
SpinDOE: A ball spin estimation method for table tennis robot

Thomas Gossard1, Jonas Tebbe1, Andreas Ziegler1, Andreas Zell1

Abstract— Spin plays a considerable role in table tennis,
making a shot’s trajectory harder to read and predict. However,
the spin is challenging to measure because of the ball’s
high velocity and the magnitude of the spin values. Existing
methods either require extremely high framerate cameras or
are unreliable because they use the ball’s logo, which may not
always be visible. Because of this, many table tennis-playing
robots ignore the spin, which severely limits their capabilities.
This paper proposes an easily implementable and reliable spin
estimation method. We developed a dotted-ball orientation
estimation (DOE) method, that can then be used to estimate
the spin. The dots are first localized on the image using a CNN
and then identified using geometric hashing. The spin is finally
regressed from the estimated orientations. Using our algorithm,
the ball’s orientation can be estimated with a mean error of
2.4◦ and the spin estimation has an relative error lower than
1%. Spins up to 175 rps are measurable with a camera of 350
fps in real time. Using our method, we generated a dataset of
table tennis ball trajectories with position and spin, available
on our project page.

Project page: https://cogsys-tuebingen.github.io/spindoe/

I. INTRODUCTION

In table tennis, spin estimation is primordial to play the
ball back correctly and win the game. Ball trajectories can
indeed be made difficult to predict with spin. The ball will
accelerate after bouncing with a top spin, and its airborne
trajectory will curve sideways if sidespin is applied. In order
to develop a table tennis-playing robot, spin estimation is
thus paramount, not only during the match but also to build
an accurate model of table tennis dynamics (aerodynamics,
table bounce, racket bounce).

Human players can use different cues to estimate the ball’s
spin. Some players can get an idea of the spin from the
motion blur generated by the logo on the ball [1]. However,
most players use the opponent’s stroke motion and prior
knowledge of the rubber used (sticky rubber, anti-topspin
rubber, pimpled rubber) to estimate how much spin was
applied on the ball. The spin can also be estimated from its
airborne trajectory and bounce, though this method leaves
less time for the player to react.

Because of the difficulty of spin estimation, many table
tennis robots choose to either ignore the ball spin [2] [3] [4]
or estimate it ”implicitly” [5]. Only Tebbe et al. [6] explicitly
estimate the ball’s spin and take it into consideration when
having the robot play.

Different methods have already been investigated for
spin estimation. There are three main approaches to spin

1The authors are with the Cognitive Systems Group, Dept.
Informatics, University of Tuebingen. Corresponding author
thomas.gossard@uni-tuebingen.de

This research was funded by Sony AI.

Fig. 1: Orientation estimation pipeline (DOE)

estimation, imitating human skills: observing the stroke
(racket/body pose), analyzing the ball’s trajectory, and di-
rectly observing the ball.

Strokes can be classified from body pose estimation [7]
[8], racket IMU measurements [9] [10] or racket pose
estimation [11]. The issue with these methods is that they
only give the type of spin applied (topspin, backspin, left or
right sidespin, no spin). The exact spin of the ball (spin vector
ω) is still unknown. For more accurate spin estimation, most
research has focused on extracting the spin from the ball’s
trajectory or a sequence of images of the ball. There has also
been a method that extracts the spin from the motion blur
generated by the ball’s logo [12]. However, this last method
requires the blur to be essentially generated by the spin and
not the velocity. That is not the case for table tennis. Indeed,
when shooting balls with a ball gun, we noticed motion blur
appearing when increasing the ball’s velocity for similar spin
values.

Because measuring the spin directly with cameras requires
a high frame rate, many researchers focused on estimating
the spin from the trajectory deviation caused by the Magnus
effect [13] [6] [14]. However, they rarely had access to
ground truth spin values to calculate the Magnus effect
coefficient. Moreover, the spin estimation highly depends on
the accuracy of the recorded ball positions. Because Mag-
nus effect-caused deviations are minimal for low-magnitude
spins, this spin estimation method becomes highly sensitive
to position measurement noise and bias for low spin values.

