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Abstract— Differential Dynamic Programming (DDP) is an
efficient computational tool for solving nonlinear optimal con-
trol problems. It was originally designed as a single shooting
method and thus is sensitive to the initial guess supplied. This
work considers the extension of DDP to multiple shooting
(MS), improving its robustness to initial guesses. A novel
derivation is proposed that accounts for the defect between
shooting segments during the DDP backward pass, while
still maintaining quadratic convergence locally. The derivation
enables unifying multiple previous MS algorithms, and opens
the door to many smaller algorithmic improvements. A penalty
method is introduced to strategically control the step size,
further improving the convergence performance. An adaptive
merit function and a more reliable acceptance condition are
employed for globalization. The effects of these improvements
are benchmarked for trajectory optimization with a quadrotor,
an acrobot, and a manipulator. MS-DDP is also demonstrated
for use in Model Predictive Control (MPC) for dynamic
jumping with a quadruped robot, showing its benefits over a
single shooting approach. Video link.

I. INTRODUCTION

Model Predictive Control (MPC) is a powerful tech-
nique for controlling complex systems and has been widely
used for many robotic systems, including quadrotors [1],
quadruped robots [2], [3], and humanoid robots [4]. MPC
needs to efficiently and reliably solve a sequence of finite
horizon optimal control problems (OCPs) of the form

min
u(·)

∫ T

0

ℓc(x(t),u(t))dt+ ϕ(x(T )) (1a)

subject to ẋ = fc(x,u) (1b)

where T is the prediction horizon, x the state variable, u
the control variable, ℓc the running cost, ϕ the terminal
cost, and fc the dynamics function. The problem (1) is
an infinite-dimensional optimization problem, as it is in
continuous time, and the dynamics are highly nonlinear for
many robotics systems. Therefore, an analytical solution, in
general, does not exist, and numerical methods are often em-
ployed. One commonly used class of approaches are direct
methods. A direct method parameterizes the state and control
using a finite number of variables, and transcribes the original
OCP (1) into a nonlinear optimization problem. The problem
transcription most often takes one of three approaches, single
shooting (SS), multiple shooting (MS), and collocation. This
work focuses on the first two approaches.

1 He Li and Patrick M. Wensing are with the University of Notre Dame,
IN, USA (hli25@nd.edu, pwensing@nd.edu)

2 Wenhao Yu and Tingnan Zhang are with Robotics at Google,
Mountain View, CA, USA (magicmelon@google.com,
tingnan@google.com)

 

  



Fig. 1: Time-series snapshots of robust quadruped jumping enabled by the
proposed MS-DDP algorithm within an MPC controller. 1. The robot is
pushed before jumping. 2. Recovering stability. 3. Back to bounding (1
m/s). 4. Jumping starts. 5. Middle of the jump. 6. Jumping ends.

Differential Dynamic Programming (DDP) [5] is a single
shooting method to solve the OCP (1), and is shown to have
a local quadratic convergence rate [6]. It naturally exploits
the temporal structure of the transcribed problem (1) by
successively solving a sequence of sub-problems, resulting in
linear computational cost with horizon length T . These sub-
problems originate from locally solving Bellman’s equation,
which additionally gives a local feedback policy without
additional computation cost [3]. These properties make DDP
exceptionally well suited for MPC with a long prediction
horizon. In the past decade, DDP and its variants have been
widely used for MPC of quadruped locomotion [3], [7], [8],
humanoid balancing [9], [10], and loco-manipulation [11].
The downside of DDP, common with many other single-
shooting algorithms, is that an initial guess for the state
trajectory cannot be directly supplied, and it is sensitive to
the initial guess of the control trajectory [12], [13].

Multiple shooting (Fig. 2) [12], [13] alleviates the sensi-
tivity problem of single shooting by introducing intermediate
state variables (also known as shooting states). The shooting
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Fig. 2: Illustration of multiple shooting for a nominal trajectory
(
x̄, ū

)
. The

shooting state is a decision variable that can be initialized and updated. The
roll-out state is always overwritten by dynamics simulation propagated from
a previous time instant.

ar
X

iv
:2

30
9.

