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Abstract— In scenarios involving the grasping of multiple
targets, the learning of stacking relationships between objects
is fundamental for robots to execute safely and efficiently.
However, current methods lack subdivision for the hierarchy
of stacking relationship types. In scenes where objects are
mostly stacked in an orderly manner, they are incapable of
performing human-like and high-efficient grasping decisions.
This paper proposes a perception-planning method to distin-
guish different stacking types between objects and generate
prioritized manipulation order decisions based on given target
designations. We utilize a Hierarchical Stacking Relationship
Network (HSRN) to discriminate the hierarchy of stacking
and generate a refined Stacking Relationship Tree (SRT) for
relationship description. Considering that objects with high
stacking stability can be grasped together if necessary, we
introduce an elaborate decision-making planner based on
the Partially Observable Markov Decision Process (POMDP),
which leverages observations and generates the least grasp-
consuming decision chain with robustness and is suitable for
simultaneously specifying multiple targets. To verify our work,
we set the scene to the dining table and augment the REGRAD
dataset with a set of common tableware models for network
training. Experiments show that our method effectively gener-
ates grasping decisions that conform to human requirements,
and improves the implementation efficiency compared with
existing methods on the basis of guaranteeing the success rate.

I. INTRODUCTION

Robot grasping in stacking scenarios has always been a
challenging problem. When performing manipulation tasks,
robots are required to execute efficiently and ensure the
environments are controllable and accident-proof. Therefore,
it is indispensable to learn the stacking relationships between
objects [1] [2]. Considering a kind of multi-object stacking
scenario, where objects are not only in a stacked state but the
object below provides full support for the object above, and
the latter reaches a stable equilibrium state. This situation
widely exists in fields of dish serving, kitchen tidying,
logistics transporting, and so on. It is a special case of clutter
[3], while its unique attribute contributes to the high speed
and efficiency of tasks on the premise that the robot fully
understands the environment.

Existing algorithms in learning stacking relationships for
manipulation focus on distinguishing simple relationship
types. Zhang et al. [4] establish Visual Manipulation Re-
lationship Network (VMRN) to predict the manipulation
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Fig. 1. Grasping in the orderly-stacked scene. The staking relationships
are presented by a tree structure. When the spoon is stably supported by the
bowl and both are the targets, grasping the bowl directly will be more in line
with human common sense and improve execution efficiency. (a) Existing
method [4] generally perform them separately. (b) Our perception-planning
method optimizes the grasping decision, only needs to grasp the bowl to
complete the task.

relationship of each object-pair in the scene, combine them
as a tree structure for presenting results so that a grasping
order can be determined when any target is specified, as
shown in Fig. 1(a). The relevant works [5] [6] optimize
the manifestation and performance of relationship detection,
but lack further subdivision for the hierarchy of stacking
relationship types. In scenarios where objects are stably
stacked, it is insufficient for the robot to perform high-
efficient grasping.

Inspired by human common sense, our work follows a
principle: when we want to grasp a pile of objects that are
stably stacked together, we can directly grasp the bottom ob-
ject, as illustrated in Fig. 1(b). For example, when assigning
a robot to grasp and deliver a pile of dishes and bowls, it
is irrational to perform them separately, but grasp once and
for all. This condition will become more intricate when one
of the dishes is not required. Another case is when there
are multiple sundries stably stacked above the target object,
removing the sundries all at once will greatly save time and
the number of manipulations. Therefore, we try to solve the
problem that how to decide the best grasping action in the
current orderly stacking scenario when targets are designated.

In this paper, we present a perception-planning architec-
ture for generating optimal grasping decisions when specify-
ing any number of objects in the scene as targets. We intro-
duce a Hierarchical Stacking Relationship Network (HSRN)
for scene perception, which takes dining scene RGB images
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as input, and outputs the hierarchical stacking relationship
between each pair of objects through object detection and
relationship prediction, presented by the Stacking Relation-
ship Tree (SRT). Then a planning algorithm designed from
the Partially Observable Markov Decision Process (POMDP)
is implemented to comprehensively consider the inadequacy
of the perceptual process and the priority of the grasping
targets, obtain an underlying estimate of the real state and
provide an optimal grasping decision chain. In order to train
our network, we augment a virtual orderly-stacked scene
dataset on the basis of REGRAD [7], attempting to simulate
the stacking environment of dining tables. Experimental
results substantiate the feasibility of our perception and plan-
ning process, which outperforms state-of-the-art baselines in
target-oriented task manipulation while saving considerable
time. Our main contributions are summarized as follows:

• A hierarchical stacking relationship prediction network
that distinguishes different degrees of stacking between
objects.

