
Efficient Visuo-Haptic Object Shape Completion for Robot Manipulation

Lukas Rustler, Jiri Matas, and Matej Hoffmann

Abstract— For robot manipulation, a complete and accurate
object shape is desirable. Here, we present a method that com-
bines visual and haptic reconstruction in a closed-loop pipeline.
From an initial viewpoint, the object shape is reconstructed
using an implicit surface deep neural network. The location
with highest uncertainty is selected for haptic exploration, the
object is touched, the new information from touch and a new
point cloud from the camera are added, object position is
re-estimated and the cycle is repeated. We extend Rustler et
al. (2022) by using a new theoretically grounded method to
determine the points with highest uncertainty, and we increase
the yield of every haptic exploration by adding not only the
contact points to the point cloud but also incorporating the
empty space established through the robot movement to the
object. Additionally, the solution is compact in that the jaws of
a closed two-finger gripper are directly used for exploration.
The object position is re-estimated after every robot action and
multiple objects can be present simultaneously on the table.
We achieve a steady improvement with every touch using three
different metrics and demonstrate the utility of the better shape
reconstruction in grasping experiments on the real robot. On
average, grasp success rate increases from 63.3% to 70.4% after
a single exploratory touch and to 82.7% after five touches. The
collected data and code are publicly available (https://osf.
io/j6rkd/, https://github.com/ctu-vras/vishac).

I. INTRODUCTION

We consider the following robotic setup. A static RGB-D
camera connected to a robotic arm controller is observing
one or more unknown 3D objects. To be able to grasp and
manipulate the object, the robotic system needs a model of
the object in terms of a complete shape, e.g., an accurate
mesh. There are intrinsic limitations to the performance of
computer vision techniques for 3D reconstruction of objects
from images or point clouds if only a limited number of
viewpoints is available. Solutions relying on RGB or RGB-
D images, LIDAR point clouds, or voxels, cannot easily
overcome self-occlusion and may have specific difficulties
with transparent or specular objects. The robot arm cannot
reliably grasp and manipulate the object given only partial
information. However, the manipulator can be controlled to
touch or poke the object in order to extend the surface for
which the model is accurate.

We address the following problem. Given an initial
RGB-D map, obtain an accurate representation of the com-
plete shape of the object with the help of exploratory contact

This work was supported by the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”. L.R.
was additionally supported by the Czech Technical University in Prague,
grant no. SGS22/111/OHK3/2T/13.

Lukas Rustler, Jiri Matas, and Matej Hoffmann are with the De-
partment of Cybernetics, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, matej.hoffmann@fel.cvut.cz,
matas@fel.cvut.cz, lukas.rustler@fel.cvut.cz.

Fig. 1: Schematic operation of VISHAC. An initial RGB-D
image of the scene is captured (1), a transformation R0 from
the robot base to the object is obtained, and the object is
segmented and converted into a point cloud X (2). Iterative
reconstruction: In each step, n = 0 : (N−1), the point cloud
is inserted into a neural network (3) and a completed shape
On is created (4). The most uncertain point pn is selected for
touch (5). After contact, the object may have been displaced,
giving rise to a new transformation Rn. Haptic data hn (6)
from contact and visual data by taking a new image from
the RGB-D camera v (7) are collected. The transformation
Rn is computed from pose estimation (8) and the new data,
transformed into the original frame R0, are added to X . See
Sec. III-H for details.

actions. The objective is either to maximize the accuracy
given an upper bound on the number of touches or minimize
the number of touches to reach a predefined accuracy on the
complete surface. This problem in turn requires solutions of
sub-problems such as prediction of the least reliable part of
the surface, estimation of the free space around the objects
and the detection of touch-induced object movement.

The scenario models a setup, where new objects are
presented to a system that minimizes the risk of an unstable
grasp, and therefore “explores” the shape of the object by
touching and poking before attempting a grasp and subse-
quent manipulation. For example, imagine a conveyor belt
for sorting objects of different sizes into respective bins, e.g.
in a scrapyard, where the robot must be able to pick up any
object.

Contributions. We present a pipeline for visuo-haptic
shape completion called VISHAC, importantly extending the
work of Rustler et al. [1], which serves as a baseline here.
The first group of improvements concerns the process of
shape completion performed by Implicit Geometric Regu-
larization for Learning Shapes (IGR), which we modified

ar
X

iv
:2

30
3.

04
70

0v
1

 [
cs

.R
O

]
 8

 M
ar

 2
02

3

https://osf.io/j6rkd/
https://osf.io/j6rkd/
https://github.com/ctu-vras/vishac

as follows. We use a new, theoretically grounded, method to
determine the points with highest uncertainty. In addition, we
changed the sampling of points inside the network to respect
the input point cloud more closely. Finally, the yield of every
haptic exploration is increased by adding not only the contact
points to the point cloud but also incorporating the empty
space established through the robot movement to the object.
The two last mentioned improvements together make the
pipeline more robust. The second group of enhancements
pertains to the practical aspects of this scenario. We do not
use a dedicated “finger” for haptic exploration but directly
the jaws of a closed two-finger gripper, which is a more
compact solution. The object position is newly re-estimated
after every robot action, so objects are allowed to move after
being poked. Multiple objects can be present simultaneously
on the table. The speed of the pipeline is improved through
parallelization (2 times in simulation and 2.4 times in the real
world). We contribute a more detailed evaluation using a set
of different metrics. Finally, real-word grasping experiments
demonstrate the effectiveness of our approach.