07
87

2v
2 

 [
cs

.R
O

] 
 2

8 
Se

p 
20

23

https://youtu.be/RNzE87sAn9E


states divide a trajectory into several sub-intervals, known as
shooting segments. Numerical integration is performed sep-
arately on each segment using the shooting state as an initial
condition. Continuity constraints that link the shooting state
to a previous segment need to be satisfied at convergence,
so that the resulting trajectory is dynamically feasible. The
problem sensitivity is distributed across the segments at the
price of potential discontinuity (also known as a defect) at
each shooting state. This work proposes a new derivation for
addressing defects in DDP, which unifies past approaches.

Previous works [14]–[17] on pairing MS and DDP mainly
differ in the way the continuity constraints are handled, and
can be categorized into two classes. The first class [15],
[17] employs Augmented Lagrangian (AL) methods. This
approach exhibits low accuracy, but can be addressed using
a projection step [15] or a second-order method for the
update of the Lagrange multiplier [17]. The second class is
inspired by Sequential Quadratic Programming (SQP) [14],
[16], which successively linearizes the constraints and solves
a quadratic problem. This approach shows good convergence
near the (local) solution, but care must be taken when the
initial guess is far away from the solution. Globalization
strategies such as employing filter-based line search methods
[18] or merit functions [19], [20] can address this problem.

A. Contributions

The contributions of this paper are as follows. First, we
provide a novel derivation that naturally embeds the multiple-
shooting formulation into the DDP algorithm. This derivation
enables incorporating second-order sensitivity information
across shooting segments, resulting in local quadratic con-
vergence. Further, the derivation enables unifying multiple
previous algorithms [14], [16], and opens the door to broadly
applicable algorithmic improvements. Second, several al-
gorithmic enhancements are introduced to improve the al-
gorithm’s robustness, including a penalty method, a more
reliable acceptance condition, and an adaptive merit func-
tion. We numerically benchmark the proposed enhancements
together with previous algorithms [14], [16] in terms of
robustness and convergence rate on several robotic systems.
Finally, we implement the algorithm for Model Predictive
Control (MPC) of a quadruped robot, and demonstrate its
superior performance to single-shooting DDP (SS-DDP).

II. MULTIPLE-SHOOTING FORMULATION OF OPTIMAL
CONTROL PROBLEMS

Multiple shooting transcribes the continuous-time OCP (1)
to a discrete-time OCP

min
U,X

J(X,U) =

N−1∑
k=0

ℓk(xk,uk) + ϕ(xN ) (2a)

subject to f(xk,uk)− xk+1︸ ︷︷ ︸
dk+1(xk,uk,xk+1)

= 0 (2b)

where 0 ≤ k ≤ N denotes time instant with tN = T ,
U = {uk}N−1

k=0 , X = {xk}Nk=0, ℓk(xk,uk) the discretized
running cost function, f(xk,uk) the discretized dynamics

function, and dk+1(xk,uk,xk+1) the defect function that
measures the dynamics feasibility of a triplet (xk,uk,xk+1).
The formulation (2) considers both the control and state as
decision variables. We follow the hybrid scheme in [14]
to categorize the state variables to two types, namely a
shooting state and a roll-out state. If a state variable xk+1 is
a shooting state, then it can be independently initialized and
updated, thus the defect function dk+1 is not necessarily
zero until the algorithm converges. If a state variable is a
roll-out state, then it is always overwritten by the dynamics
simulation propagated from a previous time step, thus the
defect function is identically equal to zero.

Figure 2 further illustrates these definitions. A trajectory of
length N−1 is evenly divided into M segments, each incor-
porating m = (N−1)/M time steps. The initial state of each
segment (i.e., at time index k = m, 2m, · · · , (M − 1)m)
comprises the set of shooting states, with time indices
denoted I, whereas the complementary set Ĩ = {0, · · · , N}\I
denotes the indices of roll-out states. Given a nominal
trajectory

(
X̄, Ū

)
, dynamics simulation is performed on

each segment using the corresponding shooting state as the
initial condition. If k + 1 ∈ Ĩ, then x̄k+1 is overwritten
by f(x̄k, ūk). Otherwise, x̄k+1 remains unchanged, and the
defect d̄k+1 = dk+1(x̄k, ūk, x̄k+1) is measured. We denote
the nominal value of a variable with ·̄ overhead throughout
the paper. The optimization algorithms developed in this
work for problem (2) will need to drive the defects to zero
while minimizing the cost function.

