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Overtaking Moving Obstacles with Digit: Path Following for Bipedal

Robots via Model Predictive Contouring Control

Kunal S. Narkhede, Dhruv A. Thanki, Abhijeet M. Kulkarni and Ioannis Poulakakis

Abstract— Humanoid robots are expected to navigate in
changing environments and perform a variety of tasks. Fre-
quently, these tasks require the robot to make decisions online
regarding the speed and precision of following a reference
path. For example, a robot may want to decide to temporarily
deviate from its path to overtake a slowly moving obstacle that
shares the same path and is ahead. In this case, path following
performance is compromised in favor of fast path traversal.
Available global trajectory tracking approaches typically as-
sume a given—specified in advance—time parametrization of
the path and seek to minimize the norm of the Cartesian error.
As a result, when the robot should be where on the path is
fixed and temporary deviations from the path are strongly
discouraged. Given a global path, this paper presents a Model
Predictive Contouring Control (MPCC) approach to selecting
footsteps that maximize path traversal while simultaneously
allowing the robot to decide between faithful versus fast path
following. The method is evaluated in high-fidelity simulations
of the bipedal robot Digit in terms of tracking performance of
curved paths under disturbances and is also applied to the case
where Digit overtakes a moving obstacle.

I. INTRODUCTION

Consider a scenario in which a humanoid robot and a

human share the same path with the human being in front

of the robot but moving at a slower speed. The robot faces

a decision between staying on the path—thus reducing its

speed to avoid collisions with the human—or temporarily de-

viating from it to overtake the human. Global1 path following

approaches for humanoid robots cannot be used directly in

such situations, because they typically require a pre-specified

feasible time parametrization of the reference path, thus

preventing the robot from deciding online when to be where

on the path. Furthermore, these methods aim at maximizing

path following accuracy, and hence do not permit temporary

deviations that would result in faster path traversal. This

paper describes a Model Predictive Control (MPC) approach

with online time reparametrization of the reference path that

enables bipedal robots to balance between maximizing path

following accuracy versus fast path traversal.

A wide variety of methods have been proposed for plan-

ning motions with bipedal robots. Some methods require

a collection of desired footsteps, e.g. [1], while others use

reference velocity commands specified by a user [2]–[5] or

by a kinematic model [6] and translate this information to
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1The term “global” is used to refer to a path expressed with respect to

an inertial frame of reference.

Center of Mass (COM) target trajectories using reduced-

order models like the Linear Inverted Pendulum (LIP) [7].

Other methods take advantage of general sampling-based

planning algorithms [8] to obtain global reference paths

that are then approximately followed by the robot [9]–

[11]. Obstacle-free paths in cluttered environments can also

be constructed by switching among dynamic movement

primitives with limit cycle equilibrium solutions [12]–[14],

providing assured locomotion stability [15]. In the present

paper, we turn our attention on path following, that is, on

global position control, assuming that a sufficiently smooth

reference global path is available a priori.

In the relevant literature, parametrizing a reference global

path with respect to time is typically treated in isolation

from the corresponding tracking problem. For example, [16],

[17] provide a method for tracking a straight-line path

under the assumption that a monotonically increasing, con-

tinuously differentiable time parametrization of the path is

available a priori. Similarly, [18] assumes that a feasible

time parametrization of the reference path is available in

advance, and generates footsteps compatible with the result-

ing trajectory in a MPC fashion using a hybrid extension

of the classical LIP [7]. However, decoupling the time

parametrization of the path from the tracking problem may

lead to inconsistencies between the resulting trajectory and

the dynamics of the system. Furthermore, not allowing the

robot to decide online when it should be where on the path

may limit its ability to respond to changes in its surroundings.

Some methods do not assume a fixed time parametrization

of the reference path. For instance [9] proposes a Quadrati-

cally Constrained Quadratic Program (QCQP) to modify the

heading angle for a bipedal robot model by “shaping” a peri-

odic walking gait computed offline so that a reference global

path can be followed; however, in this work path traversal is

primarily determined by the underlying periodic trajectory.

Another approach proposed in [19] assumes a velocity profile

along a reference path and converts it into walking patterns

in the form of COM and Zero Moment Point (ZMP) trajec-

tories; the velocity profile can be modified, but the ability

to do this online is not explored. Translating a reference

global path into a feasible COM trajectory is studied in [20],

where part of the path is converted online into a trajectory

by solving a direct collocation optimization problem using

the Spring Loaded Inverted Pendulum (SLIP) model.