Ball observing-based methods are those that give the high-
est spin accuracy. They can be divided in 2 subcategories:
logo-based [15] [6] [16] or pattern-based [17] [18] [19] [20].
Logo-based methods are highly interesting because they can
be used for official table tennis matches. They use the logo
to get an orientation of the ball, and they then fit a spin.

ar
X

iv
:2

30
3.

03
87

9v
1

 [
cs

.C
V

]
 7

 M
ar

 2
02

3

https://cogsys-tuebingen.github.io/spindoe/

However, because the logo is not always visible and often
has some symmetry, spin estimation may often be impossible
or very difficult (when the logo is only on the edge of
the visible part of the ball or when the logo is close to
the rotation axis). This can be compensated for by using
2 cameras to observe the ball from 2 different points of
view [15], but it also introduces more complexity and cost to
the perception system. The pattern-based approach is much
more appropriate for research because of its higher reliability.
Some approaches rely on registration [17] [18] [20]. The
problem with using registration is the necessity of a high
enough resolution image to generate descriptors to identify
the keypoints uniquely.

In this paper, we propose a new Dotted-ball Orientation
Estimation method (DOE). DOE is then leveraged to estimate
a table tennis ball’s spin. We therefore named our method
SpinDOE.

Our main contributions with SpinDOE are:
• Having spin estimation work with a standard industrial

camera.
• High reliability and accuracy for spins up to 175 rps
• Making this method easy to reproduce with any kind of

ball by providing the 3D printed stencil model and the
source code.

• Proving the constant spin assumption while the ball is
airborne to be correct.

• Generating the first published dataset of table tennis ball
trajectories with accurate position and spin.

In the rest of this paper, we will present how SpinDOE
works. In section II, we first present our orientation estima-
tion pipeline. Then in section III, we show how we regress
the spin from a sequence of orientations. In section IV, we
expose our experimental results, such as an estimate of the
spin dampening coefficient. The final section V is dedicated
to the creation of our table tennis ball trajectory dataset.

II. ORIENTATION ESTIMATION

We want to accurately estimate any ball’s spin during
an exchange without hindering the players. This means the
camera has to be situated far from the table and requires a
wide field of view. Because of these restrictions, captured
images of the ball have a low resolution. Moreover, though
the exposure time is reduced to the minimum, motion blur
can still be observed for balls played at high speeds. This
makes it impossible to use registration-based methods or to
track multiple keypoints. Since we always want to be able
to measure the ball’s spin with only one camera, logo-based
methods are also not an option. We thus decided to use a
dot pattern to estimate the ball’s orientation. A dot pattern
has the advantage of not interfering with the ball detection
pipeline. We can find the rotation between the reference 3D
configuration of the dots and the measured 3D position of
the dots. The difficulty of this approach comes from uniquely
identifying the dots. Indeed, the observed dots need to be
identified to be associated with their reference value. This is
achieved using geometric hashing [22]. Instead of using the

Fig. 2: Dot detection CNN architecture

Fig. 3: From left to right: Input Image, Output heatmap,
Ground truth heatmap

image features to identify them, like for registration, we use
their spatial configuration.

The DOE works as follows: a CNN first takes the ball’s
image and returns a heatmap of the dots’ likely locations.
The CNN dot detection is based on CenterNet [23]. The
dot location are then extracted from the heatmap via blob
detection. In order to match the observed dots with the dots
from the reference pattern, geometric hashing is used. We
can finally use Kabsch’s algorithm to get the orientation of
the ball (the Kabsch algorithm computes the optimal rotation,
w.r.t. the RMSE, between 2 sets of vectors).