III. DIFFERENTIAL DYNAMIC PROGRAMMING FOR
MULTIPLE-SHOOTING OCP

DDP applies a local version of Bellman’s principle of
optimality to the OCP (2) by considering a small perturbation(
δX, δU

)
near the nominal trajectory

(
X̄, Ū

)
vk(δxk) = min

δuk

(
δℓk(δxk, δuk) + vk+1(δxk+1)︸ ︷︷ ︸

Qk(δxk,δuk)

)
(3)

where vk(·) denotes the local value function, δℓk(δxk, δuk)
quadratically approximates the perturbation of ℓk(xk,uk) at
(x̄k, ūk). We use Qk(·, ·) to denote the Bellman objective of
eq. (3) for simplicity. In the traditional case of SS-DDP, the
algorithm considers every state as a roll-out state, thus the
perturbation

(
δX, δU

)
needs to satisfy

δxk+1 = f(x̄k + δxk, ūk + δuk)− f(x̄k, ūk). (4)

Substituting eq. (4) to the local Bellman’s equation (3) and
approximating f quadratically results in standard Ricatti-like
difference equations and a local policy [5], [21].

A. Backward Sweep Accounting For Defect

Traditional DDP, however, is not applicable to deal with
the shooting state as introduced in the formulation (2)
because of the defect. In this work, we revise the traditional
DDP backward sweep to account for the defect using a
simple but effective trick. Eq. (4) is modified as below

δxk+1 = f(x̄k + δxk, ūk + δuk)− x̄k+1. (5)



The equation (5) allows for dynamic infeasibility in the
initial guess or intermediate trajectories (X̄, Ū). To derive the
update policy associated with (5), we approximate vk(δxk)
to the second order as in DDP

vk(δxk) =
1

2
(δxk)

⊤Skδxk + s⊤k δxk + sk. (6)

where Sk, sk, sk are the Hessian, gradient, and zero-order
terms of vk(δxk). By approximating f in eq. (5) to the second
order and substituting (6) into eq. (3), we get

Qk(δx, δu) ≈
1

2

 1

δx

δu


T  0 QT

x,k QT
u,k

Qx,k Qxx,k QT
ux,k

Qu,k Qux,k Quu,k


 1

δx

δu

 ,

(7)
where

Qx,k = qk +A⊤
k (sk+1 + Sk+1d̄k+1), (8a)

Qu,k = rk +B⊤
k (sk+1 + Sk+1d̄k+1), (8b)

Qxx,k = Qk +A⊤
k Sk+1Ak + sk+1 · fxx ,k, (8c)

Quu,k = Rk +B⊤
k Sk+1Bk + sk+1 · fuu,k, (8d)

Qux,k = Pk +B⊤
k Sk+1Ak + sk+1 · fux,k, (8e)

in which Ak = ∂f
∂x

∣∣
(x̄k,ūk)

, Bk = ∂f
∂u

∣∣
(x̄k,ūk)

, qk and rk are
gradients of ℓk w.r.t. x and u respectively, Qk, Rk, and Pk

are second-order partials of ℓk, and f(·,·) are second-order
partials of f . The recursive equations for Sk, sk, and sk are

Sk = Qxx,k −QT
ux,kQ

−1
uu,kQux,k (9a)

sk = Qx,k −QT
ux,kQ

−1
uu,kQu,k, (9b)

sk = sk+1 −
1

2
QT

u,kQ
−1
uu,kQu,k+

s⊤k+1d̄k +
1

2
d̄⊤
k+1Sk+1d̄k+1, (9c)

with the boundary conditions SN = QN , sN = qN , sN = 0.
Minimizing (7) over δuk results in a local optimal control
policy

δu∗
k = δũk +Kkδxk, (10)

where

δũk = −Q−1
uu,kQu,k, Kk = −Q−1

uu,kQux,k. (11)

The equations (8) and (9) provide general formulas for the
backward sweeps of four DDP variants

1) MS-DDP (this work): Multiple shooting, second-order.
2) SS-DDP [5], [22]: Single shooting, second-order (no

blue).
3) MS-iLQR [14], [16]: Multiple shooting, first-order (no

red).
4) SS-iLQR [21], [23]: Single shooting, first-order (no

blue and no red).