In this work, we assume that a path is given, and we

adopt the approach in [21] and treat the path parameter as

a state variable evolving according to a dynamical system.

The input to this system is determined online via a MPC
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program and effectively decides how far into the path the

robot goes in each step. This idea is at the core of Model

Predictive Contouring Control (MPCC) [22], which com-

bines online path reparametrization and tracking within a

single optimization framework, the objective of which is to

minimize the error to the reference path. The key aspect

of the MPCC formulation is that the path following error

is decomposed in contouring and lag components, allowing

the system to assign different weights to maximizing tracking

performance versus fast path traversal. This is different from

the majority of the aforementioned methods [9], [11], [16]–

[18], [20], which minimize the norm of the Cartesian error

from the path, thus strongly penalizing deviations from it.

MPCC has been implemented initially for tracing different

contours in CNC machines [23], and more recently for path

following and obstacle avoidance in wheeled robots [24] and

for realizing aggressive flight maneuvers in quadrotors [25].

The goal of this paper is to enable bipedal robots to

make decisions online regarding the speed and precision

of following a reference global path. We propose a MPCC

scheme that relies on a variant of the 3D LIP for footstep

generation for bipedal robots. In contrast to previous work,

our method does not require a fixed path parametrization

in advance; the MPCC just needs a reference path, de-

termines online a feasible (discrete) time parametrization,

and suggests consistent footsteps and COM motions to the

robot’s low-level controller. The latter is formulated as a

Quadratic Program (QP) translating these suggestions to

motor torques applied to the robot. The effectiveness of

the method is evaluated in simulations with a high-fidelity

model of the bipedal robot Digit2. We discuss path following

performance under randomly applied external disturbances,

and demonstrate the application of the method to the case

where Digit overtakes an obstacle moving along its path.

II. PATH FOLLOWING WITH ONLINE PARAMETRIZATION

We consider the problem of following a global path in

the robot’s workspace. We describe in this section a method

that allows for online time reparametrization of the path and

discuss the selection of the performance index in a MPC

program to enable the robot to decide between fast path

traversal and path following performance.

A. Path Following MPC with Online Reparametrization

Consider a bipedal robot walking on flat ground. To keep

the discussion general, assume that the step-to-step evolution

of the robot can be predicted by a discrete-time system

xk+1 = f(xk, uk) (1)

where xk ∈ R
n and uk ∈ R

m are the state and input values

of the system. Since we are interested in path following on

the horizontal plane, we define the output

yk = h(xk) (2)

where yk = [xk yk]
T ∈ R

2 is the location occupied by

the robot at step k. In Section III below, we will adopt a

2https://www.agilityrobotics.com/robots#digit

modified LIP as a prediction model (1)-(2) for the step-to-

step dynamics of Digit.

We assume that a reference global path for the robot’s

COM locations on the horizontal plane is available and that

it can be represented as a sufficiently smooth curve

yd(ϑ) =
[

xd(ϑ) yd(ϑ)
]T

(3)

where the parameter ϑ ∈ Θ = [0, ϑT ] measures “progress”

along the path. Let

φd(ϑ) = arctan

(

∂yd/∂ϑ

∂xd/∂ϑ

)∣

∣

∣

∣

ϑ

(4)

be the slope of the path.

One way to discretize the path is to determine a fixed rela-

tionship between the step number k and the value of ϑ. This

effectively corresponds to defining a trajectory yd(ϑk) = ydk
and the problem is equivalent to trajectory tracking: where

the robot should be and when are specified. Instead, to allow

the robot to decide online where on the path it should go at

each step, we follow [21] and treat the path parameter ϑ as

a state evolving according to the discrete dynamical system

ϑk+1 = ϑk + vk (5)

in which vk takes values in the interval V = [0, vmax] and

controls the progress of the robot along the path. In other

words, the purpose of the update law (5) and its input vk
is to allow for reparametrizing the path online, effectively

deciding how far into the path the robot travels at each step.