• A POMDP-based planner for planning optimal manip-
ulation decision chain in the current scene when targets
are specified.

• The experimental results confirm that our method im-
proves the efficiency of performing grasping tasks, and
is more in line with human habits.

II. RELATED WORK

A. Visual Stacking Relationship for Manipulation

The visual relationship has been studied in the field of
computer vision for a long time. In analyzing the relationship
between the foreground in the image, the classification
consideration is frequently based on the triplets of <subject,
predicate, object> as a whole [8] [9]. Other works cope with
this problem by predicting subject, object, and their relation-
ship separately [10] [11]. However, this kind of relationship
analysis lacks direct guidance for robotic manipulation.

In the scene of stacking cluttered objects, the visual
relationship between objects is mainly represented as support
and occlusion. Panda et al. [12] define a variety of support
relationships between objects, including support from below,
support from the side, and containment, constructing the
inferred support sequence of objects. Zhang et al. [4] build a
Visual Manipulation Relationship Network (VMRN) for rep-
resenting the stacking relationship in the scene, and collect a
dataset for relationship detection in robotic grasping. Yang et
al. [13] introduce fully connected Conditional Random Fields
(CRFs) on [4], removing redundant relationship representa-
tions. Zuo et al. [14] and Ding et al. [5] deploy graph neural
networks to collect contextual information about objects
and improve relationship detection performance. Tchuiev
et al. [6] utilize Deformable DETR [15] as the backbone,
representing object hierarchy in directed graph adjacency
matrix form. Current approaches focus on pursuing high
accuracy of detection, but for orderly-stacked scenarios, a
lack of in-depth understanding of the relationship types
cannot satisfy diversified task requirements. In comparison,

our work unveils subtle classification and verification of the
stacking relationship, which is more in line with human
cognitive habits for manipulation.

B. Task Planning with POMDP

Perceived incompleteness emphasizes the necessity of
decision-making for efficient completion of manipulation
within a task-specific framework. It is not only reflected
in the acquisition of complete information, but also in the
intensive analysis of task requirements. Such problems can
be modeled as POMDP-based approaches. Different from
motion planning that considers the spatial movement of the
manipulator [16] [17], this type of task planning instructs
robot the manipulated objects and methods. It is a high-level
manipulation indicator and vitally dependent on task settings
[18]. Pajarinen et al. [19] design to grasp objects which
may be occluded with special attributes and the occlusion
information is estimated for planning the best action to be
performed. Li et al. [20] direct at searching for objects
in a refrigerator, plan a sequence of actions to rearrange
objects, and find the target. Xiao et al. [21] consider object
search for fully occluded objects, use parameterized action
to deploy manipulation. Recent works [22] [23] introduce
human-robot interaction to facilitate the disambiguation of
task instructions. Since the human-specified target is prob-
ably unknown or the description language is too vague to
confirm the target, POMDP is needed to comprehensively
consider observations and human commands to plan action
of grasping or asking. Inspired by the above works, we
formulate the task as human-like grasping on a dining table,
aiming to execute actions according to target requirements
without redundancy.

III. OVERVIEW

Our perception-planning architecture is shown in Fig. 2,
including object detection Ω, relationship prediction Ψ, and
decision-making planning process Φ. The model incorporates
POMDP planning on the deep learning training algorithm. In
the training network, we mainly consider object properties
and the hierarchical stacking relationship of each object pair.
Our model takes RGB images as input, filters a series of
proposals for category recognition and bounding-box regres-
sion. According to the detected objects, relationship predictor
Ψ then constructs the full permutation of all binary object
groups to classify their stacking parent-child relationships
which are distinguished by stable support and weak support.

The training results are limited by noise, object occlusion,
and dataset size. Thus in order to realize robust grasping
execution of the robot on the observation results obtained
by scene state, we introduce the POMDP-based planning
model. POMDP groups targets designated by humans. For
a single target group, it assigns action values to all potential
actions and updates the belief, which includes historical
optimal state value, providing criteria for the selection of
each decision-making step. During the planning process, we
chiefly consider whether to grasp certain objects together to
target area or non-target area, recursively obtain all possible
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Fig. 2. The overview of our proposed approach. The RGB image first needs to go through feature extraction and object detection, then the relationships
between object pairs are predicted through the HSRN. Finally, these perception results will be used as observations, and input into the POMDP planner
together with human target designation to plan the current optimal grasping action.

task execution trajectories and at last search out the optimal
current grasping action with the highest expected cumulative
reward.