We will investigate the effect of the second-order dynamics
on local convergence in Section VI-A.

B. Forward Roll-out

The control policy (11) provides a search direction for the
control update from iteration to iteration. A forward roll-
out for the dynamics must be conducted to obtain a search
direction for the state update. In this section, we explore
three methods for the forward roll-out that mainly differ in
the dynamics, namely a linear roll-out [14], [24], nonlinear
roll-out [16], and hybrid roll-out [14]. For clarity, we repeat
some notations here, (X̄, Ū) denotes the nominal trajectory,
and (X′,U′) denotes the new trajectory. Whichever roll-
out method is used, the control update always has the same
format

u′
k = ūk + αδũk +Kk(x

′
k − x̄k)︸ ︷︷ ︸

δuk(α)

. (12)

where x′
0 = x̄0, α ∈ (0, 1] is the step size, which is used

in backtracking line search for global convergence [21], and
δuk(α) is the scaled search direction. The main difference
between the three roll-out methods is in the state update.

A linear roll-out simulates the linearized dynamics of (5)
using the control policy (11)

x′
k+1 = x̄k+1 + [Ak(x

′
k − x̄k) +Bkδuk(α)] + αd̄k+1︸ ︷︷ ︸

δxk+1(α)

(13)
where δxk+1(α) is the scaled search direction for x̄k+1.
Note that δxk+1(α) scales linearly with α in this case. This
method is computationally cheap, since it only needs to be
executed once with α = 1, and a line search can then be
performed in parallel across all time instants. The downside,
however, is that the method simplifies the nonlinear dynam-
ics, and thus is subject to prediction error [16]. Further, the
linear roll-out requires that every state is a shooting state,
losing the flexibility for other algorithmic options.

To account for nonlinearity, a nonlinear roll-out [16]
simulates the original nonlinear dynamics using the control
policy (11)

x′
k+1 = x̄k+1 + [f(x′

k,u
′
k)− f(x̄k, ūk)] + αd̄k+1︸ ︷︷ ︸

δxk+1(α)

(14)

The nonlinear roll-out (14) avoids the linear prediction error,
with the above equivalent to the scheme in [16]. The deriva-
tion here, however, more resembles the behavior of (13) with
a replacement of nonlinear dynamics. Unlike the linear roll-
out, which enables parallel computation, the nonlinear roll-
out has to be performed serially, thus potentially hindering
the computational performance.

A hybrid roll-out method was proposed in [14], which
attempts to combine the benefit of both. Namely, the hy-
brid method first performs a linear roll-out (13) to obtain
δxk+1(α) for the shooting states. The updated shooting state
is then used as an initial condition, and the nonlinear roll-out
can be performed independently on each shooting segment
for the roll-out states. With this method, the search direction
for the shooting nodes only needs to be computed once, and
the line search can then be performed in parallel on each
shooting segment. Previous work [14] has shown that the



hybrid roll-out exhibits better global convergence than the
linear roll-out, thus the linear roll-out is not considered here.

The unified MS-DDP framework developed in this work
synthesizes all four DDP variants for the backward pass,
and the nonlinear and hybrid forward roll-out. The multi-
ple algorithm configurations enabled by this synthesis may
produce different convergence behaviors as will be shown in
Section VI-A.

IV. IMPROVING ROBUSTNESS AND FLEXIBILITY

The previous section introduced methods for comput-
ing the search direction that updates the control and state
variables. This section presents new techniques that better
measure the quality of a search step to determine the step
size. Further, we introduce an advance that alters the search
direction by modifying the backward sweep (eq. (9)).

A. Merit Function

MS-DDP needs to balance two goals, minimizing the cost
function (2a) while decreasing the defects (2b). These two
goals can sometimes be conflicting with each other since
reducing the defect may otherwise increase the cost [25]. A
merit function synthesizes the two objectives into one single
function, and is widely used in Nonlinear Programming
(NLP) for constrained optimization [25], [26]. In this work,
we use a merit function to monitor the progress of MS-DDP.
The merit function considered is an Lp-norm merit function
since it has been proven to be exact [25] and does not require
an estimate of the Lagrange multiplier. The Lp-norm merit
function for problem (2) is defined as