Given a path (3), the objective of the control system is

to minimize the error between the current location yk =
h(xk) of the robot and the desired one specified by the

parametrization yd(ϑk) of the path; that is, to minimize

‖e(xk, ϑk)‖
2
Q = (h(xk)− yd(ϑk))

TQ(h(xk)− yd(ϑk))

where Q = QT > 0 is a weighting matrix. In addition to

minimizing the error, we wish to penalize input effort while

maximizing progress along the path. These objectives can be

captured by the running cost

J1(xk, ϑk, uk, vk) = ‖e(xk, ϑk)‖
2
Q + ‖uk‖

2
R − ρ|vk|

2 (6)

where R = RT > 0 and ρ > 0; the negative sign in the last

term is to maximize how far into the path the robot goes at

each step. Finally, the terminal cost is defined by

J2(xk+N , ϑk+N ) = ‖e(xk+N , ϑk+N )‖2W (7)

where W = WT > 0 is a weighting matrix.

With these definitions, path following can be realized by

formulating a MPC over a finite horizon N > 0 as follows:

minimize
X,U,V

k+N−1
∑

ℓ=k

J1(xℓ, ϑℓ, uℓ, vℓ) + J2(xk+N , ϑk+N )

subject to xk = xinit, ϑk = ϑinit

xℓ+1 = f(xℓ, uℓ), ϑℓ+1 = ϑℓ+vℓ

xℓ ∈ Xℓ, uℓ∈Uℓ, ϑℓ∈Θ, vℓ∈V

xk+N ∈ Xk+N , ϑk+N ∈ Θ



Fig. 1. Cartesian error e, and contouring e
c and lag e

l error components
with their corresponding approximations ēc and ēl.

in which ℓ = k, ..., k + N − 1 and X = {xk+1, ..., xk+N},

U = {uk, ..., uk+N−1}, V = {vk, ..., vk+N−1}. The sets

Xk ⊂ R
n and Uk ⊂ R

m include permissible state3 and input

values at step k, respectively. Given the reference path (3)

and initial state xinit and path parameter ϑinit, the MPC is

solved at step k to provide an optimal sequence of inputs U∗.

The first element u∗k in this sequence is then applied at the

robot and the process is repeated until the path is consumed.

B. Cartesian and Contouring Error Formulations

To motivate our discussion, note that a common way to

select the weighting matrices Q and W in (6) and (7) is

Q = αI and W = βI (9)

where α > 0, β > 0 and I is the identity matrix. This

choice corresponds to minimizing the norm of the Cartesian

error; see Fig. 1. However, it does not expose the tradeoff

between accurately following the path and faithfully realizing

the online—not a priori specified—time parametrization (5).

As we will see in Section IV, making this tradeoff explicit is

important in certain tasks, like overtaking moving obstacles.

To capture the interplay between the spatial and temporal

aspects of tracking, we decompose the error as in [22] to

contouring ec and lag el components; see Fig 1. The con-

touring component captures the normal deviation from the

path while the lag component measures the (path) distance

that the robot lags behind the desired location yd(ϑk). Since

analytical expressions for ec and el are not always available

for general curved paths, these errors are approximated by

ēc and ēl, respectively, (see Fig. 1), which are defined as

ē(xk, ϑk) = P (φd(ϑk))(h(xk)− yd(ϑk))

where ē =
[

ēc ēl
]T

, φd(ϑk) is the slope of the path at ϑk

computed by (4) and

P (φd(ϑk)) =

[

sin(φd(ϑk)) − cos(φd(ϑk))

− cos(φd(ϑk)) − sin(φd(ϑk))

]

.

3If there are obstacles in the output space and Y free

k
is the free part at

step k, the state constraint h(xk) ∈ Y free

k
determines in part the set Xk .

With these definitions, the weighted running and terminal

errors can be defined as

‖ē(xk, ϑk)‖
2
Q̄
= ē(xk, ϑk)

T Q̄ ē(xk, ϑk)

‖ē(xk+N , ϑk+N )‖2
W̄

= ē(xk+N , ϑk+N )T W̄ ē(xk+N , ϑk+N )

respectively, which correspond to the cost functions (6) and

(7) with weighting matrices selected according to

Q = PT(φd(ϑk)) Q̄ P (φd(ϑk)) (10)

W = PT(φd(ϑk)) W̄ P (φd(ϑk)) (11)

where

Q̄ = diag{α1, α2} and W̄ = diag{β1, β2} (12)

are diagonal matrices with positive entries.