II. RELATED WORK

For the problem addressed, two main sources of informa-
tion have been used: visual input (RGB or RGB-D sensors)
and haptic exploration (tactile or force sensing). In recent
work, the two were often combined.

A. Visual-only Shape Completion

Devices able to sense depth and thus create point clouds
are widely available and can provide rich information about
the scene. The early methods were based on geometric
properties or templates. The geometric ones either assume
that most objects humans use are symmetric, so completion
can be done by mirroring partial information about its axis
of symmetry [2], or detect primitive shapes [3]. Template-
based methods benefit from prior knowledge in the form of
a database of object shapes [4].

More recently, solutions based on machine learning gained
popularity. An example is Gaussian Process Implicit Surface
(GPIS) [5], which, however requires points on the whole
surface and suffers from poor scaling over a dense point
cloud. Thus, the input must be downsampled, resulting in
loss of detail. Other methods were originally created to
make surfaces from complete point clouds, but provide shape
completion abilities by interpolating between shapes in a
latent space [6]–[8]. In this work, we start from IGR [8]
and propose improvements.

Deep Learning (DL) techniques such as Convolutional
Neural Networks (CNNs) for shape completion typically
represent objects as voxel grids. This allows to introduce
probabilistic uncertainty in voxel grids, but the methods
usually suffer from cubically growing computational require-
ments with the number of voxels, limiting the resolution
of the output shape. Finally, the newest methods utilize
graph attention networks [9] or transformers to complete a
shape [10], [11].

B. Haptic-Only Shape Completion

With advances in haptic exploration, some purely haptic
approaches have been proposed. They utilize some tech-
niques mentioned above, such as implicit shape poten-
tials [12], or Gaussian Processes (GPs) [13]–[15]. Gaussian-
based methods have the advantage of having the ability
to express uncertainty directly from their nature using the
variance of each point. However, haptic-only completion
needs a high number of touches, which is time-demanding.

C. Visuo-Haptic Shape Completion

A combination of visual and haptic data has the potential
to combine the best of both worlds. GP methods were
proposed [16]–[18]. However, points covering most of the
surface are needed, which leads to the need for a lot of
exploration. A way to overcome this issue may be to use
symmetry as in [19].

CNN-based methods [20], [21] usually require fewer
touches but suffer from lower resolution due to computa-
tional requirements. Smith et al. proposed approaches [22],
[23] based on Graph Neural Network (GNN). Reconstruc-
tions by these methods have a higher resolution but are
nonsmooth and, for now, evaluated only in simulation.

An important part of haptic exploration is the decision
where to touch. The object can be touched randomly as done
by Smith et al. [22], or always select a position opposite the
camera (from “behind”) as Watkins-Vall et al. [20]. However,
these are not as effective as an uncertainty-driven approach.
Uncertainty can come from the Gaussian distribution [16]–
[19], [21]; from the Monte Carlo dropout [24]; or from the
Signed Distance Function (SDF) [1], [25]. Alternatively, it
can be learned where to touch as in Smith et al. [23].

Our work belongs to uncertainty-driven approaches and
is based on implicit surface deep neural network IGR [8],
exploiting the definition of SDF to estimate uncertainty in
order to efficiently explore the most promising parts of the
objects. We extend and directly compare ourselves with [1].
Indirectly, this encompasses also a comparison with other
methods, namely [26]–[29], which were outperformed in [1].

III. METHOD

We propose an iterative method depicted in Fig. 1. The
objective is to iteratively improve shape reconstruction of
objects on the table combining images and selecting locations
for tactile exploration. The algorithm is described in detail
in Section III-H. The following sections detail individual
modules required by the pipeline.

A. Implicit Surfaces

An implicit surface is a set of points whose signed distance
to a surface is equal to zero. The function to compute this
distance is called Signed Distance Function (SDF) and is
defined as

f(x) = s, (1)

where, in our case, x is a point defined in 3D space and s
is the signed distance. Traditionally, f would be described

analytically, but it can also be learned with a neural network.
Then, the implicit surface generated with a neural network
can be described as

M = {x ∈ R3 | f(x;θ) = 0}, (2)

where f(x;θ) : R3 → R is a Multi-Layer Perceptron (MLP)
learned to approximate SDF, with θ being the parameters of
the network.

B. Implicit Geometric Regularization for Learning Shapes

As in [1], we selected IGR [8] to represent the function
f. The method assumes at input a point cloud X = {x1:C},
where C is the number of points in the point cloud, and
optionally a set of normals for each point N = {n1:C}.
To train on multiple objects, the network utilizes an auto-
decoder architecture from Park et al. [6] with different latent
code zi for every shape i ∈ I in the input set. In the
prediction phase |I| = 1. Therefore we will introduce loss
only for one shape i ∈ I , defined as:

`(θ, zi) = `X (θ, zi) + λEx [‖∇xf(x;θ, zi)‖ − 1]2 + α ‖zi‖ (3)

where

`X (θ, zi) =
1

C

C∑
c=1

(|f(xc;θ, zi)|+ ‖∇xf(xc;θ, zi)− nc‖) (4)

The first term in Eq. 3 encourages f to vanish on X and ∇xf
to be close to the supplied normals. The second term is called
the Eikonal term and regularizes the network by pushing
∇xf to be of unit Euclidean norm. The term is also used
for uncertainty estimation—described later in Section III-E.

