
Stackelberg Meta-Learning for Strategic Guidance in Multi-Robot
Trajectory Planning

Yuhan Zhao and Quanyan Zhu

Abstract— Trajectory guidance requires a leader robotic
agent to assist a follower robotic agent to cooperatively reach
the target destination. However, planning cooperation becomes
difficult when the leader serves a family of different followers
and has incomplete information about the followers. There is a
need for learning and fast adaptation of different cooperation
plans. We develop a Stackelberg meta-learning approach to
address this challenge. We first formulate the guided trajectory
planning problem as a dynamic Stackelberg game to capture the
leader-follower interactions. Then, we leverage meta-learning
to develop cooperative strategies for different followers. The
leader learns a meta-best-response model from a prescribed
set of followers. When a specific follower initiates a guidance
query, the leader quickly adapts to the follower-specific model
with a small amount of learning data and uses it to perform
trajectory guidance. We use simulations to elaborate that our
method provides a better generalization and adaptation per-
formance on learning followers’ behavior than other learning
approaches. The value and the effectiveness of guidance are also
demonstrated by the comparison with zero guidance scenarios1.

I. INTRODUCTION

Guided cooperation is gaining increasing attention in many
robotic applications with the advances in robotic research and
technology. For example, the path guidance and tracking in
multi-robot systems [1], [2], human-robot collaboration in
home-assistive services [3] and manufacturing [4], and multi-
robot collective transportation [5], [6]. Guided cooperation
can utilize heterogeneous robot capabilities to achieve task
objectives. A more resourceful robotic agent (leader) can
guide or assist a less sophisticated robotic agent (follower)
to complete the task by utilizing both agents’ advantages.
A typical and important application of guided cooperation
in robotics is strategic guidance for trajectory planning.
As an example, we consider an unmanned aerial vehicle
(UAV) guiding an unmanned ground vehicle (UGV) for
transporting mission-critical objects. The UGV has limited
sensing and computational resources and can only do its
local planning, resulting in difficulty reaching the destination
independently. In contrast, the resourceful UAV can sense
the global environment and find a collision-free trajectory to
guide the UGV.

Extensive works in trajectory planning, including path-
based planning [7]–[9] and control-based planning [10],
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1The simulation codes are available at https://github.com/
yuhan16/Stackelberg-Meta-Learning.

Fig. 1: Illustration of Stackelberg meta-learning approach in trajectory
guidance. Different follower UGVs rely on the leader UAV’s trajectory
guidance to reach their destinations. The leader UAV uses meta-learning
to learn a meta-best-response model by interacting with different followers
(1-2). When guiding a specific follower, the leader uses the follower-specific
data (3) to adapt the meta-model to that follower (4) and performs guided
trajectory planning (5).

[11], have investigated single-agent cases. However, sim-
ply extending the methodology to multi-agent settings is
insufficient since it fails to capture the cooperative interac-
tions between multiple agents. Game theory emerges as a
promising tool in multi-robot trajectory planning [12]–[16].
In particular, Stackelberg game [17] provides a quantitative
framework that captures the mentor-apprentice or leader-
follower type of interactions in guided cooperation and has
shown effectiveness in various cooperative tasks [18]–[21].
In the UAV-UGV example, interactions between UAV and
UGV in trajectory guidance can be formulated as a dynamic
Stackelberg game. The associated Stackelberg equilibrium
solution provides an agent-wise cooperative plan.

However, the leader must know the follower’s behavior
model to solve the Stackelberg equilibrium, which is chal-
lenging in practical applications where the leader can only
observe the follower’s action instead of his model. Besides,
a leader generally needs to work with different followers on
various tasks. In the trajectory guidance example, a UAV
is expected to assist UGVs of different configurations to
accomplish the transport mission. Designing different coop-
eration plans for various followers can be time-consuming
and eventually becomes intractable as the number of follow-
ers increases. We need an approach to quickly generate a
guidance plan when the leader assists a specific follower.