The selection of the weighting matrices according to (10)-

(11) in the definition of the cost functions of the MPC pro-

gram results in the MPCC formulation [22]. In what follows,

we use the term MPCC to emphasize that the corresponding

MPC program is formulated using the contouring/lag error

decomposition. The advantage of splitting the error into

contouring and lag components and using the weighting

matrices (10) and (11) in (6) and (7) is that they provide

explicit control over the normal deviation of the robot from

the path. By choosing the entries in (12) one can prioritize

between following the path accurately and keeping up with

the underlying time parametrization. For example, in the case

where Digit and a moving obstacle follow the same path with

the obstacle being ahead of the robot, selecting α1 = α2 = α
and β1 = β2 = β results in the weighting matrices (9)

causing the robot to limit its speed in order to stay on

path while avoiding collisions. In this case, the obstacle sets

the pace of the robot. On the other hand, selecting suitable

values α1 < α2, and β1 < β2 causes the robot to prioritize

fast traversal over path following, allowing it to temporarily

deviate from the path to overtake the obstacle.

III. IMPLEMENTATION ON DIGIT

This section describes the 3D LIP model that will replace

(1)-(2) as a prediction model in the MPC and discusses a

QP controller for following the MPC suggestions.

A. Path Tracking MPC with LIP-based Predictions

1) 3D-LIP Model: The LIP consists of a massless pris-

matic leg, on top of which is a point mass that is constrained

to move in a horizontal plane located at height H ; see Fig. 2.

Let (x, y) be the location of the point mass in the horizontal

plane with respect to an inertial frame {X,Y, Z} and let ux

and uy be the distances between the ground contact point and

the model’s point mass along the X and Y axes, respectively.

To ensure that the footstep locations suggested by the LIP

do not violate the geometric constraints of Digit, we restrict

the swing foot’s feasible landing locations to lie within a

rectangular region of orientation θ with respect to the Z
axis, as shown in Fig. 2. We assume that θ is constant within

each step and is updated instantaneously at the exchange of

support by a step change uθ; see also [11].



Fig. 2. 3D LIP model with rechability rectangles.

Assuming that each step has a constant time duration T ,

the step-by-step evolution of the LIP is given by

xk+1 = Axk +Buk (13)

where xk =
[

xk ẋk yk ẏk θk
]T

and uk =
[

ux
k uy

k uθ
k

]T

are the state and input values at the be-

ginning of the k-th step; the matrices A and B can be found

in [11]. To plan motions in the horizontal plane, we define

yk = Cxk (14)

where C is the 2× 5 matrix so that Cx =
[

x y
]T

.

2) Constraints: To ensure that the motions suggested by

the LIP are within the capabilities of Digit, we introduce the

following constraints. The first constraint captures the reach-

ability rectangles for foot placement and can be described by

lbk ≤ Rot(θk + uθ
k)

Tuk ≤ ubk (15)

where lbk =
[

lbxc

k lbyc

k lbθk
]T

(resp. ubk) includes lower

(resp. upper) bounds determining the rectangles, as shown

in Fig. 2 and Rot(θk + uθ
k) denotes the 3D rotation matrix

about the Z axis by the angle θk + uθ
k.

To avoid infeasible motions, we introduce a constraint

that limits the distance covered by the LIP during each

step within the interval [δmin, δmax] with suitably chosen

0 ≤ δmin < δmax. Formally, we require

δmin ≤
√

∆x2
k +∆y2k ≤ δmax (16)

where ∆xk = xk+1 − xk and ∆yk = yk+1 − yk. Note

here that when the underlying path has small curvature, (16)

has a similar effect with the constraint vk ∈ [0, vmax] in

(5); however, for paths with considerable curvature, the two

constraints influence the system in different ways: (5) limits

how far into the path the robot can travel in each step while

(16) constraints the Cartesian distance travelled per step.

Finally, obstacles—either static or moving—can be incor-

porated via additional constraints in the MPC as in [11]. For

simplicity, let us consider a circular obstacle of radius r, the

location pobsk of which is known at each step k. Collisions

can then be avoided by imposing the barrier constraint

b (Axk +Buk) ≥ (1− γ)b (xk) (17)

where the parameter γ ∈ (0, 1) and b(xk) = (Cxk −
pobsk )T(Cxk − pobsk ) − r2. This procedure can be extended

to avoid collisions with multiple obstacles and can include

obstacles of elliptical shape as well; see [11] for more details.

