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Abstract— Needle picking is a challenging manipulation task
in robot-assisted surgery due to the characteristics of small
slender shapes of needles, needles’ variations in shapes and
sizes, and demands for millimeter-level control. Prior works,
heavily relying on the prior of needles (e.g., geometric models),
are hard to scale to unseen needles’ variations. In this paper,
we present the first end-to-end learning method to train
deep visuomotor policy for needle picking. Concretely, we
propose DreamerfD to maximally leverage demonstrations to
improve the learning efficiency of a state-of-the-art model-based
reinforcement learning method, DreamerV2; Since Variational
Auto-Encoder (VAE) in DreamerV2 is difficult to scale to high-
resolution images, we propose Dynamic Spotlight Adaptation
to represent control-related visual signals in a low-resolution
image space; Virtual Clutch is also proposed to reduce per-
formance degradation due to significant error between prior
and posterior encoded states at the beginning of a rollout.
We conducted extensive experiments in simulation to evaluate
the performance, robustness, in-domain variation adaptation,
and effectiveness of individual components of our method. Our
method, trained by 8k demonstration timesteps and 140k online
policy timesteps, can achieve a remarkable success rate of
80%. Furthermore, our method effectively demonstrated its
superiority in generalization to unseen in-domain variations
including needle variations and image disturbance, highlighting
its robustness and versatility. Codes and videos are available at
https://sites.google.com/view/DreamerfD.

I. INTRODUCTION

Needle picking is a repetitive and time-consuming task
during surgery where suturing needles are required to be
picked up by suturing tools (e.g., instruments) before stitch-
ing. Automating such a task in robot-assisted surgery (RAS)
can greatly relieve surgeons’ workload. Although algorithms
have been proposed to solve the needle-picking tasks [1]–
[7], the proposed algorithms entail pose information of key
objects (e.g., needles and grippers of suturing tools). A
few works studied image-based visual servo methods where
projected points of the key objects were tracked for control
without the need for pose estimation in needle-insertion
[8] and cutting tasks [9]. However, their methods require
designing hand-crafted features on the key objects. Neither
the pose-estimation nor the feature-tracking methods are well
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Fig. 1: An overview of our method for end-to-end learning
of deep visuomotor policy for needle picking: The visual
inputs of visuomotor policy are obtained by pre-processing
observed RGB-D images with our Dynamic Spotlight Adap-
tation; Robot commands are controlled by our Virtual Clutch
with policy action inputs; Our learning method DreamerfD,
which leverage demonstrations to maximally improve the
learning of both world models and the policy [12], learns
our deep visuomotor policy unsupervisedly.

adapted to unseen in-domain variations (e.g., shape or size
variations of needles shown in Fig. 2) in needle-picking tasks
due to the necessity of priors (e.g., geometric models of the
key objects) and engineering efforts.

Remarkable achievements in vision-based robotic tasks,
including dexterous manipulation [10] and robot grasping
[11], were obtained by model-free deep reinforcement learn-
ing (DRL). They learned deep visuomotor policies, which
model the mapping from visual observations to robotic com-
mands with deep neural networks and showed extraordinary
abilities in adapting task variations and self-supervised learn-
ing. However, they required weeks of training on multiple
real robots and distributed computation on multiple high-
end GPUs, which prevented most practitioners from applying
their methods due to the high cost of robotic maintenance
and lack of robotic and computational resources.

Model-based DRL, on the other hand, demonstrates as-
tounding data efficiency and low computational cost while
achieving competitive performances compared with the
model-free DRL methods [13]. Recent advances in World
Model [14], [15], which can predict action-conditioned future
outcomes (e.g., visual observations, rewards), show state-
of-the-art (SOTA) performances for end-to-end learning in
video games [12], [16] and robotic tasks [17]. However,
geometric characteristics of needles (e.g., millimeter-level
size and slenderness) pose significant challenges to both
vision and control considering deploying world-model-based
DRL methods to needle-picking tasks.
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Fig. 2: Canonical stages of needle picking (left) in RAS, including initial state, approaching, grasping, and lifting. In-
domain variations in needle picking (right). We consider two instances for size variations and another two instances for
shape variations.