A. Dot Detection

Conventional computer vision methods such as back-
ground subtraction, masking, blob detection were first tested
to estimate the position of the dots on the image. They
gave relatively good results after calibration but were also
very sensitive to changes in the image (luminosity, contrast,
color). It was thus abandoned for a CNN based on CenterNet
[23]. The exact architecture can be seen in Fig.2. This made
the dot detection much more robust. Using a CNN also
enabled us to use balls with logo. Indeed, the CNN will
learn to ignore the logo (as it can be seen in the leftmost
images from Fig. 8), except in complex cases where the logo
is only partially visible on the edge. This makes our method
usable with any kind of ball, though the CNN would require
some fine tuning for specific logos. In Fig.3, we show an
example of the input, output and ground truth of our CNN
dot detector.

B. Dataset

In order to generate the dataset, the dotted ball was spun
using a brushless DC motor (Fig.4). The motor was con-
trolled using a ODrive controller. The ODrive was chosen be-

TABLE I: Summary of existing logo or patter-based spin estimation methods (papers are ordered in chronological order)

Algorithm Method Max spin (reported)[rps] Camera fps Relative error [%]

Tamaki et al [17] Pattern (Registration) 90 500 NA
Theobalt et al [21] Pattern (Colored markers) 27 80 NA
Furuno et al [19] Pattern (colored lines) 23 1200 NA
Boracchi et al [12] Blur 28 NA 3
Szèp [20] Pattern (track corners) 63 1000 12.5
Tamaki et al [18] Pattern 67 600 NA
Glover et al [16] Logo∗ 50 200 NA
Zhang et al [15] Logo 60 NA 0.07
Tebbe et al [6] Logo 75 380 NA
Our method Pattern 175 350 1

Fig. 4: Ball spinner to generate training data

cause of its Field Oriented Control (FOC) capabilities. With
it, the spin’s norm can be accurately measured (measurement
noise of 0.1 rps) and used as ground truth. To accurately get
the rotation axis, the ball was installed so that the rotation
axis corresponded with one of the drawn dots. Following
this setup, we got ground truth (spin vector) and generated
a spinning ball image dataset. These recordings were used
as a benchmark tool for our spin estimation method and as
a dataset to train the dot detection network. To get the dots’
ground truth position on the image, the dots’ reference 3D
positions are rotated with the ball’s calculated orientation.
The ball’s orientation is obtained by propagating an initial
manually measured orientation with the corresponding spin.
There is often some small offset between the estimated
and actual dot positions. To compensate, the estimated dot
position is corrected to the nearest local grayscale minimum
which is a black dot. Additionally, the initial correction is
reset every ∆t of measurements to avoid propagating error
from the spin and initial orientation to the estimated ball
orientations. A dataset of 80 000 samples was generated for
balls possessing two different logos, with spin ranging from
0 to 150 rps. To make the dot detector more robust, the
data was augmented by adding motion blur and changing
brightness, contrast, saturation and hue.

C. Bayesian Geometric Hashing

Geometric hashing is an object recognition method which
uses the spatial arrangement of keypoints to recognize an
object. This method enabled us to identify the dots (get
their index) even though they are all identical and have low
resolution.

Geometric hashing can be separated into two steps. First, a
lookup table, the hash table, is generated from the reference
object we want to recognize. Then this lookup table is used
to identify the object.

Generating the hash table: the object’s keypoints D =
{d1,d2, ...} are transformed into a rotation, scale and trans-
lation invariant space called the hash space. This is achieved
by using 2 keypoints (if working in 2D) as a basis to describe
the relative position of the other features. This process is
performed for every keypoint for every basis combination
possible. In the end, we have a table that includes for each
entry the keypoints used to form the basis and a vector h
that is another keypoint position from the reference model
transformed into the hash space using the specified basis.

Recognition: From the input image, the keypoints D are
first extracted. From these keypoints, 2 are arbitrarily chosen
as the basis to transform the other keypoints in the hash
space. Each transformed keypoint φ will give a vote to
nearby hash values h in the hash space and thus a specific
basis basish. To do so, the hash values are binned and
the transformed keypoint gives a vote to the hash value in
the same bin as it. The basis with votes above a certain
threshold will be preselected and their reprojection RMSE is
computed. The basis with the smallest RMSE is chosen as
the recognized model.