The result is iteratively optimized at both train and infer-
ence time (over multiple shapes in batches from the whole
train set I while training and over one shape for prediction).
In this work, we use a trained network from [1] and our
modifications pertain to inference only. The parameters θ
are fixed during inference and only zi is changed.

C. IGR Modifications – Sampling and Free Space

By default, the IGR network uses a random sampling of
points in each of its iterations. It is effective when a complete
point cloud is inserted. However, when a partial point cloud
is used, the network tends to inflate the objects, i.e., the
output shape is over the boundaries of the input. We propose
to use Farthest Point Sampling (FPS) as in [30]. The points
sampled by this algorithm are spatially far from each other
and help the network better understand the whole object in
each iteration, making the final shape tighter with the input.

Another improvement of the method is the use of informa-
tion about the space explored. As the robot moves through
space, we know that the traversed space is free and no shape
can be there. We keep in memory only the points that are
less than 20 cm from the center of a given object. During
the inference phase of the network, a signed distance is
calculated for every point in the free space explored. We
want all free space points to be outside of the surface, i.e.,
to have a positive signed distance. Therefore, we add to the
loss the sum of the absolute values of all distances that are
lower than 1mm.

D. Object Representation from Visual and Haptic Data

There are several possible representations of an object O.
We choose to represent an object as a point cloud (which is,
in fact, an implicit surface from Eq. 2), concatenated with
uncertainty for each point. Mathematically expressed as

O = {x ∈ R3, u ∈ R | f(x;θ, z) = 0, u ≥ 0}, (5)

where u stands for the uncertainty of the given point.
Our method is iterative, therefore, we compute a new

shape in each iteration n. For n = 0 the shape O0 is
computed only from RGB-D information vinit. In all other
iterations we get the shape On with visual information vinit,
v0:(n−1), and haptic information h0:(n−1). Eq. 5 is therefore
changed to

On = {x ∈ R3, u ∈ R | f(x;θ, zn) = 0, u ≥ 0}, (6)

where zn is the current latent vector optimized on point cloud
Xn = {h0, . . . ,h(n−1),v0, . . . ,v(n−1),vinit}.

To obtain haptic information hn, we must first select
the position for haptic exploration pn on the object that
minimizes the global uncertainty of the object, i.e., select
the point with the highest current uncertainty as

m = argmax
u

On,

pn = xm ∈ On.
(7)

The desired hn is then obtained from the position of the
actual contact between the robot and the object.

Note that we showed the equations for only one object at
a time. However, our method is capable of handling multiple
objects in a complex scene. So, we will later in an algorithm
refer to objects as Ok,n, where k = 1 : K is the object’s id
in the scene, and n is the current iteration.

E. Object Shape Uncertainty

A crucial part of this work is the estimation of uncertainty.
We selected part of the loss from Eq. 3, particularly the
Eikonal loss

`Eikonal = (‖∇xf(x;θ, z)‖ − 1)2. (8)

It was proven by Takashi [31] that a given function f(x) that
meets the condition of the Eikonal Equation ‖∇xf(x)‖ =
1 on a Riemann manifold M is a SDF to a hypersurface
M . Furthermore, Crandal and Lions [32] presented Viscosity
Solutions that prove the same applies even if ‖∇xf(x)‖ does
not exist on every x. Given these results, we can compute the
Eikonal loss from Eq. 8 for all points on our current shape
O—where the higher the loss, the higher the uncertainty.

F. Segmentation of Multiple Objects

First, bounding boxes of all objects in the input RGB
image are found—in the real world using Yolov7 [33] fine-
tuned on our objects, and using color-based segmentation in
the simulation. We then run the Flood Fill algorithm [34]
on the depth image (aligned to RGB). The algorithm starts
at a given pixel (we use the center of the bounding box)
and expands over neighbors that fulfill the given criterion

Algorithm 1 Create Shape

1: while Pipeline is running do
2: k = SelectFromQueue() or WaitForRequest();
3: z = LoadLatent(k);
4: X = LoadData(k);
5: zoptimized = Optimize(z,X); . Loss from Eq. 3
6: O = PredictShapeAndUncertainty(zoptimized);
7: end while

(difference in depth in our case) until no neighbor is left.
We also restrict the region of interest by the bounding
box from the RGB image. Segmented depths, together with
camera information, are then used to create point clouds of
objects. A more detailed description can be found on GitHub
https://github.com/ctu-vras/vishac.

G. Pose Estimation

In haptic exploration methods, a common but unrealistic
assumption is that objects are fixed to the surface (also in
[1]). Objects naturally move when they are touched and
their pose needs to be re-estimated. Many existing pose
estimation methods require prior knowledge of the objects
at the instance level [35], [36] or category level [37], [38].
We seek methods that work with unknown arbitrary objects.
Having segmented point clouds of each object at hand, we
chose a simple and computationally cheap (no GPU) solution
using Iterative Closest Point (ICP) [39]. Alternative solutions
for unknown objects are [40], [41].