In this work, we are interested in endowing robots with
the ability to adapt in-domain variations for needle picking.
To this end, a deep visuomotor policy was learned in a self-
supervised manner guided by a small set of demonstration
trajectories (See Fig. 1). We trained on a laptop with 8G
RTX3070 GPU for 3 days, which was research-friendly due
to low computation cost. To the best of our knowledge,
we are 1) the first to deploy end-to-end learning of deep
visuomotor policy for needle picking and 2) the first to
investigate model-based DRL for learning deep visuomotor
policy in surgical autonomy. Our main contributions are:

1) A general formulation for end-to-end learning of deep
visuomotor policy in needle picking;

2) A data-efficient model-based DRL framework, Dream-
erfD, that integrates a SOTA model-based RL frame-
work, DreamerV2, with demonstrations;

3) Novel techniques, Dynamic Spotlight Adaptation and
Virtual Clutch, to largely mitigate the issues of low-
resolution image input and significant error between
prior and posterior encoded states in DreamerV2, re-
spectively;

4) Systematic evaluation for the efficiency of our method,
showing our performance, in-domain variation adapta-
tion, robustness and effectiveness of individual com-
ponents. We demonstrate our learned deep visuomotor
policy can adapt to the needle’s variations in shape and
size.

II. RELATED WORKS

A. Combination of DRL and Demonstrations

Popular choices of model-free DRL methods, such as PPO
[18] and SAC [19], require a large amount of experience to
solve general RL problems. Their sampling inefficiency is
largely alleviated by model-based DRL (e.g. PILCO methods
[20], [21]) and model-based planning (e.g. PETS [22]). When
demonstrations are applicable, DRL can be combined with
demonstrations [23]–[25] to accelerate learning efficiency
and is proven to be effective in sparse-reward settings. How-
ever, scaling the aforementioned methods to RL scenarios
with high dimensional observation is challenging.

Recent advances in modeling the dynamics of the envi-
ronment show promise in scaling DRL to the setting of
high-dimensional observation. Visuomotor policies can be
optimized by interacting learned dynamic models in image
space (Visual Forsight [26]) or latent space (world-model-
based DRL [12], [16]). Alternatively, the learned pixel-level

dynamic model can be used to generate optimal trajectories
using planning methods [15], [27], [28]. However, how
to combine world-model-based DRL with demonstrations
efficiently remains unclear. In contrast, we focus on how to
maximally leverage demonstrations to improve the learning
of world-model-based DRL.

B. Needle Picking

Researchers have studied needle picking extensively: Liu
et al. investigated the optimal grasping poses of a needle [1],
[2]; Ettorre et al. first achieved needle picking without the
assistance of angular positioners [3]; Sundaraesan et al. fur-
ther achieved needle picking in settings of needle occlusion
[4]. Another surgical task related to needle picking is needle
re-grasping, where a robotic arm is required to hand over its
grasped needle to another robotic arm: Chiu et al. [5] applied
BC-integrated DDPG [24] to plan viable trajectories in
decision time; Wilcox et al. [7] achieved needle re-grasping
in the setting of needle occlusion. Recently, Researchers [6]
demonstrated a strong ability of generalization using model-
free DRL methods, where control policies were learned in
simulation and then transferred the policy to real robots for
multiple surgical tasks including needle picking, needle re-
grasping, etc. However, the aforementioned methods, requir-
ing either tracking needle poses or features, heavily relied on
the prior of needles (e.g., the geometric model of needles),
limiting the adaptation ability to unseen in-domain variations
(e.g., variations of needle shape and size). The closest work
was from Scheikl et, al. [29], who trained deep visuomotor
policy with model-free DRL in simulation and transferred it
to real robots with an Unpaired Image-To-Image translation
model for tissue retraction. Nevertheless, the dense reward
they used entailed tracking positions of key points (e.g., goal
points on the tissue) and extensive reward engineering, which
hardly improve the scalability in in-domain variations.

III. PROBLEM DESCRIPTION

We focus on solving a set of needle-picking tasks for
RAS, where a needle on a plane is required to be picked
up by a robotic arm. The initial poses of the needle and the
gripper are random. RGB-D images It from a monocular
camera are observed at time t. Discrete commands are used
to servoing the robotic arm incrementally. Specifically, the
robotic gripper can be driven translationally (along X, Y, and
Z axes for 2 mm), and rotationally (along the normal axis of
the plane for 10 Deg) in both positive and negative direction



w.r.t. a fixed world frame; The jaw of the gripper can be
opened and closed by a toggling command; All commands
are decoupled, resulting in discrete commands at in a 9-
element discrete set A at time t. The tasks of needle picking
have a finite task horizon T = 100. The task is successful if
the needle is grasped and lifted to 0.06 mm above the plane
by the gripper. The goal of our work is to develop a control
policy that maps from historical observed images to control
actions. We assume that 1) the robotic arm will not exceed
its joint limits, and 2) either the needle or the gripper can be
partially but not fully occluded.