Meta-learning provides a suitable learning mechanism
for Stackelberg game-theoretic cooperation (see Fig. 1). It
enables learning a customizable plan from a prescribed
set of known tasks and fast adaptation to a specific task
using a small amount of learning data [22]. It has also
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been used in robotics to search for adaptive collaboration
plans in multi-robot systems [23], human-robot interaction
[24], [25], and trajectory planning and tracking [26], [27].
Specifically, the leader prepares a meta-best-response for
different followers as an averaged behavior model based
on past interactions. When a specific follower initiates a
guidance query, the leader adapts the meta-model to the
follower and then performs trajectory guidance by finding
an approximate Stackelberg equilibrium.

In this work, we develop a Stackelberg meta-learning
approach for leader-follower cooperation in guided trajectory
planning problems. We formulate the guided interactions
between the leader and the follower as a dynamic Stack-
elberg game, where each follower makes myopic decisions
to interact with the leader. Once a specific follower initiates
a guidance query, the leader quickly generates a follower-
specific behavior model from the meta-best-response and
uses it to design effective trajectory guidance strategies with
receding horizon planning. We use simulations to show that
our approach provides a better generalization and adaptation
performance compared with the other two typical learning
approaches. We also compare the results with zero guidance
scenarios to demonstrate the value of guidance in trajectory
planning.

Notations: We use superscripts L and F to denote the
leader and the follower-related quantities. We use bold vari-
ables to denote aggregated trajectory, e.g., u := {ut}T−1

t=0 .
We use the two-norm ∥x∥2 =

√
xTx and the matrix norm

∥x∥Q =
√

xTQx.

II. PROBLEM FORMULATION

A. Trajectory Guidance as Stackelberg Games

We consider a leader robotic agent L (she) assisting the
follower robotic agent F (he) to reach the destination while
circumventing obstacles in the working environment X ⊂
R2. Due to limited sensing and computational capabilities,
the follower requires guidance from the leader to find a
collision-free trajectory. The leader is expected to assist
different followers in trajectory planning. The followers with
different configurations are characterized by their type θ ∈
Θ, and p(θ) is the type distribution known to the leader. The
leader assists one follower at a time when a specific follower
drawn from p(θ) requests a guidance query.

Let xL
t ∈ RnL

, xF
t ∈ RnF

denote the leader and follower’s
states, including their positions at time t; xt := [xL

t , x
F
t ]

denotes the joint state. Let uL
t ∈ UL ⊂ RmL

, uF
t ∈ UF ⊂

RmF

be their controls and admissible control sets. In the
guidance of a follower with type θ, the leader announces
an action uL

t based on xt. The follower then myopically
responds to the leader with the optimal action uF∗

θ (xt, u
L
t )

based on his cost function JF
θ . Using the follower’s response,

the leader seeks a collision-free trajectory x∗ := {x∗
t }Tt=0

for both agents and strategically guides the follower to the
destination. We formulate the trajectory guidance problem as

a dynamic Stackelberg game Gθ as follows:

min
uL∈UL

JL
θ (u

L) :=

T−1∑
t=0

gLθ (xt, u
L
t , u

F∗
θ (xt, u

L
t )) + qLθ (xT )

(1)

s.t. uF∗
θ (xt, u

L
t ) = arg min

uF∈UF
JF
θ (xt, u

L
t , u

F
t ),

t = 0, . . . , T − 1, (2)

xL
t+1 = fL(xL

t , u
L
t ), t = 0, . . . , T − 1, (3)

xF
t+1 = fF

θ (xt, u
L
t , u

F
t ), t = 0, . . . , T − 1, (4)

dist(xi
t, p

O
j ) ≥ dj , i ∈ {L,F}, j = 1, . . . ,M,

t = 0, . . . , T. (5)

Here, gLθ and qLθ denote the leader’s stage and terminal costs.
The follower’s problem is given by (2) where JF

θ is his
cost function. The leader and follower’s dynamic models are
captured by (3) and (4), respectively. In the safety constraints
(5), pOj ∈ X is the position of the j-th obstacle in X and dj is
the safety distance. The function dist measures the distance
between the leader/follower and an obstacle.