IV. PROPOSED APPROACH

A. Feature Extraction and Object Detection

The RGB image I captured by the camera first needs to go
through a series of convolutional layers for feature extraction,
as the input to generate the candidates for target positioning
and recognition. Our work continues the target detection pro-
posals in [4], using ResNet101 [24] as the feature extractor
and Faster R-CNN [25] as the object detector. The results of
feature, object categories, and bounding boxes will be sent
to the relationship prediction network for further analysis.

B. Stacking Relationship Hierarchy Extension

The stacking of objects normally hinders the safety and
feasibility of grasping, but some stable stacking can also
improve grasping efficiency. Zhang et al. [4] define three
stacking relationships between objects. If moving object oa
will change the spatial state and stability of object ob, i.e.
oa supports ob, we call oa is the parent of ob, on the
contrary, oa is called the child of ob. This kind of relationship
classification is not enough to cover the physical spatial
relationship and is not adequate to describe scenes with stable
stacking. On this basis, we refer to the definition of the
support relationship in [12] and give:

• Stable Support: the parent fully supports the child, when
the parent is grasped and generates translation in 3d
space without rotation, the child will be grasped as well.

• Weak Support: the parent partially supports the child,
and the child is simultaneously supported by other
objects, including the operating table.

Fig. 3 presents some cases of Stable Support and Weak
Support. In Stable Support relationships, the parents gener-
ally have container attributes, like bowls. However, in another
critical situation although the parent fully supports the child,
due to the limits of material rigidity, friction coefficient,

(a)

(b)

Fig. 3. Different hierarchies of stacking. (a) Stable Support. (b) Weak
Support.

and robot manipulation ability, grasping the parent with its
child is still difficult, e.g. a book with a pen on it. Thus
in the decision-making process, we put forward a thorough
planning scheme to decide whether the parent object and
child object should be grasped together.

C. Relationship Prediction

To predict the relationship properties of each object, our
relationship prediction network Ψ extracts the individual
and union features of all pairwise combinations of objects
{ (oi, oj)| i, j ∈ Nobj} detected by object detector as nodes
and apply the Gated Graph Neural Network (GGNN) [5] for
detecting relationships. We embed the positional encoding
into each object-pair node feature, integrate all of the feature
node information through Gate Recurrent Unit (GRU) in a
full connection manner, and update the hidden-layer vector
ht
i describing node information. We concatenate the GRU

output features with initial hidden-layer features to avoid
forgetting. Finally, three linear layers are applied to clas-
sify relationships, followed by refined SRT representing the
prediction results as shown in Fig. 4(b). The edges between
parent and child nodes are distinguished by stable and weak.
In order to standardize, we add a root node to join all the
relationship trees, which can be regarded as the operation



(a)

root(table)

blue spoon banana

mugplate

fork

white 

spoon
bowl

apple

(b)

bowl

fork → apple → bowl 

Targets

manipulation order 

banana & mug

blue spoon → mug (+ banana) 

plate & blue spoon & mug

blue spoon → fork → bowl (+ apple) → white spoon → plate → banana → mug

(c)

Fig. 4. Relationship prediction and planning results according to specified
targets. (a) The input RGB image. (b) Stacking Relationship Tree (SRT)
to present relationship prediction. The green edge represents the parent
node and the child node are stacked in Stable Support, and the black edge
represents Weak Support. (c) The optimal manipulation order chain under
the specified targets. The object in parentheses means it will be grasped
together. The object in black means it needs to be grasped to the non-target
area, and the object in blue is going to be grasped to the target area.

table. According to the description in Section IV-B, classified
relationship types Rc can be expressed as follows:

• oa is ordinary parent (op) of ob (Weak Support)
• oa is ordinary child (oc) of ob (Weak Support)
• oa is natural parent (np) of ob (Stable Support)
• oa is natural child (nc) of ob (Stable Support)
• oa and ob have no support relationship
The network uses a multi-class cross-entropy function as

the loss function for stacking relationship prediction:

LRP (R; Ψ) = − 1

Nobj (Nobj − 1)∑
(i,j)∈N2

obj
,i ̸=j

5∑
c=1

rclog (p (rc| oi, oj ; Ψ))
(1)

and the total loss of our complete network is:

L (I; Ω,Ψ) = µLOD (O; Ω) + (1− µ)LRP (R; Ψ) (2)

where LOD (O; Ω) is loss function of object detector Ω,
as discussed in [26]. We set the balance weight µ to 0.5,
considering the trade-off with two network modules.