3) MPC formulation: The path tracking MPC program

of Section II can be adapted as follows:

minimize
X,U,V

k+N−1
∑

ℓ=k

J1(xℓ, ϑℓ, uℓ, vℓ) + J2(xk+N , ϑk+N )

subject to xk = xinit, ϑk = ϑinit

xℓ+1 = Axℓ +Buℓ, ϑℓ+1 = ϑℓ + vℓ

(xℓ, uℓ) ∈ XU ℓ, ϑℓ ∈ Θ, vℓ ∈ V

ϑk+N ∈ Θ

where ℓ = k, ..., k + N − 1, the cost functions J1, J2 are

given by (6), (7) with the output h(x) replaced by (14), and

XUℓ =
{

(xℓ, uℓ) | lbℓ ≤ Rot(θℓ + uθ
ℓ)

Tuℓ ≤ ubℓ,

and δmin ≤
√

∆x2
ℓ +∆y2ℓ ≤ δmax,

and b (Axℓ +Buℓ) ≥ (1− γ)b (xℓ)
}

combines the constraints (15)-(17) in a single state- and

input-dependent set. The symbols Θ and V correspond to

intervals defined in Section II above. At step k, the MPC

requires xinit and ϑinit. The former is available though

feedback of the robot’s state and the latter is computed by

ϑinit = argmin
ϑ

‖Cxinit − yd(ϑ)‖2 (19)

which corresponds to the value of ϑ that minimizes the

distance between the robot and the path; i.e., ϑinit is the

point on the path closest to the robot’s location Cxinit.

B. Closing the loop with Digit

The bipedal robot Digit shown in Fig. 3 has a total of

30 Degrees of Freedom (DOF)s; 20 are directly actuated, 4

correspond to leaf springs at the legs and are passive, and 6

Fig. 3. The bipedal robot Digit and relevant coordinates. (a) Side view;
the kinematic loops actuating the tarsus and foot are highlighted with the
dotted magenta lines. (b) Back view.



Fig. 4. Implementation of the MPC with Cartesian or contouring error representations on Digit.

represent the position and orientation of a body-fixed frame

relative to an inertial frame. The robot with a suitable choice

of coordinates is shown in Fig. 3.

The structure of Digit’s controller is shown in Fig. 4. With

feedback of Digit’s COM location, velocity and swing foot

position and orientation, the initial state xinit required by

the MPC is specified. The MPC is then solved as described

above to suggest a target footstep location and orientation,

and COM position for the next step. The output of the MPC

is then fed to the trajectory generator shown in Fig. 4, which

uses interpolation to obtain the COM and swing foot position

and orientation trajectories for Digit; see [26] for relevant

details. These trajectories are then used to define the outputs












(COM Position)3×1

(Torso Orientation)3×1

(Swing Foot Position)3×1

(Swing Foot Orientation)3×1













12×1

.

The objective of the QP controller is then to minimize the

weighted sum of the square norm of

• the error from the desired outputs computed above;

• the error from a desired constant arm configuration; and

• Digit’s centroidal angular momentum;

while satisfying physical constraints such as torque saturation

and contact wrench constraints. Due to space limitations, we

do not provide further details on the formulation of the QP

here; these can be found in [26].

IV. RESULTS

This section evaluates the method using high-fidelity sim-

ulations of the bipedal robot Digit tasked with following

a reference path. All simulations are performed using the

physics-based simulator MuJoCo [27], with the simulation

loop operating at 2kHz. The MPC is programmed in Python

using Casadi [28] and solved at 15Hz using interior point

solver IPOPT [29]. The average computation time for solving

the MPC including the optimization (19) for ϑinit is 12ms.
The low-level QP is formulated using CVXPY [30] and

solved at 400Hz with its pre-shipped solver. All compu-

tations were carried out on an Intel PC equipped with i7
processor (2.60 GHz) and 16GB RAM. The input weights

R = diag{100, 100, 5}, the upper bound on the parameter

update vmax = 0.3 and the horizon N = 5 are kept fixed for

all cases in this section. Refer to [31] for simulation video.

A. Path Following Performance under Disturbances

We discuss here the performance of the MPCC controller

in following curved paths under disturbances; we include

results only for a circular path with radius 2m, noting

that other curved paths can also be followed with similar

performance. Here, the weight matrices for the contouring

and lag errors are selected as Q̄ = W̄ = diag{300, 3}
and ρ = 10. Figure 5(a) shows the path following perfor-

mance of the MPC controller without external disturbances

and Fig. 5(b) shows the corresponding contouring error,

indicating satisfactory tracking performance. On the other

hand, Fig. 5(c) shows tracking of the same path under

random external disturbances. The disturbances are forces

with magnitude sampled from a uniform distribution over

the interval [−50, 50] N and are applied at Digit’s torso over

a duration of 0.1s at random instants separated by at most

2s. As seen from Fig. 5, the MPCC is able to track the given

path even in presence of disturbances with occasional spikes

appearing when the disturbances are present.