In our case, we are working with 3D points. We can
calculate the 3D coordinates of the dots from their 2D image
position since we know there are located on the ball’s surface
(z =

√
r − x2 − y2). The center of the ball and two dots are

used as the basis needed to describe the other dots.
The traditional geometric hashing method uses binning

for the basis vote. However, a bayesian variant also exists
[22]. Instead of preselecting the basis with the most votes,
we choose the basis with the highest likelihood. This makes
the geometric hashing much more robust because continuous
probability distribution assures the continuity of the ”voting”,
contrary to binning.

In the algorithm 2, pφ(h) represents the likelihood of
the feature φ (dot transformed into the hash space with the
function f(x) = B−1 · x) corresponding to the hash value
h (reference dot transformed into the hash space). We want
this likelihood to represent the dot’s position uncertainty in
the hash space. To do so, we use the change of variable f
that will transform the dot position uncertainty on the sphere
surface into the hash space equivalent, as shown in Eq.3. The
uncertainty can be due to multiple factors: dot misdrawn,
CNN dot detector not accurate enough, motion blur. We use
the Kent distribution to model the dot position uncertainty

Algorithm 1 Geometric Hashing: Generating hash table

Require: Reference dot positions: D = [d1,d2, ...] ∈ R3×n

hash table = []
basis used = []
for d in D do

for d′ in D \ d do
basis = [d,d′,d× d′]
for d′′ in D \ {d,d′} do
hi = basis−1 · d′′
Append hi to hash table
Append basis to bases used

end for
end for

end for

Algorithm 2 Bayesian Geometric Hashing: Recognition

Require: Input dot position: D = [d1,d2, ...] ∈ R3×n

basis = [d1,d2,d1 × d2]
D′ ← D \ {d1,d2}
Φ← basis−1 ·D′ . Transform the dots into hash space
poss bases = [] . List of possible basis
for φ ∈ Φ do
H ← NearestHashV alues(φ)
for h in H do

if basish not in poss bases then
Append basish to poss bases

end if
scorebasish+ = pφ(h)

end for
end for
selected bases are basis where score ≥ threshold
for basis in selected bases do
rot← Kabsch(basis,D)
error ← reprojection error(rot,D)

end for
Returned rot is the one with the least error

on the sphere pd(x). The Kent distribution can be viewed as
a normal distribution on a sphere’s surface and is described
as follows:

kd(x) =
1

c(κ, β)
exp

{
κγT1 · x+ β

[(
γT2 · x

)2 − (γT3 · x)2]}
(1)

where:

c(κ, β) = 2π

∞∑
j=0

Γ
(
j + 1

2

)
Γ(j + 1)

β2j

(
1

2
κ

)−2j− 1
2

I2j+ 1
2
(κ) (2)

and Iv(κ) is the modified Bessel function, Γ(·) is the
gamma function, γ1,γ2,γ3 are orthogonal unit vectors
representing the mean, major, and minor axes respectively
of the pdf (they are calculated from d), κ determines the
concentration of the pdf and β determines the eccentricity
of the pdf. These hyperparameters were empirically set to
κ = 500 and β = 0 so that the pdf corresponds to the dot’s

(a) Sphere space (b) Hash space

Fig. 5: Kent Distributions: Samples are plotted on the
sphere for different positions (Black: κ = 100, β = 40,
Blue: κ = 300, β = 0, Green: κ = 100, β = 0)
The samples were transformed to the hash space using two
other keypoints. The reds are all the hash values generated
for the hash table.

size and shape. Examples of Kent distributions with different
parameters are shown in Fig.5a.

To obtain pφ(h), we transform the Kent distribution in the
hash space as follows:

pφ(h) = pd(f−1(h))|det∂f
−1(h)

∂h
|

= pd(B · h)|det(B)|
(3)

The norm of the determinant of the jacobian of the
inverse function ensures that the volume of the probability
distribution is maintained during the variable change.