D. POMDP-based Planning

A POMDP is modeled as a tuple (S,A,Z, T ,O,R),
where S, A, Z respectively denote the set of states, ac-
tions, and observations. Transition function T (s, a, s′) =
p (s′ | s, a) indicates taking action a ∈ A, the probability
from state s ∈ S to the next state s′ ∈ S . Observation
function O (s′, a, z) = p (z | s′, a) is the probability of
observing z ∈ Z by performing action a and reach the
resulting state s′. R (s, a) represents the immediate reward
of action a in state a. What follows are detailed descriptions
of each part.

1) State: We factorize the scene state S to the state of
each object si ∈ S [27]. si is represented by the Boolean
quantity sgi of whether it is present in the image (or is
grasped and removed) and the relationship between it and
other surrounding objects

{
srij |j = 1, 2, ..., Nobj

}
, the state

quantity of oi is Nobj + 1. The relationship state space can
be provided from Rc, attached to a value indicating the
nonexistence of srii, or when oi is taken away from scenes.
Since the real state is unknown due to the partial observation
and noise, for each state s ∈ S , we maintain a belief b ∈ B
as a state observer to represent the distribution estimation of
state. For each object oi, all its beliefs can be expressed as:

Bi = {bgi } ∪
{
brij |j = 1, 2, ..., N

}
(3)

where bgi refers to the probability that oi is observed in the
image, and brij refers to the observation relationship between
oi and other objects. We update b in real time after each step
of decision-making, re-evaluating the state distribution of the
current environment.

2) Action: The task in our work is target-oriented, which
means human designates the required targets according to
the result of object detection, then send it to POMDP for
decision-making. As taking grasping an object an action, the
action space is {2Nobj + 1}, including grasping each object
to target area or non-target area, alongside a report action
that no longer exists grasping action to perform.

3) Observation Model: We take the results of object
detector Ω and stacking relationship predictor Ψ in HSRN
as observations, indicating as Zg and Zr. The observation
function O (s′, a, z) includes the probability that the updated
scene state s′ can be accurately observed after performing
the grasping action a, expresses the difference between the
real state and the robot perception of the scene. Therefore
we learn the probability distribution of observation from the
average recall rate index of each object category rci ∈ RC
of both network modules, as it approximates p (zi | si) while
oi is presented in the scene. Since an action a potentially
not only causes one object to be grasped, the observation
function is comprehensively denoted as

∏
j∈C(oi)

rcj , where
C(oi) is the set of oi and its child nodes.

4) Transition Model: Ideally, a grasping action will lead
to a state update where the object is no longer presented
and its relationship with other objects becomes non-existent.
Nevertheless, the robot’s manipulative capacity results in
different performances in grasping various types of objects.
Therefore we collect a series of empirical data in our robot
experimental environment about the capacity to grasp types
of objects separately. We choose 15 common item categories
in the dining table scenes, for each category, measure the
success rate that it can be grasped by the gripper horizontally
and stably by performing grasping 20 times. The grasping
method [28] is adopted for our data collection. We quantify
the average success rate with data normalization to obtain the
transition probability p (s′ | s, a) of each object (see Fig. 5).
If grasp fails, we default the state does not change to simplify
decision-making reasoning. In experiments, we revise the
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data based on the real grasping success rate and verify the
validity of the transition modeling.

5) Reward Function: We encourage the robot to complete
the task with the least number of grasps, so we give the
agent a base penalty of −10 for each grasp action. The
relationship between the executed object and the other will
generate additional rewards, we empirically design a relation-
based grasping reward for each object:

R (s, ai) = −10+


5 tanh (Nnc (oi)), if Nnc (oi) > 0

−10 tanh (Noc (oi)), if Noc (oi) > 0

−2, if Nnp (oi) > 0

0, else

(4)

where Nnc, Noc, and Nnp describe the number of natural
children, ordinary children, and natural parents of each
object. In an SRT, if oi has natural children, we expect it to
be grasped actively and give it a major reward. Hyperbolic
tangent function tanh (x) = ex−e−x

ex+e−x fixes reward upper
limit. When oi has ordinary children, it is unwarrantable to be
grasped by giving a large penalty. If oi has a natural parent,
it is in principle not encouraged to be grasped directly, with
a slight penalty of −2. If oi is a leaf or isolated node, no
reward will be attached. Since we set the scene state value
when the task is completed to 0, the purpose of this design is
to avoid the optimal state value obtained at each step being
greater than 0.