IV. PRELIMINARIES

A. Problem Formulation

We model the needle-picking task as a discrete-time par-
tially observable Markov Decision Process (POMDP) with
discrete action space, which can be formally described as
a 7-tuple (S,A, T,R,Ω, O, γ). The elements in the 7-tuple
are defined as follows: S is a set of partially observable
states; R(s, a) : S ×A → R is a reward function; T is a set
of conditional transition probabilities between states; O is a
set of conditional observation probabilities; γ ∈ [0, 1] is the
discount factor; Ω is the observation and A is a set of action
defined in Section III. The goal is to learn a control policy
π that maximizes its expected future discounted reward
Eπ[

∑T
i=t γ

i−tri], where ri is the reward at time i and t is
the current time.

B. DreamerV2

DreamerV2 [12], an advanced model-based RL method,
consists of 2 components: world models, targeting to model
the dynamics of environments with POMDP formulation, and
a control policy, targeting to learn from merely simulated
trajectories in world models and generate rollout trajectories
for the learning of world models.

For world models, observation xt, including images and
scalar signals, is encoded to stochastic latent state zt through
Variational Auto-Encoder (VAE) [30]. Then, the sequences
of the latent states are predicted by Recurrent State-Space
Model (RSSM) [15], a sequence model with a deterministic
recurrent state ht. Finally, the reward rt, the discount factor
λt, and reconstructive observation x̂t are predicted based on
the model state, which is formed by the concatenation of
these states as st = [ht, zt]. In summary, the world model
can be described as follows:

RSSM

 Recurrent model: ht = fϕ(ht−1, zt−1, at−1)
Representation model: zt ∼ qϕ(zt|ht, xt)
Transition predictor: ẑt ∼ pϕ(zt|ht)
Image predictor: x̂t ∼ pϕ(x̂t|ht, zt)
Reward predictor: r̂t ∼ pϕ(r̂t|ht, zt)
Discount predictor: λ̂t ∼ pϕ(λ̂t|ht, zt),

(1)
where p and q denote prior and posterior distributions,
respectively; ϕ is the parameter of world models, which can

be learned by optimizing the world model loss as:

Lϕ =Eqϕ(z1:T |a1:T ,x1:T )

[ T∑
t=1

− ln pϕ(xtrtγt|st)

+ βklKL[qϕ(zt|st)||pϕ(zt|ht)]
]
,

(2)

where KL and βkl are the KL divergence loss and its scaling
weight, respectively.

The control policy is learned by the actor-critic mecha-
nism, where an actor pψ(ât|ẑt) and a critic vξ(ẑt) are used
to predict the action and the value, respectively. The critic
network, predicting the λ-return V λ

t , is learned by optimizing
a mean square loss as:

Lξ = Epϕ,pψ
1

2
[

H−1∑
t=1

(vξ(ẑt)− sg(V λ
t ))

2], (3)

where sg(·) denotes the stop gradient function. The actor is
learned by the Reinforce algorithm [31], where the policy
loss is designed as

Lψ = Epϕ,pψ [
H−1∑
t=1

− βr ln pψ(ât|ẑt)sg(V λ
t − vξ(ẑt))︸ ︷︷ ︸

reinforce

− βeH[at|ẑt]︸ ︷︷ ︸
entropy

],

(4)

where H is the loss of an entropy regularizer to incent
exploration; βr and βe are scaling weights for the Reinforce
algorithm and the entropy regularization, respectively.

The overall loss of DreamerV2 can be formulated as

LDV2 = E(x0:T ,r1:T ,λ1:T ,a1:T )∼D[Lϕ]+Exi∼D[Lξ+Lψ], (5)

where transitions are sampled from policy experiences D
with a replay buffer [23]. Details of Dreamerv2 can be found
in [12].

V. DREAMERFD: INTEGRATING WORLD MODELS AND
DEMONSTRATIONS

We present Dreamer from Demonstrations (DreamerfD)
to maximally enhance the learning efficiency of DreamerV2
with demonstrations for POMDP with sparse delayed re-
wards and high-dimensional observation.