We use the open-loop Stackelberg equilibrium
⟨x∗,uL∗,uF∗

θ ⟩ of the game Gθ as the cooperative plan
for trajectory guidance. The leader and the follower take
the actions in uL∗ and uF∗

θ respectively and generates a
collision-free trajectory starting from given x0 := [xL

0 , x
F
0 ].

1) Guidance in Trajectory Planning: Guidance is an
interactive process instead of unilateral instructions from the
leader. Followers have the freedom to (myopically) decide
where to go after observing the state xt and the leader’s
action uL

t . The leader’s trajectory serves as a reference to
assist followers to perform effective local planning. When
there is no guidance, followers can only perform one-step
planning using limited sensing and planning capabilities. It is
worth noting that the leader’s recommended action coincides
with the follower’s optimal action uF∗

θ only if the leader
knows the follower’s exact decision-making model. In this
case, followers follow the recommendation and do not need
local planning. However, the anticipated action may not be
taken if the leader only has an approximate follower model.
Then all followers need to make decisions by themselves in
the guidance task.

B. Meta-Best-Response and Meta-Learning Problem

When the leader knows the follower’s decision-making
model (JF

θ or uF∗
θ ), the Stackelberg equilibrium can be

computed using model-based approaches, such as mixed in-
teger linear programming [21], [28]. However, the leader can
only observe the follower’s actions in many practical cases.
We need learning-based methods to find the Stackelberg
equilibrium of Gθ to design effective guidance plans.

We approximate the follower’s decision problem (2) us-
ing an input-output function (i.e., the best-response model)
b(x, uL;w) parameterized by w. The leader uses b to predict
the follower’s response and Gθ becomes a parameterized
single-agent trajectory optimization problem, denoted by
Gθ(w) for a given parameter w. The optimal solution



{x∗(w),uL∗(w)} of Gθ(w) together with the estimated best
response {b(x∗

t (w), uL∗
t (w))}T−1

t=1 approximate the Stackel-
berg equilibrium of Gθ and is used for trajectory guidance.

When the leader assists different followers, it is time-
consuming for the leader to learn separate best-response
models from scratch. We aim to develop an approach to
quickly generate a guidance plan when a follower initiates
a query. To this end, we formulate a meta-learning problem
such that the leader learns a meta-best-response model from
a set of sampled or encountered followers through offline
learning. When a new query occurs, the leader uses a
small amount of learning data (from history) to adapt the
meta-best-response model to the follower-specific one and
performs trajectory guidance.

With a little abuse of notation, we denote b(x, uL;w) as
the meta-best-response model and define task Tθ as learning
the best-response of the type θ follower with the task cost

Lθ(w) =
1

N

N∑
i=1

∥∥b(x̂i, û
L
i ;w)− ûF∗

θ,i

∥∥2
2
, (6)

where Dθ = {(x̂i, û
L
i , û

F∗
θ,i )}Ni=1 is the sampled best-response

data. Lθ(w) measures the data fitting cost over Dθ. The
meta-learning can be formulated as the following optimiza-
tion problem:

min
w

Eθ∼p [EDθ
[Lθ(w − α∇wLθ(w))]] . (7)

where α > 0 is the inner gradient update step size.

III. STACKELBERG META-LEARNING

A. Meta-Best-Response Training

We use the empirical task distribution to approximate the
expectation in (7) and obtain

min
w

∑
θ∼p

∑
Dθ

Lθ

(
w − α∇wLθ(w;Dtrain

θ );Dtest
θ

)
. (8)

Here, we split the dataset Dθ = Dtrain
θ ∪ Dtest

θ ; θ ∼ p is the
empirical task distribution of sampled batch tasks Tbatch from
p. We use first-order methods to solve (8). The intermediate
parameter w′

θ for task Tθ is updated by one gradient step:

w′
θ ← wk − α∇wLθ(wk;Dtrain

θ ). (9)

Next, we perform stochastic gradient descent (SGD) on the
meta-optimization across Tbatch with the step size β > 0:

wk+1 ← wk −
β

|Tbatch|
∑

θ∈Tbatch

∇wLθ(w
′
θ;Dtest

θ ), (10)

Alg. 1 summarizes the Stackelberg meta-learning algorithm
and outputs a meta-best-response model as the averaged
behavior model for all types of followers.