6) Belief Updating & Planning: In partially observable
domains, after taking action a, the observation z is received
and belief b will be updated to b′. As mentioned in (3), we
refine the scene state to the private state of each object and
update each belief individually. The planner starts with an
initial belief b0, applies Bayes’ rule to track the belief at
each step. Specifically:

b′ (s′) = λO (s′, a, z)
∑
s

T (s, a, s′) b(s) (5)

where λ = 1
p(o|a,b) is a Bayes’ rule’s constant for normal-

ization.
For the SRT generated by Ψ, we cannot directly reference

it for planning, after all our purpose is not just cleaning the
table (of course it also can be), but to grasp the desired
targets. To this end, we first construct the Descendant Hash
Table (DHT) of each object according to SRT. In the table,
for each object oi, all objects in the subtree with oi as the
root are arranged in order from leaf to root, the last element
is oi itself, i.e. the action space when oi is the target.

It has been reflected in section IV-B that parent-child
nodes connected by Stable Support are not necessarily
grasped together. After identifying the corresponding pre-
diction results and obtaining the targets designation D, the
planning process first needs to group the targets, because
stacking relationships may exist between the targets them-
selves. Our planner incorporates the target nodes connected
by the Stable Support relationship into a target group g ∈ G.
Since targets and non-targets should not be grasped together,
it downgrades Stable Support between target groups and non-
targets to Weak. Then the planner sort all groups from leaf
to root, sequentially search all descendants of each group
based on DHT as action, and implement planning. After
all nodes in the current action space are pruned, switch to
the next group till the end. In planning process, a policy
π : B → A is learned to maximize the cumulative discount
reward according to the initial belief b0:

V π (b0) = E

[ ∞∑
t=0

γtR (st, at)

∣∣∣∣at = π (bt)

]
(6)

where the discount factor γ is set to 0.8. Last, carry out the
look-ahead search to find the optimal action:

a∗ = argmax
a

V π (b) (7)

We concatenate the grasp action of each step in the
planning process into a chain as a manipulation decision
chain, as presented in Fig. 4(c).

V. EXPERIMENT

A. Dataset Construction

On the basis of REGRAD [7], we expand the dining scene
dataset REGRAD-v2 in a virtual environment, replenish 15
object categories of main tableware objects (plate, bowl,
mug, spoon, fork, knife) and some fruits (apple, banana,
etc.). The models with an amount of 44 come from Shapenet
[29], and YCB dataset [30], all dimensions are based on
real objects. In order to prevent model penetration due to
the initial z-axis height limit, we use Poisson disk sampling
[31] to uniformly select the plane position of model loading,
load other tableware and fruits after the container objects
are placed. Each scene contains 8 to 12 objects. In addition,
we also generate substantial cluttered scenes in REGRAD
standard procedure to supplement negative samples. Our
newly generated dataset contains 3.2 k scenes and entirely
shares all properties and functions with the original dataset.
On the basis of the automatic label generation method [7] of
object bounding box, object category, 2D grasping position,
and manipulation relationship (not distinguish Stable and
Weak), we manually label all Stable Support relationships.
Some scenes in REGRAD-v2 are shown in Fig. 6.

B. Perception and Decision

1) Implementation Details: Our model is implemented in
the PyTorch framework and uses an NVIDIA RTX 3090 with
24GB of memory to train, the maximum training epoch is
30. The object detector used is Faster R-CNN [25] with the



Fig. 6. Some examples of REGRAD-v2. Objects are mostly stacked in
order, fully simulating the stacking method on real dining tables.

backbone of pre-trained ResNet101 [24]. We set the learning
rate to 0.001 and decayed to 0.0001 after 10k iterations.
Stochastic Gradient Descent(SGD) with a momentum of 0.9
is used as the optimizer. All hyperparameters are shared
during training.