First, a set of suboptimal demonstration trajectories DE ,
which normally have better returns compared to rollout
trajectories of DreamerV2 at the early learning stage, is
gathered by either human demonstration or hand-engineered
programs. Then, the demonstration trajectories are added to
an additional replay buffer and keep all transitions during
training. The demonstration replay buffer samples transitions
of demonstrations to train the world models and the control
policy, where the training loss can be defined by reformulat-
ing (5) as

LE = E(x0:T ,r1:T ,λ1:T ,a1:T )∼DE [Lϕ] + Exi∼DE [Lξ + Lψ];
(6)



Fig. 3: Schematic illustration for Virtual Clutch. (a) shows
the first 5 timesteps of a rollout when Virtual Clutch is
not applied to our visuomotor controller. (b) shows the
corresponding 5 timesteps after applying Virtual Clutch
(Hclutch = 4).

.

Besides, we apply Behavior Cloning (BC) to guide the
learning of the policy with demonstrations, where a BC loss
is used to train the actor to regress actions in DE as

LBC = E(x0:T ,a1:T )∼DE
[
βbc Epϕ,pψ

[ T∑
t=1

− ln pψ(at|st)
]

︸ ︷︷ ︸
BC

]
,

(7)
where βbc is a scaling weight for BC; Finally, the overall
loss for DreamerfD can be written as:

L = LDV2 + LE + LBC; (8)

Note that we train multiple objectives simultaneously without
multi-stage training. In summary, we modified the Dream-
erV2 algorithm as follows:

• Transitions of demonstrations are added to the addi-
tional replay buffer;

• An additional training loss, sampling from demonstra-
tions instead of learned policy experiences, is used to
train both the world models and the control policy;

• An additional BC loss, sampling from the demonstration
replay buffer, is used to guide the policy learning.

VI. END-TO-END DEEP VISUOMOTOR CONTROL FOR
NEEDLE PICKING

In this section, we will show how to deploy our end-
to-end learning method to needle-picking tasks. First, we
will introduce task-level states determined by a Finite State
Machine for needle picking. Then, we will elaborate on two
proposed techniques, Dynamic Spotlight Adaptation and Vir-
tual Clutch, that dramatically improve image representation
and mitigate the issue of significant error between prior and
posterior encoded states, respectively.

A. Task-level Finite State Machine

We design a Finite State Machine (FSM) that directly
determines task termination and reward assignment. The
task-level states in FSM are defined as:

• Successed Terminated State: The needle is successfully
grasped. In this state, the reward is 1 and the task is
terminated.

• Failed Terminated State: The task failed due to the limit
of task horizon T . In such a case, the reward is −0.1
and the task is terminated.

• Failed Non-terminated State: The task failed due to
exceeding the workspace. In such a case, the reward
is −0.01 and the task is not terminated. In addition, the
actor action will be replaced by aidle for the control
output.

• In-progress State. The task is performed in progress.
The reward is −0.001 and the task is not terminated.

B. Virtual Clutch for Deep Visuomotor Control

There is a significant error between prior and posterior
state ẑt and zt at the beginning of a rollout due to poor
initial prior guess (e.g., a zero matrice in [16]) and slow
convergence on the error. We empirically observed that the
controller of DreamerV2 performs poorly for the first few
timesteps due to large errors, leading to catastrophic results,
(See the results in our ablation study in the later Sec. VII-E).

We propose a simple technique, Virtual Clutch, to solve
this issue. Our inspiration is from the vehicle clutch design
where vehicles can only be driven when the clutch is
closed. Similarly, the control output of our controller act is
determined by a timestep-dependent clutch as

act =

{
at, t >= Hclutch

aidle, t < Hclutch,
(9)

where aidle is an idle action command that keeps the joint
positions of the robot arm unchanged, Hclutch is a non-
negative constant determining the timestep that starts to close
the virtual clutch, and at is the action from the learned agent
policy. Fig. 3 shows the illustration for Virtual Clutch.

