on
the known location and orientation of the train from an RTK-GPS.

A. Obstacle Localization With Classification Maps

An overview of the system is shown in Figure 3. Dur-
ing deployment, the previously trained network provides
a classification map {railway, background} covering
each pixel in the image. Anomalies are then pixels that we
know are railway but are classified as background. However,
this requires a ground truth rail track segmentation mask
to compare against. We assume prior knowledge about the
location of the railway tracks in the image, which in practice
can be obtained by having a prior map of the railway network
and knowing the current pose of the train [45]–[47]. Using
the map, the position of the train, and the camera intrinsics,
the rail map can be projected into the image frame to obtain
a ground truth mask as shown in Figure 4.

From a given classification map, obstacles are localized
by computing a density map ρ via uniform filtering with a
filter size of K. Subsequently, a threshold θ is applied, where
all pixel values smaller than θ are zeroed to obtain the final
obstacle mask ρθ. Decisions on the existence of the object
can then be made based on the number of anomalous pixels
or the size of the connected anomalous regions, as obtained,
for example from a clustering algorithm.

IV. INCORPORATING GLOBAL INFORMATION

We hypothesize that incorporating global information into
our, so far, purely local approach would lead to better
performance. Inspired by the reconstruction-based approaches
by Boussik et al. [14], we use a neural network to hallucinate
obstacle-free images. However, instead of looking at the
reconstruction error, we compute the semantic class difference



between regions in the original image and the hallucinated
obstacle-free reconstruction (see Figure 5). The semantic
differentiation network predicts in which pixels in the two
images the semantic class is different without ever having to
explicitly predict the class. For the same reasons as stated in
Section III, we design the semantic differentiator network with
a limited receptive field. This allows us to maintain a local
informational bottleneck, which we have seen to be beneficial,
while also allowing an earlier network to incorporate global
information.

A. Obstacle-Free Railway Image Generation

For generating synthetic, obstacle-free railway images,
we train the network with an Auto-Encoder (AE) structure
to reconstruct the input image through a low-dimensional
bottleneck. Choosing a small bottleneck prevents the network
from simply replicating its input and forces the decoder
to encode in its weights repeating patterns in the training
data. As the training data does not include obstacles, the
decoder should never learn how to reconstruct them, and
the resulting images should be obstacle-free versions of the
original input [14]. We test in total four different combinations
of reconstruction losses that enforce different properties.

1) The Mean Squared Error (MSE) loss LMSE computes
the mean per-pixel L2 distance between the original and
reconstructed image. MSE pushes the network’s output toward
the dataset average, which causes the network to only preserve
low-frequency components in the image at the cost of finer
structural details.

2) The Structural Similarity (SSIM) loss LSSIM as
proposed by Wang et al. [48] forces patches in the original
and reconstructed image to have similar luminance, contrast,
and structure. This results in sharper images, but still, the
network can only preserve a limited amount of realism in the
reconstructed image.

3) Images generated from the previous methods can easily
be identified as synthetic, which leads us to Generative
Adversarial Networks (GANs) for more realistic image
generation [49], [50]. Inspired by Isola et al. [51], we use
a conditional GAN architecture [52] with a loss LGAN to
generate obstacle-free railway images. In an adversarial set-
ting, the auto-encoding generator’s objective is to reconstruct
realistic (obstacle-free) railway images, while a discriminator
aims at distinguishing real images from fake generated ones.
Both are conditioned using our original segmentation mask,
to promote a semantic similarity and to conserve the rail
trajectories. Important to note is that apart from a semantic
similarity constraint, the adversarial loss LGAN does not
promote visual similarity, such as color or structure, between
the two images.