1) Importance Sampling: The follower’s action near an
obstacle differs from that in the flat region. The best-
response model should capture the follower’s response in
both situations as precisely as possible. Using the idea of
importance sampling, we randomly sample K1 data in X
and sample K2 data near the obstacles and use κ := K1/K2

to control the sampling ratio.

Algorithm 1: Stackelberg meta-learning algorithm.

1 Input: Follower’s type distribution p(θ),
hyperparameters α, β, MAX ITER ;

2 Initialize: Initial model parameter w0, ;
3 k ← 0 ;
4 while k < MAX ITER do
5 Sample a batch of tasks Tbatch := {Tθ}, θ ∼ p ;

// Inner level gradient evaluation
6 for every task Tθ ∈ Tbatch do
7 Sample K1 best response data given random

feasible state-action pair (x, uL) ;
8 Sample K2 best response data near the

obstacle j = 1, . . . ,M ;
9 Dtrain

θ ← all samples with K = K1 +K2 ;
10 Compute w′

θ by (9) and Dtrain
θ ;

11 Dtest
θ ← sample K best response data using
w′

θ, following same sample rule as Dtrain
θ ;

// Meta-optimization evaluation
12 Update wk+1 by (10) and {Dtest

θ }θ∼p ;
13 k ← k + 1 ;

14 wmeta ← wk ;
15 Output: meta-parameter wmeta and

meta-best-response model b(x, uL;wmeta) ;

B. Best-Response Adaption

After receiving b(x, uL;wmeta) from Alg. 1, the leader
can fast adapt to the new task (the new follower) using only a
small amount of data samples when a guidance query occurs.
Specifically, the leader adapts b(x, uL;wmeta) to a follower-
specific best-response model b(x, uL;wθ) using the adaption
algorithm Alg. 2 and uses it to perform trajectory guidance.

Algorithm 2: Adaption of Stackelberg meta-learning.

1 Input: wmeta and new follower with type θ ;
2 Initialize: Step size parameter α, adaption step C ;
3 Sample Dθ with K ′ samples using wmeta ;
4 k ← 0, w0 ← wmeta ;
5 while k < C do
6 wk+1 ← wk − α∇wLθ(wk) with Dθ ;
7 k ← k + 1 ;

8 Adapted parameter wθ ← wk ;
9 Output: adapted parameter wθ and adapted best

response model b(x, uL;wθ) ;

C. Receding Horizon Planning For Trajectory Guidance

The leader uses the adapted best-response model and
solves the problem Gθ(w) to perform trajectory guidance.
The safety constraints (5) bring computational challenges.
We penalize the violation of safety constraints using barrier
functions for j = 1, . . . ,M :

cj(xt) = −
∑

i∈{L,F}

ν log
(
dist(xi

t, p
O
j )− dj

)
,



where ν > 0 is the penalty parameter. Then, the modified
cost function of Gθ(w) is given by

J̃L
θ (u

L;w) :=

T−1∑
t=0

g̃Lθ (xt, u
L
t ;w) +

M∑
j=1

cj(xt)

+ qLθ (xT ) +

M∑
j=1

cj(x
i
T ),

where g̃Lθ (xt, u
L
t ;w) := gLθ (xt, u

L
t , b(xt, u

L
t ;w)). Instead of

solving Gθ(w). We solve the following modified problem

G̃θ(w) : min
uL∈UL

J̃L
θ (u

L;w)

s.t. xL
t+1 = fL(xL

t , u
L
t ), t = 0 . . . , T − 1,

xF
t+1 = fF

θ (xt, u
L
t , b(xt, u

L
t ;w)), t = 0, . . . , T − 1,

and uses its solution {x̃∗(w), ũL∗(w)} to approximate the
one of Gθ(w). We can leverage existing optimization solvers
to solve G̃θ(w). However, we note that the follower’s dy-
namics fF