However, we need to add a ”projection” likelihood n(x)
in order for the dot position uncertainty pdf pd to work in
the 3D hash space (the Kent distribution operates on the 2D
sphere manifold). The projection n(x) is set as the likelihood
of a dot being on the surface of the sphere (norm of 1).

pd(x) = n(x)kd(x) (4)

where:

n(x) =
1

α
√

2π
exp

(
−1

2

(||x|| − 1)2

α2

)
(5)

and α is the standard deviation of our ”projection” com-
ponent. α = 0.03 was chosen to maximize the identification
rate of the geometric hashing and is visualized in Fig.6. We
indeed investigated the sensitivity of the bayesian geometric
hashing using a Monte Carlo test. The method used is
explained in more detail in the next section.

D. Pattern generation

The dot pattern is drawn on the ball using a 3D printed
stencil (Fig.7). This enabled us to accurately and reliably
position the dots on the ball’s surface. This method also
allows us to easily and cheaply make many balls for the
robot table tennis setup.

The number of dots was arbitrarily set to 20. This gave an
average of more than 3 points visible from any angle, which

Fig. 6: Geometric hashing sensitivity to inaccurate dot posi-
tion

Fig. 7: From left to right: Generated pattern, 3D printed
mold, ball with dot pattern

is necessary to use geometric hashing. The dots’ position
was on the other hand not arbitrary. With geometric hashing,
objects are recognized thanks to the spatial configuration of
their features. This means that all patterns are not equal and
that some will have better robustness to noise.

A pattern’s robustness was evaluated by its success rate
using Monte Carlo testing. A single test proceeds as fol-
lows: first, a random rotation is applied to the original dot
configuration and only the visible dots (dz > 0 assuming that
the ~z is pointing towards us) are selected. This is done to
test out different viewing angles. Noise is then added to each
visible dot individually by applying a small random rotation.
The generated set of dots is finally passed to the geometric
hashing. Patterns were evaluated on 10 000 samples with a
noise of σ = 3◦. This noise was thought to represent dot
position error best.

A gradient-based optimization approach was chosen to
find the best pattern. We optimized the spherical coordinates
(θi,Φi) of dots located on the unit sphere by maximizing the
mean nearest-neighbor distance of the features in the hash
space. This would make the features in the hash space more
distinguishable and thus more robust to noise. A dot pattern
with a 98% identification success rate was thus generated
for a noise with a standard deviation of 3 ◦as can be seen in
Fig.6.

III. SPIN ESTIMATION

A. Spin regression

Though the dot detection and the bayesian geometric
hashing have a high identification success rate, misiden-

tification is not impossible. We couple RANSAC to the
spin regression to make our algorithm robust to possible
outliers. For the spin regression, we use QuateRA [24],
a quaternion-based spin regression algorithm. The rotation
plan is calculated from the measurements using SVD. This
gives us the rotation axis as the vector orthogonal to the
rotation plane. Each quaternion is then projected onto the
rotation plane. RANSAC is used here to select the valid
measurements for the rotation plane calculation. The spin
is then estimated with a linear regression from successive
rotation angles. This approach is very similar to [6]. The
main difference is that the rotation plane is algebraically
calculated using SVD in QuateRA, which is the least-square
solution. In [6], the rotation plane is the plane that intersects
three logo positions. The three logo positions are chosen to
minimize the projection error for the other logo positions.
This makes our spin regression faster and more accurate than
[6].

IV. EXPERIMENT

A. Setup

The ball images are captured with a Grasshopper3 GS3-
U3-23S6C camera at a framerate of 350 fps with a resolution
of 1900x400. The exposure time was set to 250 µs. The
ball’s region of interest is isolated using the method described
in [25], and we then obtained images have a resolution of
(60x60). Our spin estimation method, SpinDOE, is run on a
computer equipped with a NVIDIA GeForce GTX 1080 Ti
GPU and an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz.