4) To preserve visual similarity, we expand the adversarial
loss by applying the two Histogram Losses proposed by
Avi-Aharon et al. [53]. As suggested by the authors, we
combine both their proposed mutual information and Earth
Mover’s Distance losses as LHIST into the GAN training
setup. These two loss functions aid the GAN in retaining

Fig. 5. Overview of the obstacle detection using hallucinated obstacle-free
images. A semantic differentiator network does a pixel-wise prediction of
where the original and obstacle-free images have different semantic meanings.
This difference map can then be used to localize anomalies, as shown in
Figure 3.

structural and color information, respectively, instead of pure
semantic similarity.

B. Object Localization with Semantic Difference Maps

The image reconstructed by our network provides global
information about how each pixel would look like in an
obstacle-free image. We leverage this information by training
a network to compute the pixel-wise semantic difference map
between the original and reconstructed obstacle-free image,
as shown in Figure 5. We train the network with semantically
similar and different image pairs. In the semantically similar
case, we choose original and hallucinated versions of the
same obstacle-free railway image and label every pixel as
similar. In the semantically different case, we simulate an
obstacle by replacing the original image with a random image
from a dataset of non-railway images as in Section III and
label every pixel as different, thus not focusing on specific
classes. As before, we train the network by minimizing the
BCE loss for every pixel and ignoring pixels outside the
ground truth railway. Obstacles can then be localized using
the same procedure as in Section III-A and Figure 3 on the
difference map instead.

V. EXPERIMENTAL SETUP

A. Datasets

As a training dataset, we use the annotated subset of 7500
training images from the public RailSem19 dataset [15],
excluding tramway images. From these images, various
regions of interest crops are obtained at a resolution of
224×224, resulting in a total of 26, 810 images. As additional
non-railway images XI , we take 1, 281, 167 crops from the
public ImageNet dataset [54].

For our evaluation dataset FishyRails, we take the official
annotated test set of RailSem19. We populate the images
with objects from the public PascalVOC object segmentation
dataset [55], resulting in 7142 images and segmentation



Fig. 6. Example image where only our local method localizes the obstacle correctly, while all baseline methods fail. The first row shows the predicted
obstacle segmentation maps. Gray represents the areas outside the railway tracks where no detections are done, in black is the railway and white represents
the anomaly detection mask. The second row displays localization results obtained via centroid computation.

masks. The pasting process is inspired by Fishyscapes [12],
an object-enhanced dataset for measuring segmentation blind
spots in traffic images, and involves image border smoothing,
brightness correction, motion blur, depth blur, and Gaussian
noise. Similar augmentations have also been proposed by [34],
[37], [38], [56] for use in railway anomaly detection, as there
are no public real-world railway obstacle detection datasets.
Our synthetic obstacle testing method is also in line with the
one proposed by Boussik et al. [14], who instead use a GAN
to blend images of railways and obstacles on the RailSem19
dataset.

B. Baselines
We compare against a set of state-of-the-art baselines

selected from the related works. A standard semantic seg-
mentation network, DeeplabV3 [57], trained on obstacle-
free railway images, to simply differentiate railway from
background, serves as a first baseline. The second and third
baselines are based on the work of Boussik et al. [14],
consisting of two Auto-Encoders (AEs) for railway images,
trained with either a Mean Squared Error (MSE) or Structural
Similarity (SSIM) loss. The reconstruction error between the
output and the original image is then used as a measure of
anomalousness. We call these two baselines MSE AE and
SSIM AE respectively. As our last baseline, we consider a
patch-wise student teacher method1 proposed by Bergmann
et al. [11]. The authors report impressive results for visual
anomaly detection on the MVTec AD industrial image
dataset [9], and we expect comparable results in our uniform
and equally well-structured railway environment.

C. Metrics
In order to assess the quality of the classification or

difference map, we use the Area Under the Receiver Operator
Characteristic Curve (AUROC). The AUROC is computed
over all pixels of interest in the dataset given a ground-truth
segmentation mask. Even though this is a good threshold-
independent metric, it does not reflect well the applicability
for our target use case of obstacle localization.

1Our re-implementation, as the original source code is not available.

TABLE I
THE AUROC AND LOCALIZATION F1 SCORE ON FishyRails.