For each scene in REGRAD-v2, we collect 2 groups of
artificially designated single target and 2 groups of multiple
targets as task requirements, with an extra task of table
cleaning in which all objects are regarded as targets. We
specifically annotate the desired grasping decision chain by
human anticipation according to the principle in section I.
and utilize perception results for planning, in order to verify
the effectiveness and rationality of our POMDP model. In
the generated chain, for some unrelated objects, the order
of grasping does not affect the rationality of the overall
decision-making. So we are concerned about whether the
robot plans redundant or omits necessary grasping actions
rather than pursuing complete alignment with annotated
decision chain.

2) Evaluation Metrics: The metrics of the perception
process continue the baseline of previous work for visual
manipulation relationship detection [4]. On this basis, we
design the measurement standard of the planning process.

• Object detection: mAP (main Average Precision) mea-
sures the average precision of all object categories,
which is commonly used in object recognition.

• Relationship prediction: The metrics used to evaluate
predicted relationship indicated as triplet < oi, rij , oj >
are OR (Object triplet Recall), OP (Object triplet Pre-
cision) and IA (Image-Wise Accuracy). IA calculates
the proportion of all objects and triple relationships are
accurately predicted in an image.

• Decision Making: Planning rationality criterion is dis-
cussed in Section V-B.1. We refer to the set of all
objects in a decision chain as Action Object Set (AOS).
In particular, if AOS generated by the planning process
is not equal to the AOS of annotated chain, i.e. the
grasping actions are redundant or missing, the decision
chain is irrational. Since we update the scene and re-
decision after each action to ensure robustness, we
evaluate the average rationality of the first step decision
ARf and the whole decision chain ARw separately.

3) Performance: Our perception-planning results are
shown in Fig. 7. We compare our method with state-of-

TABLE I
PERFORMANCE OF OBJECT DETECTION AND RELATIONSHIP

PREDICTION BASED ON REGRAD-V2 DATESET

Algorithm
Metrics (%)

mAP OR OP IA
VMRN[4] 90.28 66.78 65.82 21.40

GVMRN-RF[14] 89.90 68.59 68.31 24.06

GGNN-VMRN[5] 90.54 72.26 71.95 26.62

HSRN(ours) 90.69 72.84 73.53 26.85

TABLE II
RATIONALITY (%) OF PLANNING ACTION UNDER

DIFFERENT TASK SETTINGS

Algorithm
Task ST Task MT Task TC

ARf ARw ARf ARw ARf ARw

VMRN[4] 97.65 96.54 62.40 47.36 76.42 24.88

HSRN 92.30 87.55 75.02 58.59 96.46 90.81
HSRN-POMDP 98.64 97.37 98.25 95.63 97.31 86.52

the-art stacking relationship detection baselines performed
on the REGRAD-v2 dataset. Implementation settings are the
same as our method, using ResNet101 for feature extrac-
tion and Faster R-CNN for object detection. Relationship
prediction in these baselines only considers original parent-
child relationships defined by [4]. Table I shows the results
that our algorithm is better than other baselines generally.
Although the hierarchy of relationships is more complex
in our work, the dining table scenes have more restrictions
on the representation of object stacking than clutter scenes,
which facilitates our network to learn the staking modes of
objects. Furthermore, GGNN integrates context information,
fully utilizes global scene description to comprehend Sta-
ble and Weak Support, ensuring comprehensive perception
performance.

The implementation of POMDP planning will reduce
unnecessary grasping steps and make robotic action more
in line with human habits. Since existing baselines [4]
[14] [5] specify stacking relationship as the manipulation
relationship, when the relationship is predicted, they can
directly search action decision. The search method is all the
same with these baselines, which is subsequent traversing
from SRT. Thus we only compare the average rationality
ARf and ARw of decision-making with [4] baseline, as
shown in Table II. Task ST, MT, TC respectively means single
target grasping task, multiple targets grasping task, and table
cleaning task.

It is clear to see that due to the lack of hierarchical
distinction between the relationship types, [4] can only grasp
objects one by one, which is irrational especially in task
MT and TC on account of planning redundant grasps. We
also give the decision results that do not go through the
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Fig. 7. Perception and planning results of our method. Left Object detection
results. Top right Stacking Relationship prediction results that presented by
SRT. Bottom right Planning grasp-decision chain based on human-given
target designations.