θ contain the parameterized best-response model
b(x, uL;w). Parameterized models in general have complex
function surfaces, such as neural networks [29]. The direct
use of the parameterized model in the equality constraint
may result in infeasible solutions. To address this issue, we
penalize the follower’s dynamics difference by putting it into
the objective function. We define

dt(xt+1, xt, u
L
t ;w) = µ

∥∥xF
t+1 − xF

t − fF
θ (xt, u

L
t ;w)

∥∥2
2

for t = 0, . . . , T − 1, where µ > 0 is the penalty parameter.
Hence we solve the following problem

G̃optθ (w) : min
uL∈A

J̃L
θ (u

L;w) +

T−1∑
t=0

dt(xt, xt, u
L
t ;w),

s.t. xL
t+1 = fL(xL

t , u
L
t ), t = 0 . . . , T − 1,

to obtain an approximate solution. We further use the neces-
sary optimality conditions of G̃θ(w) derived from Pontrya-
gin’s Minimum Principle (PMP) to refine the approximate
solution of G̃optθ (w):

xt+1 = f(xt, u
L
t ;w), t = 0, . . . , T − 1,

λt = ∇xtHt(xt, u
L
t , λt+1), t = 1, . . . , T − 1,

λT = ∇xT
qLθ (xT ) +∇xT

M∑
j=1

cj(xT ),

uL
t = arg min

u∈UL
Ht(xt, u, λt+1), t = 0, . . . , T − 1,

(11)

where f(xt, u
L
t ;w) := [fL(xt, u

L
t ), f

F
θ (xt, u

L
t , b(xt, u

L
t ;w))]

is the aggregated dynamics, λt ∈ RnA+nB

is the costate at
time t, and the Hamiltonian Ht is given by

Ht(xt, u
L
t , λt+1) :=

g̃Lθ (xt, u
L
t ;w) +

M∑
j=1

cj(xt) + λT
t+1f(xt, u

L
t ;w)

for t = 0, . . . , T − 1. Gradient methods can be applied to
find the minimizer of Ht in (11).

Based on G̃optθ and (11), we use receding horizon planning
to generate effective and robust trajectory guidance strate-
gies, which is summarized in Alg. 3.

Algorithm 3: Receding horizon planning.

1 Input: Query type θ ∈ Θ, initial state xinit,
destination pd, MAX TIME ;

2 Run Alg. 2 to obtain the adapted model b(x, a;wθ);
3 xd ← form target state ;
4 t← 0, xt ← xinit ;
5 while True do
6 Leader sets xt as the initial state in G̃optθ (w) ;
7 ūL ← Leader solves G̃optθ (w) ;
8 ũL∗(w) ← Leader refines ūL by solving (11) ;
9 Leader announces ũL∗

t (w) to the follower ;
10 uF∗

t ← follower observes xt and ũL∗
t ;

11 xt+1 ← real system dynamics (3)-(4) ;
12 if Reach destination or t > MAX TIME then
13 break
14 xt ← xt+1;
15 t← t+ 1 ;

IV. SIMULATIONS AND EVALUATIONS

A. Simulation Settings

We choose a [0, 10] × [0, 10] working space X with four
obstacles shown in Fig. 3. We use a single integrator ṗL = vL

as the leader’s dynamic model, where pL, vL ∈ R2 are the
leader’s position and velocity. We use a unicycle model to all
followers: ϕ̇F = ωF , ṗFx = vF cos(ϕF ), ṗFy = vF sin(ϕF ),
where ϕF ∈ (−π, π], pF := [pFx , p

F
y ] ∈ R2 denotes the

rotation angle and x, y-positions. ωF , vF ∈ [−1, 1], are the
input angular velocity and linear velocity. We assume that
the leader and all followers know the dynamic models. We
denote the joint state x := [pL, pF , ϕF ], uL := vL, and
uF := [vF , ωF ]. The interaction (planning) time is set as
T = 2s, and the discretization time step is dt = 0.2s. The
discrete-time model is discussed in Appendix A. We assume
that all followers have the same destination pd = [9, 9].
For simplicity, we elaborate on the definitions of the leader
and followers’ cost functions in Appendix B. The penalty
parameters ν = 0.5 and µ = 50.