Method AE loss AUROC F1

DeeplabV3 [57] - 0.817 0.535
MSE AE [14] LMSE 0.686 0.498
SSIM AE [14] LSSIM 0.737 0.429
Students33 [11] - 0.594 0.458

Our (Local) - 0.926 0.863
Our (Global) LMSE 0.917 0.825
Our (Global) LSSIM 0.915 0.812
Our (Global) LGAN 0.935 0.857
Our (Global) LGAN + LHIST 0.936 0.838

We say an obstacle is correctly localized if and only if
the predicted centroid lies within the bounding box of the
ground truth obstacle. Based on this localization, the F1 score
can be computed as a second evaluation metric. To compute
the centroid, we calculate the mean of the coordinates of all
non-zero pixels (as seen in Figure 3). For all methods and
baselines, we individually grid search for the optimal K and
θ (see Section III-A) that maximize the F1 score. To note
is that we implicitly assume there is at most one object in
the image. This assumption holds in our experiments and
provides a useful comparison metric. In practice, clustering
could be used to distinguish multiple objects or an alert could
be triggered based on the amount of anomalous pixels.

VI. RESULTS

A. Obstacle detection on FishyRails

For each method separately we use a fixed ρ and θ (see
Section III-A) across all experiments. We determine the two
thresholds separately for each method by picking the best-
performing value across the training set.

After evaluation on our FishyRails dataset, the AUROC
and F1 scores, as reported in Table I, paint a clear picture:
our methods outperform the baselines by a large margin.
Both the local and best global version (LGAN + LHIST )
of our proposed method achieve an AUROC of 0.926 or
better. This is significantly better than the AUROC of the
best baseline method (DeeplabV3) at 0.817. The difference in



Fig. 7. Example image where both our local and global methods correctly segment the obstacle. The obstacle-free reconstructions are compared semantically
with the original image on the left to find differences that could be anomalies. Note that the reconstructed images look different depending on the loss used
to train the obstacle-free image generator. Nevertheless, in this example, all reconstructions successfully ignore the obstacle.

Fig. 8. Our global method with LGAN +LHIST successfully reconstructs
grass as non-anomalous. This allows the semantic difference network to
correctly predict the images are similar and that there is no obstacle. The
simpler GAN succeeds in reconstructing the railway but fails to match colors
as it has not seen enough examples of grassy railways during training.

F1 score is even larger, as our purely local method achieves
a score of 0.863, while DeeplabV3 only reaches a value of
0.535. We highlight this also visually in Figure 6 which
shows an example where our local method succeeds at
detecting the obstacle, whereas baseline methods fail. The
comparison to DeeplabV3 is important as it mirrors our local
approach, except for a deeper network and a much higher
receptive field. This highlights the importance of reducing the
receptive field of the network to restrict global information
and experimentally validates our hypothesis from Section III.

Interestingly, we find that DeeplabV3 outperforms both the
student teacher method Students33 [11] and the reconstruction-
based methodsMSE AE [14] and SSIM AE [14]. DeeplabV3
tends to over-confidently classify obstacle pixels as railway.
During training, the model seems to learn that areas in
between train tracks tend to correspond to the railway class,
as it has never seen obstacles during training. This leads to
small objects or ones with similar color as the background
being misclassified.

From our investigations, we find that both MSE AE and
SSIM AE fail when obstacles are small or have similar color as
the background, with SSIM AE performing slightly better on
obstacles with very prominent structure and contrast. Among

Fig. 9. Our local method misclassifies the sandy background as anomalous,
because of lack of sand between the tracks during training. However, the
LMSE and LSSIM networks succeed in removing the obstacle because
of the distinct color difference to the railway.

all methods, Students33 produces the lowest AUROC and
F1 scores, probably because it was designed and optimized
for industrial images with even less variance in structure
and color than our dataset. The student networks are capable
of detecting obstacles with salient colors but are unable to
detect obstacles of colors that were frequently observed during
student training, such as brown or gray.