C. Dynamic Spotlight Adaptation for Image Representation

Learning the visual component of DreamerV2 for needle
picking is challenging: First, VAE is notoriously hard to scale
to high-dimensional images [30], and thus origin RGB im-
ages were down-sampling to 64x64x3 low-dimension RGB
images due to limitations of the VAE capacity in DreamerV2
[12], leading to degradation of geometric and pose-related
visual information, especially for needle-picking tasks where
the needles are tiny and slender (See the degradation results
in our ablation study in the later Sec. VII-E); (b) Visual
noises (e.g., the background that is irrelevant to our control),
taking majority proportion in origin images, especially for
RAS, are encoded by VAE using RGB-D visual represen-
tation, which is both data-inefficient and computationally
expensive.

We propose Dynamic Spotlight Adaptation (DSA) for
image representation, which maximally represents control-
related visual information on 64x64x3 low-dimensional im-
age space. We are inspired by the Mini-Map mechanism in
computer games of multiplayer online battle arena (MOBA):



Fig. 4: Pipeline of Dynamic Spotlight Adaptation (DSA) for needle picking. (a) shows that segmented masks of key objects
are inferred by a color-based scripted program based on original RGB images. In (b), depth matrices are segmented by the
inferred masks. 2D matrices of DSA images can be obtained by zooming in needle-centric areas in the segmented depth
matrics and merging the zoom-in area with out-of-zoom depth pixels. We stack the 2D matrices to a 3D DSA image, followed
by downsampling. The final image is obtained by merging the resultant downsampled image with the image encoding of
task-level states and gripper states.

local information can be observed by zooming in the agent-
centered area while the global information of the environ-
ment (e.g., other out-of-frame agents, the location of the
zoom-in area) can be observed by a mini-map. Similarly,
DSA is obtained by the following pipeline: First, we segment
the region of interest of key objects (i.e., the needle and the
gripper), where the binary image masks, Mn and Mg , are
inferred by a simple script of color segmentation for the
needle and the gripper, respectively. Then, the depth-channel
matrix of the original RGB-D image dI is segmented by the
inferred masks for both needle and gripper as

dIg =
dI ⊙Mg,

dIn = dI ⊙Mn, (10)

where ⊙ is a dot product operator, and dIg and dIn are the
corresponding segmented matrices for the gripper and needle,
respectively. Next, the segmented matrices are processed
by zoom-in (the segmented matrices are cropped with a
bounding square box B, followed by resizing the resultant
matrices), which is defined as

dI
′

g = frs(fcrop(
dIg,B)), dI

′

n = frs(fcrop(
dIn,B)),

(11)
where fcrop and frz are the image crop and resize function,
respectively; B is the square zoom-in box which has the
same center coordinates with the bounding box of the needle
mask Mn and a side length b ∈ [1,+∞) times the maximum
side length of the bounding box, considering leaving image
margins; dI

′

g and dI
′

n are zoom-in depth matrices for the
gripper and the needle, respectively. Besides, an additional
matrice Im, which is a mixed information of both the zoom-
in box and out-of-zoom pixels in the origin depth image, is
formulated as

Im = frs(fclip(B + dIg +
dIn)), (12)

where fclip is a clip function that saturates the input value
to the range [0, 255] for the 8-bit unsigned integer. We stack

these processed 2-D matrices to a 3-D matrice IDSA as

IDSA =
[
Im

dI
′

n
dI

′

g

]
. (13)

Finally, we obtain the final image I
′′

DSA for DSA: IDSA is
downsampled to 64x64x3 image I

′

DSA, and then we encode
the scalar signals, including task-level states in Sec. VI-A and
the toggling command of the gripper, to 3D image matrices
using broadcasting (a common practice in [28]), followed
by adding the encoded matrices to the downsampled DSA
image. The final DSA image can be obtained by

I
′

DSA = frz(IDSA), I
′′

DSA = I
′

DSA + Ie, (14)

where I
′

DSA, I
′′

DSA, Ie ∈ R64×64×3. Fig. 4 illustrates the
pipeline of DSA in detail.

VII. EXPERIMENTS

Extensive experiments were carried out in the simulation,
aiming to answer the following questions:

• How is the performance of our method compared to the
SOTA framework?

• Can our method adapt to unseen task in-domain varia-
tions?

• Is our method robust to unseen noises and disturbances?
• How effective are the individual components of our

methods?
We start with introducing the experiment setup of simulation,
followed by elaborating on the studies of performance, in-
domain variation adaptation, robustness, and ablation.