We consider five types of followers (|Θ| = 5) with a type
distribution p = [0.2, 0.3, 0.1, 0.3, 0.1]. Using the cost func-
tion definition (14), the follower in each type has a different
set of parameters c := [c1, . . . , c4]. Type 1: c = [1, 8, 1, 0.8].
Type 2: c = [1, 10, 2, 0.7]. Type 3: c = [1, 10, 2, 0.6]. Type
4: c = [1, 5, 0.5, 1]. Type 5: c = [1, 5, 0.3, 1.2]. Intuitively,
we can label type 2-3 as “careful” agents and type 4-5 as
“aggressive” agents. This is because type 2-3 followers are
more sensitive to the guidance cost and have a wider sensing
range. They tend to follow the leader more closely than type
4-5 followers.

We note from (2) that collecting the follower’s best re-
sponse data does not need the leader to take optimal actions.
The leader can record the follower’s response by providing
a feasible state x and action uL and prepare the dataset.



B. Meta-Learning Results

We use a neural network with two hidden layers of 50
ReLU nonlinearities to parameterize the follower’s best re-
sponse. We perform 5×105 iterations for meta-optimization.
In each meta iteration, we sample 5 tasks (|Tbatch| = 5) and
K = 100 for Dtrain

θ and Dtest
θ . The sample ratio κ = 2. In

adaptation, we sample K ′ = 1000 data with the same κ.
Since meta-training aims to find an averaged initial model

for fast adaptation, we implement another two model-
averaging approaches for comparison. We first train a model
to average the output space (Output-Ave), i.e., training a best-
response model with the same structure as meta-learning us-
ing the shuffled data of types of followers (average followers’
behaviors). We also train a model to average the parame-
ter space (Param-Ave), i.e., training |Θ| individual models
for each type of follower and then averaging the model
parameters using p(θ). Each individual model is trained
by supervised learning and the type-specific dataset. These
two comparative approaches are typical ways to generate
averaged models used for adaptation. They have trained over
104 epochs with SGD with fine-tuned hyperparameters. Each
epoch contains 150 iterations. All learning algorithms are
performed on AMD Ryzen 3990X CPU. Tab. I summarizes
the data usage and training time of different approaches. We
manually implement the training of Output-Ave and Param-
Ave by PyTorch but implement meta-learning algorithms,
which explains the training time difference.

Meta-learning Output-Ave Param-Ave Adaptation
Time 80.6 min 24.2 min 27.4 min (of 5) 5.3 s
Data 7.5× 104 (of 5) 1.5× 104 7.5× 104 (of 5) 1000

TABLE I: Summary of learning statistics. Output-Ave means averaging the
output space; Param-Ave means averaging the parameter space. Training
time for Param-Ave is averaged on separate models. The data for meta-
learning and Param-Ave are summed over types.

We perform C = 50 steps of gradient adaptation for three
approaches using the same sampled dataset with α = 10−4.
For a detailed view, we plot the adaptation loss curve for
type θ = 2 follower in Fig. 2a and use the bar plot to show
the adapted result (MSE loss) for all type θ in Fig. 2b.

The smaller adaptation error and the faster convergence
rate indicate a better-generalized performance. As we ob-
serve in Fig. 2a, using the meta-learned model can fast reduce
the adaptation error in the first few gradient steps compared
with the Output-Ave approach, meaning that the meta-model
can be adapted to the specific follower using fewer amounts
of data and generating better performances. The meta-learned
model performs best after C adaptation rounds, as shown in
Fig. 2b. Conversely, the significant adaptation error produced
by Param-Ave shows that averaging the model is not a
practical option for predicting a new follower’s behavior in
real-world applications.