H. VISHAC Algorithm

We present the algorithm of our method in Alg. 2 and
the same is depicted in Fig. 1. The algorithm is high-level
pseudocode, with a module for shape completion Alg. 1
described in more detail.

We will first describe the module for the shape creation
itself. In [1] the IGR network was used as a standalone
library. To perform more efficiently and to be able to handle
more objects at once, we modified it to be more compatible
with the whole ecosystem (under Robot Operating System
(ROS)). The module contains the input point clouds, latent
vectors, and other parameters for each object in the scene,
allowing simple switching between objects without excessive
overhead. The next object to be completed is selected through
messages sent from the main script. If a new request is
received and reconstruction is running, the new objects are
placed in a queue. The module runs in the background, which
allowed a considerable speed-up of the whole process, as
now reconstructions are processed while the robot is moving.
The basic operation is shown in Alg. 1. First, a new shape
is selected from a queue (if it is not empty, otherwise the
module waits for a new request). Then the latent vector z
and the input point clouds X for the given shape are loaded.
If the shape is new, the first latent code is created randomly
with a normal distribution. Otherwise, the last known vector

Algorithm 2 Multi-Object Shape Completion

Input: maximal number of haptic explorations N, max-
imal run time T
Output: Final shape O1:K,n . For K shapes

1: tinit = CurrentTime();
2: Start CompleteShape() service in background;
3: vinit = CaptureVisualInformation();
4: X1:K = Segment(vinit);
5: k = 1 : K; . Start with all objects
6: for n = 0, . . . , (N − 1) do
7: if CurrentTime()− tinit ≥ T then
8: break;
9: end if

10: R1:K,n = ComputePose(1, . . . ,K);
11: Ok,n = CompleteShapeRequest(k);
12: pn; k = SelectTouchPoint(O1:K,n,R1:K,n);
13: MoveRobot(pn);
14: Rk,n · hn = GetContactInformation();
15: Rk,n · vn = CaptureVisualInformation();
16: Rk,n = ComputePose(k);
17: vn;hn = Transform(Rk,n · vn,Rk,n · hn,Rk,n);
18: Xk += Segment(vn);
19: Xk += hn;
20: end for
21: Return: O1:K,n

for the given object is used. The current z is optimized with
the loss from Eq. 3. Finally, the shape O is created, together
with the uncertainty computed with Eq. 8.

The main Alg. 2 starts with capturing the initial visual
information (box (1) in Fig. 1, line 3 in Alg. 2). An initial
transformation R0 of the object in the base frame of the
robot is obtained. The information is then segmented and a
point cloud is created for each object in the scene (box (2),
line 4). The segmentation itself is described in III-F.

Every iteration starts with computation of the current pose
for all objects in the scene (Section III-G). The pose for all
objects is computed here—the explored object may change
pose after the touch is released and surrounding objects may
have been moved unintentionally, so it is more robust to
compute pose for all objects. This pose is used mainly to
correctly select the point to explore.

Having the segmented point clouds and poses, a request
for shape is sent (box (3), line 11). In the first iteration, we
request shapes for all objects to create collision shapes for
the motion planning algorithm. In other iterations, we request
shape only for the last touched object. The impact position
pn is selected (box (4), line 12) based on Eq. 7. When more
than one object is available, the impact position is selected as
the point with maximal uncertainty among all the objects. To
prevent exploration of only one object, we allow one object
to be touched three times in a row, and then it is removed
from the touch-selecting algorithm for the given iteration.

After pn is selected, the robot is moved to the position

https://github.com/ctu-vras/vishac

and contact information is extracted (box (5-6), lines 13-
14). The movement consists of two subsequent movements.
Firstly, the robot is moved to a position 10 cm from object
along the normal of pn. Next, the robot is moved along the
normal with linear movement until contact occurs. In our
case, the contact is detected with the change in joint torques.
Haptic information hn is created as a circle perpendicular to
the impact normal, with the center in the position of the end
effector.

After collision, new visual information is saved, seg-
mented and added to the point cloud for the touched object,
together with the haptic information (box (7), lines 15-19).
To make sure that we segment the correct object, the RGB-D
information is cropped with the bounding box found for the
given object in the last iteration (the box is slightly enlarged
to allow movement of the object). Finally, the pose Rn of
the object right after touch (before the contact is released) is
computed (box (8), line 16). This pose is used to transform
the current data into the frame of vinit—the first frame must
be used so that the latent vectors for the given objects can be
reused. Note that now only the pose of the explored object
is computed, unlike at the beginning of each iteration (line
10). Also, in Fig. 1, only one pose estimation is shown for
simplicity.

The whole pipeline runs until the selected number of
touches (over all objects) is done or until the time limit is
reached.

IV. EXPERIMENTS AND RESULTS

The primary experiments we conducted demonstrate how
the completeness and accuracy of reconstructions change
with each additional touch. In addition, we evaluated the
quality of the reconstructions in a real-world grasping ex-
periment. Examples are shown in the accompanying video.