B. Should We Include Global Information?

While the results reported in Table I show that our methods
outperform the baselines by a large margin, the difference
between our local (Section III) and global (Section IV)
methods, is much smaller. The best AUROC score of 0.936
is achieved by our global method with LGAN + LHIST ,
but our local method yields the best F1 score. Therefore,
a more detailed comparison of the observed strengths and
failure cases in our experiments is needed. All global methods
manage to remove most of the obstacles in their reconstruction
stage for the four different loss combinations we tested (see
Figure 7 for examples). When trained on anomaly-free railway
and random non-railway patches, our generative models
trained with LMSE and LSSIM learn to focus on pixel-wise
color differences instead of semantic differences between the
original and generated image. This leads to problems where



Fig. 10. Our global methods fail to reconstruct obstacle-free images
with large occlusions, as they provide no prior on the potential tracks.
The reconstruction failure also leads to the semantic difference map being
meaningless. Our local method succeeds as it does not depend on the global
context.

small obstacles or ones with similar background colors are
reconstructed too well, instead of being removed.

The GAN based methods with losses LGAN and LGAN +
LHIST succeed at rarely observed scenes by focusing on
both visual and semantic reconstruction (see Figures 8 and 9
for examples). This leads to fewer false positives and is an
instance where the inclusion of some global information into
the process outperforms our purely local anomaly detection
network. In cases where obstacles are too large, i.e. they
cover too much of the image frame, the obstacle-free image
generation process fails entirely, as seen in Figure 10. This
is an instance where our purely local method outperforms
global methods, as it does not rely on a reconstruction stage.
Overall, the local and global versions of our methods have
different weaknesses and strengths, while having similar
overall performance according to our metrics. Ideally, a
combination of multiple classifiers could be used. However,
in practice, the local method is simpler and thus has fewer
failure modes and might be preferable in a safety-critical
application.

C. Ablation Study

We perform an ablation study on the receptive fields of
both our local and global approaches using different loss
functions. The results for the local method and the global
(LGAN+LHIST ) method are shown in Table II and highlight
that according to the F1 score, a receptive field of 21 px is the
optimum for us and has therefore been used in the evaluations
of our method. For our global method, a similar pattern can
be observed with a maximum at a receptive field of 29 px
and utilizing the LGAN + LHIST loss.

VII. CONCLUSION

In this paper, we have presented a novel approach to data-
driven obstacle detection on railways. By training a network
with a restricted receptive field on an auxiliary segmentation
task, we are able to discern the well-structured railway
background from any anomalies (obstacles). We are able to
train the network without the need for hard-to-obtain data of
obstacles on railways, and without having to restrict ourselves
to a limited set of obstacle classes. Our method succeeds

TABLE II
ABLATION STUDY ON THE SIZE OF THE RECEPTIVE FIELD Kp [PIXELS] OF

OUR LOCAL AND GLOBAL METHOD UTILIZING THE LGAN + LHIST

LOSS.

Method Kp ROC AUC F1

Our (Local) 13 0.921 0.836
Our (Local) 21 0.926 0.863
Our (Local) 29 0.928 0.861
Our (Local) 35 0.925 0.839
Our (Local) 51 0.927 0.832

Our (Global) 13 0.931 0.839
Our (Global) 21 0.936 0.838
Our (Global) 29 0.936 0.846
Our (Global) 35 0.930 0.826
Our (Global) 51 0.914 0.782

in cases where the benchmarks fail, e.g. small obstacles
or obstacles with colors that blend into the background,
but struggles with rarely seen railway environment types.
In an extension, global information can be incorporated
through hallucinated obstacle-free reconstructions. Successful
reconstructions help detect anomalies even in rarely seen
environments, though if the reconstruction fails, also the
detection itself fails. Due to the limited availability of
railway anomaly datasets, we evaluate our system on an
obstacle-enhanced version of Railsem19, showing a significant
improvement over state-of-the-art baselines.
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