B. Overtaking Moving Obstacles: A Case Study

We consider here a scenario in which Digit is tasked

with following a given path that is shared by a moving

obstacle ahead of the robot. We compare two cases: In the

first, the objective of the MPC is to minimize the norm

of the Cartesian error from the path, while in the second,

to minimize the contouring and lag errors corresponding to

the MPCC formulation. The goal of this comparison is to

demonstrate the benefits of the MPCC, which allows the

(a) (b) (c) (d)
Fig. 5. Tracking performance of the MPCC; the reference path is in red and the robot’s COM path is in blue. (a) Digit follows a circular path with
no external disturbances. (b) Contouring error for the case of Fig. 5(a). (c) Digit follows the same path as Fig. 5(a) under randomly applied external
disturbances. (d) Corresponding contouring error.



(a)

(b) (c) (d)

(e)

(f) (g) (h)

Fig. 6. Cartesian versus contouring error formulations. (a) Digit trailing behind a moving obstacle via Cartesian error MPC. (b) Cartesian error norm. (c)
Right (blue) and left (red) footsteps. (d) Average path update parameter (blue) and max value (red). (e) Digit overtaking the moving obstacle via MPCC.
(f) Contouring (blue) and lag (red) errors. (g) Right (blue) and left (red) footsteps. (h) Average path update parameter (blue) and max value (red).

robot to decide between emphasizing path following quality

versus fast overall path traversal. For simplicity, and without

loss of generality, we consider a straight-line path and a

cylindrical obstacle with radius robs = 0.25m moving at

constant speed along the path.
In the first case, we assume that the obstacle is moving

with a slow speed 0.1m/s, and we select equal gain matrices

Q = W = 200I and ρ = 50 in (6)-(7), corresponding to the

Cartesian error norm. As we can see from Fig. 6(a), Digit

quickly covers the distance from the obstacle, but cannot

pass it because the objective of minimizing the Cartesian

error norm does not allow temporary deviations from the

path. This is evident from Fig. 6(b), which shows that

the norm of the Cartesian error remains below 0.06m. To

keep following the path with high accuracy while avoiding

collisions with the obstacle, Digit adjusts its stepping online

to take shorter steps; this can be seen in Fig. 6(c), where

the step size ux along the X direction decreases when the

obstacle constraint is activated. As a measure of how “deep”

into the path the robot moves, Fig. 6(d) presents the average

path update parameter vavg = (1/N)
∑N−1

ℓ=0 vℓ over the

horizon N for each iteration of the MPC. The obstacle

constraint prevents the MPC from suggesting large updates



in the path parameter.

For the MPCC, the obstacle is moving at a higher speed

0.6m/s, comparable with Digit’s speed. Here, the weight

matrices are Q̄ = W̄ = diag{1, 1000} and ρ = 50. This

choice emphasizes the lag component of the cost over the

contouring component; thus, the controller is more tolerant

to deviations from the path, prioritizing fast overall path

traversal. It can be seen from Fig. 6(e) that Digit overtakes

the moving obstacle. This is achieved because, as shown

in Fig. 6(f), the controller allows the robot to temporarily

deviate from the path—the contouring error increases—while

the lag error is kept almost zero. It is clear from Fig. 6(g) that

the stepping size of the robot increases in the X direction,

while small deviations in the Y direction allow Digit to

skirt around the obstacle and eventually leave it behind.

This behavior is due to the larger weight chosen for the

lag component of the error, as compared to the contouring

component. From Fig. 6(h), we can see that the MPCC

constantly keeps the parameter vavg close to the maximum

bound vmax, thus encouraging the robot to go as far into the

path as the MPCC constraints allow.

V. CONCLUSION

This paper presented a MPCC scheme for foot placement

that enables bipedal robots to make online decisions on

the speed and accuracy with which they follow a planned

global path. Unlike other approaches, the proposed method

does not require specifying a feasible trajectory or a speed

profile in advance. Using physics-based simulations with the

bipedal robot Digit, we discussed aspects of MPCC that

allow temporary deviations from the reference path to favor

fast traversal of the overall path. We demonstrated these

capabilities in the case where Digit overtakes a moving

obstacle that shares its path. Our future work will focus

on experimentally validating the proposed approach and on

integrating MPCC with safe walking corridors [11] to ensure

fast path traversal and safety in highly-cluttered spaces.
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