We evaluated the reconstruction obtained by VISHAC on
the eight objects shown in Fig. 2 and on one more object
for grasping—a transparent spray bottle for which ground
truth is not available, and thus it is not possible to compute
the metrics. Nevertheless, it is a typical object where haptic
feedback dramatically improves the initial reconstruction
from the RGB-D visual sensor. None of the objects was used
in training the shape completion network.

In the real-world setup, we filled the objects with water
to make them weigh about 0.5 kg which simplifies collision
detection by the robot. Note that in the experiments eval-
uating the Act-VH method [1], the objects were glued to
the table and a dedicated finger was used. The VISHAC
method introduced a component that tracks object movement
caused by touches (box (8) in Fig. 1). The sensitivity of the
torque sensors is not sufficient for manipulation of very light
objects. The current setup with objects partially filled with
water is more challenging than gluing the objects. To avoid
disadvantaging the reference method Act-VH, we report its
results for objects glued to the table.

The arrangement of the experimental bench is shown in
Fig. 2. The robot is a Kinova Gen3 with a Robotiq 2F-85
gripper and a Intel RealSense D435 camera.

Fig. 2: The real-world robot setup with Kinova Gen3 robot,
Robotiq 2F-85 gripper, external RGB-D camera and all
objects used. Closed gripper was used for haptic exploration,
open for grasping.

A. Evaluation Metrics

We used three metrics to evaluate accuracy: (i) Jaccard
similarity (JS), i.e., the intersection over union of voxelized
shapes; (ii) Chamfer distance (CD), i.e., the average distance
of each point in one set to the closest point in the second set
and vice versa; (iii) and the deviation of the reconstructed
mesh surface area from the ground truth.

We use three metrics, since the information they provide
is complementary. JS does not take into account the shape
of the intersection and of the union, e.g., it attains the same
value for a sharp hallucinated peak or a thin layer of added
volume. CD is highly informative in most cases, but it is
oversensitive to small scale changes, even if the reconstructed
shape is close to ground truth. The deviation of the area of
the mesh evaluates the accuracy of the estimated scale and
allows to check for biases.

Unless otherwise stated, experiments for each scene were
repeated three times. We show the performance with real
time on the x-axis, with individual touches numbered.

B. Simulation Experiments

The simulation environment consists of a robot modeled in
the MuJoCo [42] simulator controlled through ROS. Objects
are able to move on the table. Collision with the object is
computed from the manipulator joint torques—as in the real
setup. Throughout this section, we compare the performance
of VISHAC with two variants of Act-VH [1]: ‘Act-VH’
and ‘Act-VH – new data’. Act-VH constitutes the original
experimental results from [1], in the setup with objects fixed
to the table and poking with a dedicated probe, and IGR
without any major changes. Only the results for the objects
used here were selected. This comparison also demonstrates
improvements in the runtime of the methods. ‘Act-VH – new
data’ is a result of running the method from [1] on the data
from the new setup—contacts with closed gripper and objects
moving as a result of haptic exploration. This serves to
isolate the benefits of the modifications of IGR inference in
VISHAC. Act-VH was run until 5 touches were completed;
VISHAC and ‘Act-VH – new data’ until 15 touches were
done.

1) Reconstruction – one object in the scene: A com-
parison of performance is shown in Fig. 3. Both ‘Act-VH’
and ‘Act-VH – new data’ are more “greedy” with higher
reconstruction accuracy gains per touch. However, this comes
at the expense of accuracy as more data come in. VISHACis
more “conservative”, but maintains a steady performance
gain. The relative increase in performance in the time when
‘Act-VH’ completed 5 touches (approximately touch 10 in
out method) is 7.7% in JS and 21.3% in CD. After the last
touch, VISHAC is better than ‘Act-VH – new data’ with a
relative difference of 15.5% in JS and 31.7% in CD.

Fig. 3: Simulation – reconstruction – 1 object in scene.
Average reconstruction accuracy (8 objects, 3 repetitions
each). Numbers in each datapoint – number of touches.
Shaded areas – standard deviation. Jaccard similarity (JS)
higher values better. Chamfer distance (CD) lower values
better.

The same trend can be seen from the shaded areas,
showing the confidence interval of ±1 standard deviation.
The width of the areas shows the variability of the results
for each object and each repetition of the experiment. For
VISHAC, the variability shrinks with time, showing that the
method is more precise and robust. This is not the case for
both versions of Act-VH.

0 100 200 300 400 500 600

Time from start [s]

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

A
re

a
 [

m
m

^
2
]

0

1

2

3

4

5

0

1

2
3

4

5
6

7
8 9

10
11 12 13

14
15

0
1

2
3

4
5 6

7
8

9
10 11 12 13 14 15

0

1

2
3

4
5

6 7

8

9
10 11

12 13 14 15

0

1
2

3
4

5 6
7

8 9 10 11
12

13 14 15

0

1

2

3

4
5 6

7 8
9

10 11
12

13
14

15

VISHAC - single, sim

VISHAC - multi, sim

VISHAC - single, real

VISHAC - multi, real

Act-VH

Act-VH - new data

Ground-truth

Fig. 4: Simulation and real experiments. Mean area of
meshes. Numbers in each datapoint – number of touches.
Single – scenes with only single objects; multi – scenes with
more objects. Act-VH is a baseline from [1] and Act-VH -
new data is the same method evaluated on data collected in
this work.