POMDP planning, only perform action relying on HSRN
and the principle in Section I that if nodes are connected
with Stable Support, grasp the parent node. Apparently,
it is arbitrary to plan in this way, amounts of necessary
grasps are ignored. It is likely to perform the action which
grasping targets with non-targets into the target area together.
With the implementation of the POMDP decision-making
process, the planning chain with high rationality can be
obtained for all three tasks. The POMDP also reflects some
compromises made in the design of the robot’s capabilities
which is unfortunately against human hope. For example, the
difficulty of stably grasping the plate is too high, so when the
plate has a natural child such as an apple, they will still be
grasped separately. So in task TC, ARw of HSRN-POMDP
is not as high as directly plan from HSRN. This is the result
of considering comprehensive factors.

C. Robot Manipulation

1) Experimental Setup: We use a UR5e robot to perform
our grasping experiments. The robot is equipped with a
2-finger Robotiq 2F-140 gripper and an eye-in-hand Intel

TABLE III
SUCCESS RATE AND EXECUTION EFFICIENCY OF ROBOT

MANIPULATION IN DIFFERENT TASKS

Task Algorithm
Success Number Time Cost

Rate (%) of Grasps (min)

ST
GGNN-VMRN[5] 10/12 2.83 2.63

HSRN-POMDP 11/12 2.08 1.89

MT
GGNN-VMRN[5] 7/12 4.67 4.24

HSRN-POMDP 10/12 3.52 3.20

TC
GGNN-VMRN[5] 4/12 5.66 5.17

HSRN-POMDP 7/12 3.58 3.32

(a) (b)

Fig. 8. Robot manipulation configuration. (a) Experimental environment.
(b) Examples of setting scenes for grasping tasks.

RealSense D435i camera as shown in Fig. 8(a). We use ROS
to drive the robot and gripper. The real models used include
bowls, mugs, tableware, and fruits, that are stacked on the
operating table in an orderly manner, as shown in Fig. 8.
After the robot perceives the scene and obtains the detection
result, it informs humans of the detected object categories
with serial numbers to ensure the uniqueness of each object
label. The human then specifies the desired targets and the
robot plans to grasp them to complete the task.

We set up 12 scenes in total, with 3∼6 objects in each
scene, and each scene is divided into three tasks ST, MT,
and TC. In experiments, we restore the initial scene as
consistently as possible. The criterion for task success is that
all specified objects are grasped and placed in the target area.
We compare our method with the baseline of state-of-the-art
VMRN-based method [5]. We adopt ROI-GD [28] method
for our grasp position detection, which is as same as used in
Section IV-D.4. We train the detection network based on the
2D grasping position generated during dataset construction.
In the experiment, we fine-tune the grasping position by
discretized searching based on the detected grasping position,
select the position whose projection in the image mostly
overlaps the detected bounding box. When grasping objects
such as bowls and mugs, our two-finger gripper first adjusts
to horizontal orientation, and approaches the object in a
horizontal manner. When grasping objects such as fruits,
the gripper approaches the object in a top-down direction
to conform to human grasping habits.

2) Results: Table III summarizes the success rate, average
number of performed grasps, and average time cost of our
method with baseline under different task settings. The



results reveal that our network generalizes well to real grasp-
ing scenarios and performs better than the GGNN-VMRN
method in terms of task completion. In experiments, our
method saves an average of 29.48% on task execution time,
because some grasping actions are legitimately saved while
ensuring execution stability, and the entire manipulation
process is more in line with human behavior habits.

Due to the limited width of the jaws, when a plate is in
targets, it is barely able to be successfully grasped. Com-
fortingly, POMDP effectively judges the children stacked
on plates as a separate grasp, not limited to Stable and
Weak relationship predictions. Other error cases show the
incompleteness of decision-making. For example, the fork is
stably supported by the mug, but it is in a state of lying across
the rim of the mug. Our planning process has a considerable
probability of directly grasping the mug. Ideally, there would
be no problem with this action, but in practice, this may cause
the fork to drop during movement.

VI. CONCLUSION

This paper proposes a hierarchical object stacking re-
lationship detection network and introduces a POMDP-
based decision-making process for giving a rational grasp-
ing execution process for specific tasks. Experiments show
that our algorithm greatly simplifies the grasping process
while ensuring the success rate. Future work will pay more
attention to the in-depth understanding of the scene and
human requirements, analyzing and reconstructing the scene
to complete tasks in a more humanized way. Besides, we
will pursue further improvement in the detection efficiency
of different types of stacking relationships, and provide
incisive robotic understanding for robust grasping in multiple
scenarios.
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