B. Orientation estimation

We first tested our orientation estimation method. We
generated a benchmark of ball images and orientations thanks
to the ball spinner. We give a visual example of the DOE
output in Fig.8. As shown, the CNN ignores the logo and
outputs only high values in the heatmap for the dots. We can
also notice that the CNN detects dots on the edge of the ball;
this would not be the case using traditional computer vision
algorithms.

In Fig.9, we plot the distribution of the orientation estima-
tion error. As expected, there are cases where the orientation
estimation fails. This is mostly due to the presence of the
logo on the ball, which can sometimes be detected as one
or two dots. The DOE is also sensitive to the ball being
centered in the image. Indeed, the center of the image is
assumed to be the center of the ball and the 3D position
of the dots are calculated accordingly. There are also some
estimation failures when only two or three dots are detected.
Still, the failure rate (error above 20 ◦) is of 7% on our whole
benchmark dataset. This gives us a mean error of 2.3± 2.3
◦if the identification failures are ignored.

Regarding speed, the DOE takes 0.043±0.002 s to process
10 images, the required number of ball images for the spin
regression.

Fig. 8: Ball spinner test case with 150 rps - Row 1: Generated
heatmap, the dots located with the blob detection are circled
in red; Row 2: input image on which we projected the
estimated dots’ position (red dots are estimated dot position
and the blue dot is the estimated logo position)

Fig. 9: DOE’s error distribution (range is limited between
0◦and 20◦for better readability)

C. Spin estimation

We estimated the accuracy of our spin estimation method
with our ball spinner benchmark. We restricted ourselves
to using ten images as input representing a measurement
duration of 26 ms. We observe in Fig.10 that SpinDOE
gives 90% of the time a relative error lower than 0.20. Most
erroneous spin estimations come from low spin values (below
10 rps) because of the increase of relative error and from
high spins (above 140 rps) because the angle unwrapping
in the spin regression fails. The RANSAC spin regression
takes 0.017± 0.002 s to run for a ten images input. In total,
SpinDOE requires 0.061± 0.003 s to give out a spin value.
This is enough to use SpinDOE in realtime.

1) Constant spin assumption: One of the most common
assumptions in robotics for table tennis is that the spin is

Fig. 10: SpinDOE’s relative error distribution (range is
limited between 0 and 0.20 for better readability)

Fig. 11: Spin calculated from the difference between 2
successive ball orientations

constant. However, to our knowledge, this assumption has
never been empirically proven. From a theoretical point of
view, the air applies a viscous torque on all rotating spheres
[26], which slows down their spin. The ball’s spin dynamic
can be described by the following equation:

I
ω(t)

dt
=

2

4
mr3

ω(t)

dt
= Tviscous = −8πνr3ω(t) (6)

where I is the ball’s inertia, ν is the air viscosity, m is the
ball’s mass and r is the ball’s radius.

Solving this ODE gives us the spin evolution:

ω(t) = ω(t0) exp

(
−12πνr

m
t

)
≈ ω(t0)− ω(t0)

12πνr

m
t

(7)

with the dampening coefficient: − 12πνr
m ≈ −0.005 (theo-

retical value using ν = 1.81× 10−5 kg/(m·s), m = 2.7g and
r = 20mm).

In Fig.11, we show the spin of a ball shot with a Butterfly
Amicus ball throwing machine with the maximum spin
and velocity setting. As we can see with the plot of the
norm, the spin indeed decreases and a linear regression
shows us that the theoretical value for the spin dampening
is vastly underestimated. However, the spin decrease is so
slight relative to the flight duration that the constant spin
assumption holds.

We try to evaluate the spin dampening coefficient for
several shots and obtain a mean value of 0.091± 0.03. This
shows that the theoretical value is clearly underestimated.

V. DATASET

Using SpinDOE, we generated a dataset of table tennis
ball trajectories. The positions are recorded at 145 Hz and

Fig. 12: Subsample of the trajectories from the recorded
dataset

the spin is recorded only once, making it only valid until
the first bounce. To our knowledge, no other similar dataset
is publicly available. The position of the ball is captured
using the method described in [25]. Two cameras are used
for triangulating the ball’s position. The ball’s position in
the image is extracted using standard computer vision algo-
rithms (background subtraction, mask generation and blob
detection).