In Fig. 4, the deviations in the mesh area are shown. We
can see that even though, for example, JS performance for
Act-VH in simulation was similar to VISHAC (see Fig. 3)
there is a significant difference in area (blue for Act-VH,

red for VISHAC). The baseline method (evaluated on both
new and original data) tends to inflate the shapes, resulting
in good results for JS or CD, but a high deviation in area.
On the other hand, VISHAC converges to the ground truth
value.

2) Reconstruction – multiple objects in the scene: In
Fig. 5 results for reconstructions of multiple objects in a
more complex scenes are shown. We randomly selected five
configurations of objects with two or three of them present in
each scene. The accuracy is almost the same as that for one-
object-at-a-time experiments. However, the runtimes for 15
touches are about 80 seconds higher. This is mostly caused
by more complicated touch point computation and motion
planning. The deviations in the mesh area, shown in Fig. 4,
further prove that the pipeline behaves similarly with one or
more objects. Overall, the results show that the pipeline is
able to handle multiple objects at once.

Fig. 5: Simulation – reconstruction – multiple objects in
scene. Average reconstruction accuracy (5 scenes, 3 repeti-
tions each). Numbers in each datapoint – number of touches.
Shaded areas – standard deviation. Jaccard similarity (JS)
higher values better. Chamfer distance (CD) lower values
better.

Furthermore, we show how the uncertainty (purple line)
changes over time. The uncertainty is computed as the mean
of the uncertainties for each point of each object. One can see
that the uncertainty decreases with increasing accuracy. Thus,
it could be used to evaluate the quality of reconstruction
during runtime and stop the pipeline when a predefined
criterion is met.

C. Real-world Experiments

We tested the pipeline on the same set of objects as
in simulation, in single- or multi-object configuration. The
superior performance of VISHAC over Act-VH has already
been demonstrated in simulation. Here we show the added
value of VISHAC in grasping experiments.

1) Reconstruction: In Fig. 6, the results for the precision
of the reconstruction are shown. The single-object experi-
ments are shown in black. We can see that the trends of
both JS and CD are the same as for the simulation, even
though we can notice noise in some touches. In yellow, the
results for multi-object experiments are shown. Again, the
results for both types of experiments are similar, showing
that the method is transferable to the real world. The overall
accuracy in the real world is lower than in simulation. The

main reason is noise in the RGB-D sensor and inaccurate
collision detection (noise in the joint encoders).

Fig. 6: Real world – Average reconstruction accuracy.
‘VISHAC – single’ – 8 objects, 3 repetitions each. ‘VISHAC
– multi’ – 5 scenes, 3 repetitions each. Numbers in each
datapoint – number of touches. Shaded areas – standard de-
viation. Jaccard similarity (JS) higher values better. Chamfer
distance (CD) lower values better.

The mean mesh area is shown in Fig. 4. The area for single
(black) and multiple (yellow) objects scenes approximately
converges to the ground truth value.

2) Grasp Success Rate: The last experiment evaluates the
grasp success rate, i.e., the percentage of successful grasps.
To sample grasp proposals, GraspIt! [43] was used. To check
the quality of each grasp, the objects were picked and moved
10 cm in the upwards direction. If the object did not fall from
the gripper, the grasp was marked as successful. We decided
to inspect grasp success using reconstruction after 0 and 1
touches to show how only a single touch improves the result.
In addition, reconstructions after touches 5, 10, and 15 are
used. We attempted to grasp 3 times for every repetition of
the pipeline on each object, resulting in 9 grasp per object
per touch—that makes 81 grasps per touch and 405 grasps
in total. The results are shown in Fig. 7.

There is already a difference between 0 and 1 touches.
The success rate increased from 63.3% to 70.4%. Maximum
success was achieved using reconstructions after 10 touches.
However, the difference between 5 and 15 touches is only
2.5% (82.7% vs. 85.2%).

In general, we can say that 5 touches are enough for
a sufficient grasp success rate. To compare, the maximum
success rate achieved in the baseline [1] was 77.8%. It is
also worth mentioning that the result was achieved after time
that could be comparable to touch number 12 in our results.

V. CONCLUSION, DISCUSSION, AND FUTURE WORK

We proposed a new method for shape completion using
a combination of visual and haptic feedback. VISHAC
outperformed the baseline Act-VH [1] in terms of speed,
reconstruction quality and robustness. We experimentally
validated VISHAC in both simulated and real-world environ-
ments, using 8 objects and an additional one for grasping.
VISHAC was evaluated in scenes with one, two, or three
objects. We always touched the objects 15 times and re-
peated each experiment three times, resulting in almost one
hundred experiments in total. In addition, a new uncertainty

0 1 5 10 15

Number of touches [-]

20

30

40

50

60

70

80

90

100

G
ra

s
p

 s
u

c
c
e
s
s
 [

%
]

Median

Mean

Fig. 7: Real-world grasp success rate after different number
of touches. Means over 3 grasp attempts on each of 3
repetitions on each object (9 grasps per object; 81 per box)
are used to create the boxplots. Box edges indicates 25th
and 75th percentiles, with whiskers showing extreme points.
Medians (red line) and means (red circles) are computed over
all 9 objects.

computation strategy was evaluated, showing that it can be
used for on-the-fly quality measurements. The reconstruc-
tions were furthermore validated with more than 400 grasps,
demonstrating the usability of shape completion in a core
robotic task.