A. Experiment Setup

We conducted experiments on the simulation platform
of 2021-2022 AccelNet Surgical Robotics Challenge [32],
which provided high-fidelity simulation, standardized prob-
lem definitions, and evaluations for benchmarking au-
tonomous suturing (See Fig. 5). We developed our simulation
code based on our previous work [33], which ranked first



Fig. 5: Experiment setup in the simulation of AccelNet
Surgical Robotics Challenge [32].

among all competitors. The dimension of the workspace was
40mm × 60mm × 30mm; A third-person camera provided
600×600×4 RGB-D images for visual feedback. Synthetic
colors, (blue for the gripper, green for the needle, and red
for the background), were used to reduce the difficulty of
our color-based segmentation since segmentation was beyond
the focus of this paper. The success rate was chosen as the
key index of our evaluation, similar to that of [7]. Rollouts
beyond our assumptions in the evaluation were neglected.
For each training of our method and baselines, the maximum
training timesteps L was 140000; 20 evaluation rollouts were
carried every 2000 training timestep for the evaluation of
the success rate; 8000 timesteps of demonstrations, (approx-
imately 400 rollouts), were pre-filled using a script developed
in our previous work [33]; Each training of the experiment
was run on a laptop with RTX 3070 GPU with 8 Gigabite
Memory for 3 days. Details of key hyperparameters can be
found in Appendix I.

B. Performance Study

We compared our method with SOTA end-to-end learning
framework, DreamerV2 [12], in simulation. To keep the im-
age observation space the same as ours for a fair comparison,
the original RGB-D images were transformed into mixed
images with 3 channels, where one channel was obtained
by the weighted summation of the original red and blue
channels, and the remaining two channels were the original
blue and depth channels. The resultant mixed images were
downsampled to 64 × 64 × 3 images. Scalar signals, (i.e.,
task-level states and gripper states), were encoded by Multi-
Layer Perceptron [12], [17]. The remaining training settings
for the baseline were kept consistent with our approach.

Fig. 6a shows the results of the performance study. Our
method converged after 134k training timesteps, reaching
80% success rate in the evaluation. Compared to our method,
the DreamerV2 baseline had not yet converged after 140k
training timesteps. Although we observed incremental im-
provement at around 20k, 60k, and 125k training timesteps,
the success rate was extremely low for most of the training
timesteps. Overall, our method demonstrated higher data
efficiency in learning visuomotor policy for needle picking.

C. In-domain Variation Adaptation Study

A wide variety of needles to study the ability to adapt
in-domain variations were designed (See Fig. 2). The needle
in AccelNet Surgical Robotics Challenge [32] served as the
standard needle. For the size variation, a small needle and
a large needle were obtained by scaling the standard needle
by the factor of 0.75 and 1.3, respectively. For the shape
variation, we designed two irregular needles the same size
as the standard needle. Note that our visuomotor policy was
only trained on the standard needle, and then transferred
directly to the settings of unseen in-domain variations.

Fig. 6b shows the performance of our trained policy
applied to unseen needles. The standard needle served as
the baseline. We observed that our model achieved a higher
success rate of 84% for grasping small needles because of
its higher error tolerance, and achieved similar performance
in grasping varied irregular shape needles with the same
size compared to the baseline. Although the grasping larger
size needle requires a more accurate claw pose, as thicker
width reserves less space for opened claw with a certain
width which means less error tolerance, our method can still
obtain a success rate of up to 68%. The above promising
results demonstrated our visuomotor policy can be efficiently
adapted to unseen needle variants.

D. Robustness Study

We evaluated the robustness of our method quantitatively
and qualitatively. For the quantitative evaluation of robust-
ness, we transferred our trained policy to unseen environ-
ments with two different noise levels of depth images. In
particular, gaussian noises which samples from the unit
Gaussian distribution scaled by a factor of 255 ·ηn (See Fig.
7a). As Fig 7b shows, our controller successfully transferred
to the unseen environments with a low noise level (ηn = 0.1),
which is similar to that of real RGB-D cameras. Even the in
environment with an unrealistic high noise level (ηn = 0.5),
the reduction in success rate was 19% compared to our
baseline (ηn = 0), indicating our method has a strong robust-
ness to depth image noises. For the qualitative evaluation of
robustness, external disturbances were applied to the needle.
Our learned controller was able to grasp the dynamic needle
due to perturbation and learn to re-grasp within the task.
Qualitative results can be found in our supplementary video.