C. Receding Horizon Planning

After getting the adapted best-response model, the leader
runs Alg. 3 to perform trajectory guidance. We simulate

(a) Adaptation loss curve for type 2
follower. A zoom-in box shows more
details of meta adaptation and Output-
Ave results.

(b) MSE errors after C = 50 gradient
steps adaptation for all followers. Meta-
learning provides the best adaptation re-
sult.

Fig. 2: Adaptation results for three learning approaches. Meta-learning pro-
vides the best generalization adaptation performance. Param-Ave approach
yields a significant adaptation error and poor generalization performance.
We divide its loss by 2 in both plots for better visualization.

guided trajectories for each follower starting from different
initial positions, shown in Fig. 3.

The leader successfully guides all types of followers to the
destinations using corresponding adapted models, showing
the effectiveness of the trajectory guidance. We can visualize
different guidance plans that the leader uses for different
followers. For example, we take the trajectory starting from
[6, 0]. As mentioned, type 2-3 followers tend to follow the
leader more closely than type 4-5 followers. Therefore, the
leader makes more aggressive trajectories in Fig. 3b-3c to
attract the follower and help adjust their initial heading
directions. While in Fig. 3d-3e, the leader simply needs to
provide a reference trajectory to the follower because type
4-5 followers rely less on the guidance.

We also observe that the leader’s trajectory is zigzagged
near obstacles and smooth in flat regions. It shows that the
leader is aware of the follower’s behavior near the obstacle
and adjusts her action to better guide the follower. Some
trajectories can be complicated, such as in Fig. 3a and
Fig. 3e. This is mainly due to the learning accuracy of
the model. However, the leader still manages to guide the
follower passing the obstacle, showing that the model is also
effectively learned and robust.

D. Comparison With Zero Guidance

To demonstrate the necessity of the leader’s guidance,
we simulate a zero guidance scenario where the follower
seeks a myopic trajectory by himself, i.e., disregarding the
guidance cost in JF

θ . For simplicity, we plot the myopic
trajectories for type 3 and type 5 followers starting from
different positions, shown in Fig. 4. The myopic trajectories
of type 1-3 followers are similar, while the ones of type 4-
5 followers are similar. We also use color maps to plot the
sensing cost for better visualization.

As we observe, two followers have trouble reaching their
destination due to myopic planning. In fact, all followers
fail to reach the destination from initial positions in the
zero guidance scenario. They either get stuck on obstacles
or run out of working space X , similar to type 3 and type
5 followers in Fig. 4. The reason for sticking at obstacles is
twofold. First, followers use unicycle models, which do not



(a) Type 1 follower. (b) Type 2 follower. (c) Type 3 follower. (d) Type 4 follower. (e) Type 5 follower.

Fig. 3: Guidance trajectories for different followers. The blue and the orange represent the leader and follower trajectories, respectively. Followers start from
[0, 8] and [6, 0] to reach the goal region centered around [9, 9]. The leader successfully guides all followers to the destination using adapted best-response
models and receding horizon planning algorithms.

(a) Type 3 follower. (b) Type 5 follower.

Fig. 4: Myopic trajectories for two types of followers starting from [0, 8],
[0, 4], and [6, 0]. None of them reach their destination. The color map
represents the follower’s sensing cost. We can see that type 3 follower has
a wider sensing region than type 5 follower.

have the flexibility to move around as freely as the leader (a
single integrator). The second reason is related to rectangle
obstacles. The follower senses the homogeneous cost along
the obstacle surface. Thus, any action will lead to the same
obstacle cost unless the follower can cross the obstacle in one
step. Besides, taking action can also incur a control cost. So
the best option is to stay still. We observe that both type
3 and type 5 followers starting from position [0, 4] and the
type 5 follower starting from [0, 8] face the same issue. The
guidance from the leader can effectively steer the follower
away from obstacles and reach the destination (see Fig. 3),
showing the value of trajectory guidance.