There are several directions for future work. The results in
the real setup are negatively affected by the noise induced by
the contact events—the collision is detected with a certain
delay, the object moves, and the new pose is not re-estimated
perfectly. This could be mitigated in two ways. First, the
most effective will be faster contact detection. In the current
setup, collisions are detected from the joint torque sensors in
the manipulator and its dynamic model and their remapping
onto the end effector. In our setup, this leads to delayed and
noisy estimation of the collision and significant movement of
the object. A remedy would be a force/torque sensor at the
robot wrist or tactile sensors at the end effector. Second, the
object pose re-estimation after every haptic exploration could
be further improved by using alternative pose estimators or
adding tracking.

Furthermore, on a robot hand with sensorized fingertips,
data for reconstruction could be collected more effectively by
sliding the fingers over the object surface (tactile servoing).
Finally, poking and touching reveal surface stiffness and
other physical properties that play a role in grasping and
could be exploited.

REFERENCES

[1] L. Rustler, J. Lundell, J. K. Behrens, V. Kyrki, and M. Hoffmann,
“Active Visuo-Haptic Object Shape Completion,” IEEE Robotics and
Automation Letters, vol. 7, pp. 5254–5261, 4 2022.

[2] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal,
N. Bergström, D. Kragic, and A. Morales, “Mind the gap-robotic
grasping under incomplete observation,” in 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 686–693.

[3] R. Schnabel, P. Degener, and R. Klein, “Completion and Reconstruc-
tion with Primitive Shapes,” in Computer Graphics Forum, vol. 28,
no. 2. Wiley Online Library, 2009, pp. 503–512.

[4] M. Pauly, N. J. Mitra, J. Giesen, M. H. Gross, and L. J. Guibas,
“Example-based 3D Scan Completion,” in Symposium on Geometry
Processing, no. CONF, 2005, pp. 23–32.

[5] M. Li, K. Hang, D. Kragic, and A. Billard, “Dexterous grasping under
shape uncertainty,” Robotics and Autonomous Systems, vol. 75, pp.
352–364, 2016.

[6] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE,
June 2019, pp. 165–174.

[7] M. Atzmon and Y. Lipman, “SAL: Sign Agnostic Learning of Shapes
From Raw Data,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, June
2020, pp. 2562–2571.

[8] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit
Geometric Regularization for Learning Shapes,” in International Con-
ference on Machine Learning. PMLR, Nov. 2020, pp. 3789–3799.

[9] H. Huang, Z. Yang, and R. Platt, “Gascn: Graph Attention Shape
Completion Network,” in 2021 International Conference on 3D Vision
(3DV). IEEE, 2021, pp. 1269–1278.

[10] A. Rosasco, S. Berti, F. Bottarel, M. Colledanchise, and L. Natale,
“Towards Confidence-guided Shape Completion for Robotic Applica-
tions,” 9 2022.

[11] D. Watkins-Valls, P. Allen, K. Choromanski, J. Varley, and N. Way-
towich, “Multiple View Performers for Shape Completion,” 9 2022.

[12] S. Ottenhaus, M. Miller, D. Schiebener, N. Vahrenkamp, and T. As-
four, “Local Implicit Surface Estimation for Haptic Exploration,” in
2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), Nov. 2016, pp. 850–856.

[13] Z. Yi, R. Calandra, F. Veiga, H. van Hoof, T. Hermans, Y. Zhang, and
J. Peters, “Active Tactile Object Exploration with Gaussian Processes,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct. 2016, pp. 4925–4930.

[14] D. Driess, P. Englert, and M. Toussaint, “Active Learning with
Query Paths for Tactile Object Shape Exploration,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept. 2017, pp. 65–72.

[15] S. Dragiev, M. Toussaint, and M. Gienger, “Uncertainty aware grasp-
ing and tactile exploration,” in 2013 IEEE International conference on
robotics and automation. IEEE, 2013, pp. 113–119.

[16] G. Z. Gandler, C. H. Ek, M. Björkman, R. Stolkin, and Y. Bekiroglu,
“Object Shape Estimation and Modeling, Based on Sparse Gaussian
Process Implicit Surfaces, Combining Visual Data and Tactile Explo-
ration,” Robotics and Autonomous Systems, vol. 126, p. 103433, Apr.
2020.

[17] S. Ottenhaus, D. Renninghoff, R. Grimm, F. Ferreira, and T. Asfour,
“Visuo-Haptic Grasping of Unknown Objects Based on Gaussian
Process Implicit Surfaces and Deep Learning,” in 2019 IEEE-RAS
19th International Conference on Humanoid Robots (Humanoids),
Oct. 2019, pp. 402–409.

[18] M. Björkman, Y. Bekiroglu, V. Högman, and D. Kragic, “Enhanc-
ing Visual Perception of Shape through Tactile Glances,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Nov. 2013, pp. 3180–3186.