E. Ablation Study

We evaluated the effectiveness of individual components
in the ablation study, where ablative baselines are:

1) Removal of BC (No BC). In this baseline. we set βbc
to zero to remove the effect of BC.

2) Removal of actor gradients (No Actor Grad). We set
βr to zero to remove the effect of Reinforce algorithm.

3) Removal of DSA (No DSA). We replaced DSA with
the image representation in the DreamerV2 baseline.

4) Removal of Virtual Clutch (No Virtual Clutch). Hclutch

was set to zero to remove the effect of Virtual Clutch.
Fig. 8 shows the evaluated success rate during training

in our ablation study. The success rate of our method was



(a) Performance study

(b) In-domain variation adaptation study

Fig. 6: Evaluations in (a) performance study and (b) in-
domain variation adaptation study. In (a), the evaluation
curves of success rate for the training process were demon-
strated; Curves are smoothed by Exponential Moving Win-
dow with a 0.7 smoothing factor. In (b), our controller was
first trained based on the standard needle and then transferred
to unseen needles with variations (See needle instances in
Fig. 2). For each needle, the success rate was evaluated with
100 rollouts.

significantly higher compared to No BC and No Actor Grad,
demonstrating the efficient policy learning of our method
using the mixed effect of Reinforce Algorithm and BC. The
learning of No Virtual Clutch was more unstable compared
to ours as its success rate dropped to zero in the course
of training. The introduction of Virtual Clutch, on the other
hand, effectively eliminates the instability effect due to the
significant error between prior and posterior encoded states,
resulting in a steady increase in the success rate of the
training process. Our method converged faster and performed
better than No DSA, indicating that our image representation
using DSA was more efficient for the end-to-end learning of
visuomotor policy in needle-picking tasks.

VIII. CONCLUSION, LIMITATION AND DISCUSSION

In this paper, we proposed the first end-to-end learning
method of deep visuomotor policy for needle picking. In
particular, DreamerfD, which integrated DreamerV2 with
demonstrations, was proposed to improve learning efficiency;

(a) Depth images under different noise levels

(b) Performance in robustness study

Fig. 7: Robustness study. In (a), we show 3 different noise
levels for depth images. In (b), our controller was first trained
in the environment with noise-free depth images (ηn = 0)
and then transfer to environments with noisy depth images
(ηn = 0.1 and ηn = 0.5). For each baseline, the success rate
was evaluated with 100 rollouts.

Fig. 8: Success rate in the evaluation of our ablation study.
Curves are smoothed by Exponential Moving Window with
a 0.3 smoothing factor.

We proposed DSA to maximally represent control-related
visual information in 64x64x3 low-dimensional image space,
due to the limited capacity of the world models in Dream-
erV2; Virtual Clutch was applied to ensure low error between
prior and posterior encoded states in DreamerV2. Extensive
experiments were carried out to evaluate the performance,
in-domain variation adaptation, robustness, and efficiency of
individual components of our method. We demonstrated our
visuomotor policy can adapt to unseen in-domain variations.

Our method was limited as follows: 1) DSA relied on the
segmentation of key objects and more rigorous experiments
need to be carried out to evaluate the robustness of segmen-
tation disturbance; when applying DSA to complex scenes



in real surgery, data-driven segmentation methods such as
MaskRCNN [34] might yield better performance compared
to color-based segmentation; 2) Virtual Clutch was empiri-
cally determined by timesteps and incorporating more factors
(e.g., the error between prior and posterior encoded states)
for our Virtual Clutch might produce better performance. In
our future work, we will conduct more rigorous studies on
our proposed methods and deploy our method to real robots.
Furthermore, we will apply our method to other surgical
tasks and general robot manipulation tasks to evaluate its
cross-domain generalization.
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APPENDIX I
HYPERPXARAMETERS

Name Symbol Value

KL Weight βkl 1

Reinforce Weight βa 1

Entropy Regularizer Weight βe 0.002

BC Weight βbc 1

Virtual Clutch Timestep Hclutch 6

Zoom-in Margin Ratio b 0.3

Batch Size M 70

Batch Length N 10

Imagine Horizon H 15

Pre-training Steps Lpre 100

Gradient Update K 100

Gradient Update Step Levery 50

World Model Learning Rate lϕ 2 × 10−4

Critic Learning Rate lξ 4 × 10−5

Actor Learning Rate lψ 2 × 10−5

RSSM Size - 512
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