The dataset contains 200 trajectories, a subsample of
which can be seen in Fig. 12. The maximum velocity and
spin observed were respectively 11 m/s and 150 rps. The
balls were shot with the Amicus ball thrower for which the
shooting settings where uniformly sampled.

This dataset can have multiple applications: benchmarking
trajectory prediction algorithms, checking that algorithms
that estimate spin from ball trajectories indeed work or
building a bayesian table tennis simulator for a smaller
sim2real gap in reinforcement learning, for example.

VI. CONCLUSIONS

Though our method can not be used for measuring spin
during official table tennis matches, it can be very useful for
research. We provide a dataset of ball trajectories with spin
for that purpose. SpinDOE does not require high resolution
or high fps compared to other methods. It is also robust to
motion blur and does no suffer from hidden markers, as logo-
based methods do. It is most of all very accurate, e.g. one
can observe the effect of the viscous torque slowing down
the ball’s spin. This method is used in the context of a table
tennis robot, but it could also be applied to other ball sports
such as tennis, handball or football.

REFERENCES

[1] “(S+) Timo Boll: ”Ich fixiere den Stempel auf dem Ball”,” Der Spiegel,
Sept. 2018.

[2] S. Abeyruwan, L. Graesser, D. B. D’Ambrosio, A. Singh, A. Shankar,
A. Bewley, and P. R. Sanketi, “I-Sim2Real: Reinforcement Learning
of Robotic Policies in Tight Human-Robot Interaction Loops,” Aug.
2022.

[3] Y. Zhang, R. Xiong, Y. Zhao, and J. Chu, An Adaptive Trajectory
Prediction Method for Ping-Pong Robots, Oct. 2012.

[4] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and
J. Peters, “Learning to Play Table Tennis From Scratch using Muscular
Robots,” June 2020.

[5] L. Yang, H. Zhang, X. Zhu, and X. Sheng, “Ball Motion Control in the
Table Tennis Robot System Using Time-Series Deep Reinforcement
Learning,” IEEE Access, vol. 9, pp. 99 816–99 827, 2021.

[6] J. Tebbe, L. Klamt, Y. Gao, and A. Zell, “Spin Detection in Robotic
Table Tennis,” 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9694–9700, May 2020.

[7] S. Sato and M. Aono, “Leveraging Human Pose Estimation Model for
Stroke Classification in Table Tennis,” p. 3.

[8] K. M. Kulkarni and S. Shenoy, “Table Tennis Stroke Recognition
Using Two-Dimensional Human Pose Estimation,” May 2021.

[9] P. Blank, J. Hoßbach, D. Schuldhaus, and B. M. Eskofier, “Sensor-
based stroke detection and stroke type classification in table tennis,” in
Proceedings of the 2015 ACM International Symposium on Wearable
Computers, ser. ISWC ’15. New York, NY, USA: Association for
Computing Machinery, Sept. 2015, pp. 93–100.

[10] P. Blank, B. H. Groh, and B. M. Eskofier, “Ball speed and spin
estimation in table tennis using a racket-mounted inertial sensor,” in
Proceedings of the 2017 ACM International Symposium on Wearable
Computers, ser. ISWC ’17. New York, NY, USA: Association for
Computing Machinery, Sept. 2017, pp. 2–9.

[11] Y. Gao, J. Tebbe, and A. Zell, “Robust Stroke Recognition via Vision
and IMU in Robotic Table Tennis,” in Artificial Neural Networks and
Machine Learning – ICANN 2021, ser. Lecture Notes in Computer
Science, I. Farkaš, P. Masulli, S. Otte, and S. Wermter, Eds. Cham:
Springer International Publishing, 2021, pp. 379–390.

[12] “Single-Image 3D Reconstruction of ball velocity and spin from
motion blur - An Experiment in Motion-from-Blur:,” in Proceedings
of the Third International Conference on Computer Vision Theory and
Applications. Funchal, Madeira, Portugal: SciTePress - Science and
and Technology Publications, 2008, pp. 22–29.