[19] A. A. Bonzini, L. Seminara, and L. Jamone, “Improving Haptic Ex-
ploration of Object Shape by Discovering Symmetries,” Proceedings
- IEEE International Conference on Robotics and Automation, pp.
5821–5827, 2022.

[20] D. Watkins-Valls, J. Varley, and P. Allen, “Multi-Modal Geometric
Learning for Grasping and Manipulation,” in 2019 International
Conference on Robotics and Automation (ICRA), May 2019, pp. 7339–
7345.

[21] S. Wang, J. Wu, X. Sun, W. Yuan, W. T. Freeman, J. B. Tenenbaum,
and E. H. Adelson, “3D Shape Perception from Monocular Vision,
Touch, and Shape Priors,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct. 2018, pp. 1606–1613.

[22] E. Smith, R. Calandra, A. Romero, G. Gkioxari, D. Meger, J. Malik,
and M. Drozdzal, “3D Shape Reconstruction from Vision and Touch,”
in Advances in Neural Information Processing Systems, vol. 33.
Curran Associates, Inc., 2020, pp. 14 193–14 206.

[23] E. Smith, D. Meger, L. Pineda, R. Calandra, J. Malik, A. Romero So-
riano, and M. Drozdzal, “Active 3D Shape Reconstruction from Vision
and Touch,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[24] P. K. Murali, C. Wang, D. Lee, R. Dahiya, and M. Kaboli, “Deep
Active Cross-Modal Visuo-Tactile Transfer Learning for Robotic Ob-
ject Recognition,” IEEE Robotics and Automation Letters, vol. 7, pp.
9557–9564, 10 2022.

[25] S. Suresh, Z. Si, J. G. Mangelson, W. Yuan, and M. Kaess, “Shapemap
3-d: Efficient shape mapping through dense touch and vision,” Pro-
ceedings - IEEE International Conference on Robotics and Automa-
tion, pp. 7073–7080, 2022.

[26] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
“The ball-pivoting algorithm for surface reconstruction,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 5, no. 4, pp.
349–359, Oct. 1999.

[27] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface recon-
struction,” in Proceedings of the fourth Eurographics symposium on
Geometry processing, vol. 7, 2006.

[28] B. Guo, J. Menon, and B. Willette, “Surface Reconstruction Using
Alpha Shapes,” Computer Graphics Forum, vol. 16, no. 4, pp. 177–
190, 1997.

[29] O. Williams and A. Fitzgibbon, “Gaussian process implicit surfaces,”
in Gaussian Processes in Practice, 2006.

[30] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchi-
cal Feature Learning on Point Sets in a Metric Space,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 5105–5114.

[31] T. Sakai, “On Riemannian manifolds admitting a function whose
gradient is of constant norm,” Kodai Mathematical Journal, vol. 19,
no. 1, pp. 39 – 51, 1996.

[32] M. G. Crandall and P.-L. Lions, “Viscosity solutions of hamilton-
jacobi equations,” Transactions of the American Mathematical Society,
vol. 277, no. 1, pp. 1–42, 1983.

[33] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[34] A. R. Smith, “Tint fill,” ser. SIGGRAPH ’79. New York, NY, USA:
Association for Computing Machinery, 1979, p. 276–283.

[35] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A
Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes,” 06 2018.

[36] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6D Object Pose Estimation by Iterative
Dense Fusion,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 3343–3352.

[37] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J.
Guibas, “Normalized Object Coordinate Space for Category-Level 6D
Object Pose and Size Estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
2642–2651.

[38] X. Chen, Z. Dong, J. Song, A. Geiger, and O. Hilliges, “Category
Level Object Pose Estimation via Neural Analysis-by-Synthesis,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXVI 16. Springer, 2020,
pp. 139–156.

[39] P. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[40] B. Wen and K. Bekris, “BundleTrack: 6D Pose Tracking for Novel
Objects without Instance or Category-Level 3D Models,” IEEE In-
ternational Conference on Intelligent Robots and Systems, pp. 8067–
8074, 2021.

[41] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep Iterative
Matching for 6D Pose Estimation,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 683–698.

[42] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 5026–5033.

[43] A. Miller and P. Allen, “Graspit! A versatile simulator for robotic
grasping,” IEEE Robotics Automation Magazine, vol. 11, no. 4, pp.
110–122, 2004.

	I Introduction
	II Related work
	II-A Visual-only Shape Completion
	II-B Haptic-Only Shape Completion
	II-C Visuo-Haptic Shape Completion

	III Method
	III-A Implicit Surfaces
	III-B Implicit Geometric Regularization for Learning Shapes
	III-C IGR Modifications – Sampling and Free Space
	III-D Object Representation from Visual and Haptic Data
	III-E Object Shape Uncertainty
	III-F Segmentation of Multiple Objects
	III-G Pose Estimation
	III-H VISHAC Algorithm

	IV Experiments and Results
	IV-A Evaluation Metrics
	IV-B Simulation Experiments
	IV-B.1 Reconstruction – one object in the scene
	IV-B.2 Reconstruction – multiple objects in the scene

	IV-C Real-world Experiments
	IV-C.1 Reconstruction
	IV-C.2 Grasp Success Rate

	V Conclusion, Discussion, and Future Work
	References