V. CONCLUSION

In this work, we have proposed a Stackelberg meta-
learning approach to address guided trajectory planning prob-
lems with multiple follower robots with unknown decision-
making models. Our approach not only provides a game-
theoretic characterization of the leader-follower type of in-
teractions in trajectory guidance tasks but also develops
an effective learning mechanism to learn and fast adapt
to different guidance tasks to assist followers in reaching
their destination. Simulations have validated our approach
in providing successful trajectory guidance and show bet-
ter generalization and adaptation performance in learning
followers’ behavior models than other non-meta-learning-
based approaches. Comparisons with zero guidance scenarios
have demonstrated the value of guidance in assisting the

follower robot to the destination. For future work, we would
investigate the impact of the response model properties on
the planning results, such as smoothness, in more general
Stackelberg frameworks. We would also generalize our ap-
proach to other application domains, such as human-robot
interactions.

APPENDIX

A. Discrete Dynamic Models

We discretize the continuous dynamical system using dt =
0.2. We write xL = [pLx , p

L
y ] and uL = [vLx , v

L
y ] as leader’s

state and control. The leader’s discrete model is given by

xL
t+1 = xL

t + uL
t · dt. (12)

Likewise, we write xF = [pFx , p
F
x , ϕ

F ] and uF = [vF , ωF ]
as follower’s state and control. We use mixed discretization
for the follower, which yields

xF
t+1 = xF

t +

vFt cos(ϕF
t+1)

vFt sin(ϕF
t+1)

ωF
t

dt. (13)

The follower first adjusts the heading angle and then applies
the linear velocity in the discrete dynamic model. Here we
assume that all followers have independent dynamics and are
unaffected by the leader, a special case of the general form
in (4).

B. Leader and Follower Cost Functions

The leader’s cost is the same for all θ ∈ Θ, which is given
by

gθ(x, u
L, uF ) =

∥∥x− xd
∥∥2
Q1

+
∥∥pL − pF

∥∥2
Q2

+
∥∥uL

∥∥2
R
,

qθ(x) =
∥∥x− xd

∥∥2
Qf1

+
∥∥pL − pF

∥∥2
Qf2

,

where xd = [pd, pd, 0] ∈ R5 is the aggregated target
state; Q1, Q2, R,Qf1, Qf2 ⪰ 0 are weighting parameters of
appropriate dimensions. The term

∥∥pL − pF
∥∥ is interpreted

as the guidance cost, producing a high value if the leader
is far from the follower. In the simulation, we set Q1 =
2 × I5, Q2 = 5 × I5, R = I2, the terminal cost parameters
are set as Qf1 = 5×Q1, Qf2 = 5×Q2.



To simulate the interactive data, we construct the fol-
lower’s ground truth cost function using the following four
base functions:

JF
θ (uF ;x, uL) = c1

∥∥pF+ − pd
∥∥2
2
+ c2

∥∥pL+ − pF+
∥∥2
2

+c3
∥∥uF

∥∥2
2
+

M∑
j=1

h(c4(
∥∥Λ(pF+ − pOj )

∥∥
l
− dj)),

(14)

where h(x) = 10 log(x) if 0 < x ≤ 1 and 0 otherwise.
The interpretation of the terms associated with c1-c3 is
straightforward. c4 relates the follower’s sensing capabilities.
A smaller c4 indicates that the follower has a wider sensing
range and can avoid obstacles earlier. Λ ∈ R2 is a scaling
factor to define obstacles with different shapes. For example,
we can choose a proper Λ to define elliptic obstacles if l = 2.
Note that the follower takes the state x and the leader’s
action uL as the parameter. His myopic decision is based
on the one-step prediction pL+ and pF+ using the dynamics
(12)-(13). We assume that different followers have the same
cost function structure but different parameters c1-c4. We
use (14) as the Oracle to generate the best-response data for
learning.
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