[13] X. Chen, Y. Tian, Q. Huang, W. Zhang, and Z. Yu, “Dynamic model
based ball trajectory prediction for a robot ping-pong player,” 2010
IEEE International Conference on Robotics and Biomimetics, ROBIO
2010, Dec. 2010.

[14] H. Su, Z. Fang, D. Xu, and M. Tan, “Trajectory Prediction of
Spinning Ball Based on Fuzzy Filtering and Local Modeling for
Robotic Ping–Pong Player,” IEEE Transactions on Instrumentation
and Measurement, vol. 62, no. 11, pp. 2890–2900, Nov. 2013.

[15] Y. Zhang, R. Xiong, Y. Zhao, and J. Wang, “Real-Time Spin Estima-
tion of Ping-Pong Ball Using Its Natural Brand,” IEEE Transactions
on Instrumentation and Measurement, vol. 64, pp. 1–1, Aug. 2015.

[16] J. Glover and L. P. Kaelbling, “Tracking the spin on a ping pong
ball with the quaternion Bingham filter,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA). Hong Kong, China:
IEEE, May 2014, pp. 4133–4140.

[17] T. Tamaki, T. Sugino, and M. Yamamoto, “Measuring Ball Spin by
Image Registration,” Mar. 2004.

[18] T. Tamaki, H. Wang, B. Raytchev, K. Kaneda, and Y. Ushiyama,
“Estimating the spin of a table tennis ball using Inverse Compositional
Image Alignment,” in Acoustics, Speech, and Signal Processing, 1988.
ICASSP-88., 1988 International Conference On, Mar. 2012, pp. 1457–
1460.

[19] S. Furuno, K. Kobayashi, T. Okubo, and Y. Kurihara, “A study on
spin-rate measurement using a uniquely marked moving ball,” in 2009
ICCAS-SICE, Aug. 2009, pp. 3439–3442.

[20] A. Szèp, “Measuring Ball Spin in Monocular Video,” Feb. 2011.
[21] C. Theobalt, I. Albrecht, J. Haber, M. Magnor, and H.-P. Seidel,

“Pitching a Baseball — Tracking High-Speed Motion with Multi-
Exposure Images,” p. 8.

[22] H. Wolfson and I. Rigoutsos, “Geometric Hashing: An Overview,”
Computational Science & Engineering, IEEE, vol. 4, pp. 10–21, Nov.
1997.

[23] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet:
Keypoint Triplets for Object Detection,” Apr. 2019.

[24] M. M. de Almeida, D. Mortari, R. Zanetti, and M. Akella, “QuateRA:
The Quaternion Regression Algorithm,” Journal of Guidance, Control,
and Dynamics, vol. 43, no. 9, pp. 1600–1616, Sept. 2020.

[25] J. Tebbe, Y. Gao, M. Sastre-Rienietz, and A. Zell, “A Table Tennis
Robot System Using an Industrial KUKA Robot Arm,” in Pat-
tern Recognition, ser. Lecture Notes in Computer Science, T. Brox,
A. Bruhn, and M. Fritz, Eds. Cham: Springer International Publishing,
2019, pp. 33–45.

[26] U. Lei, C. Y. Yang, and K. C. Wu, “Viscous torque on a sphere under
arbitrary rotation,” Appl. Phys. Lett., vol. 89, no. 18, p. 181908, Oct.
2006.

	I INTRODUCTION
	II ORIENTATION ESTIMATION
	II-A Dot Detection
	II-B Dataset
	II-C Bayesian Geometric Hashing
	II-D Pattern generation

	III SPIN ESTIMATION
	III-A Spin regression

	IV EXPERIMENT
	IV-A Setup
	IV-B Orientation estimation
	IV-C Spin estimation
	IV-C.1 Constant spin assumption

	V DATASET
	VI CONCLUSIONS
	References