M(X,U) = J(X,U) + µ ∥d(X,U)∥p (15)

where d(·, ·) is a vector aggregating all the defects, µ > 0
is a weighting parameter that balances the cost function and
the defects violation. To avoid meticulous tuning of µ for
different problems, we consider an adaptive scheme that is
motivated by [25] so that µ is updated as

µ =
EC(α)

(1− ρ)
∥∥d(X̄, Ū)

∥∥
p

+ µ0 when
∥∥d(X̄, Ū)

∥∥
p
> κd

(16)
where µ0 > 0 sets a safety margin, EC(α) denotes the
expected cost change due to (δX(α), δU(α)), which is
discussed in the next subsection, 0 < ρ < 1 is a fixed tuning
parameter, and κd > 0 is the threshold for updating µ. We
use ρ = 0.5, and µ0 = 10 for all problems in this work
without further tuning. An alternative approach to using a
merit function is a filter-based technique [18], [27].

B. Acceptance Condition

A simple condition to accept a search step
(δX(α), δU(α)) is to ensure the merit function (15)
is decreased, i.e., M(X′,U′) − M(X̄, Ū) < 0. This
requirement, however, may not produce convergence to a
local optimum, as shown in [25]. In this work, we use an
Armijo condition to impose sufficient merit reduction

M(X′,U′) < M(X̄, Ū) + γ
(
EC(α)− αµ

∥∥d(X̄, Ū)
∥∥
p

)
(17)

where 0 < γ < 1 is a tuning parameter, EC(α) is the
expected cost change, and

EC(α) = αEC1 +
1

2
α2EC2 (18)

in which

EC1=q⊤
Nδxl

N +

N−1∑
k=0

q⊤
k δx

l
k + r⊤k δu

l
k, (19a)

EC2= δxl⊤
N QNδxl

N +
N−1∑
k=0

δxl⊤
k Qkδx

l
k + δul⊤

k Rkδu
l
k

+δul⊤
k Pkδx

l
k (19b)

where δul
k and δxl

k are obtained via the linear roll-out (12)
and (13). The EC (18) provides an exact cost change in the
case of linear dynamics and quadratic cost approximation.
It is equivalent to the model of expected cost change [21]
computed from the iLQR backward pass if all defects are
zero. We find that this expectation model further improves
upon the one used within [16], [28], in the sense that cost
effects from the defect are fully treated, leading to an exact
match when applied to linear quadratic MS problems.

C. Modified Backward Sweep Using A Penalty Method

A backtracking line search is employed to determine the
step size α. The step size α, however, may still be so small
that the global convergence is hindered. In this section, we
introduce a penalty method to improve this process. Note that
in Fig. 2 the shooting state adjusts the defect size only from
the right side, but the rolled-out state x−

k+1 := f(xk,uk)
on the left side is not aware of this change. The proposed
method strategically controls the defect from both sides, by
imposing a penalty that promotes connecting the segments
from the left side as well. This is done by adding the penalty
term

∥∥x−
k+1 − x̄k+1

∥∥2
Qdk+1

to the cost function in (2), where
Qdk+1

is a positive definite weight matrix if k + 1 is a
shooting state, and is zero if k+1 is a roll-out state. Adding
the penalty term to (2) amounts to modifying the backward
sweep equations (8b) and (8a) such that

sk+1 ← sk+1 −Qdd̄k (20a)
Sk+1 ← Sk+1 +Qd (20b)

This penalty method is similar in spirit to the proximal term
[29] that helps improve the conditioning of the KKT system.
The benefit of adding the terminal cost to the algorithm
performance will be demonstrated in the result section.

V. DISCUSSION ON THE UNIFIED PERSPECTIVE

The search direction computation in Section III and the
globalization method for step acceptance in Section IV
comprise one iteration of the MS-DDP algorithm. A brief
summary of the overall MS-DDP framework is given below

1) Give the nominal trajectory (x̄, ū), optimization hori-
zon N , and number of shooting segments M .

2) Perform dynamics approximation and cost function
approximation around the nominal trajectory.



TABLE I: Summary of algorithmic configurations with the unified MS-DDP

Unified MS-DDP FiLQR [16] GN-iLQR [14]
Backward SS, MS SS, MS SS, MS

Sweep Dyn (8) 1st order 1st order 1st order
2nd order

Forward Hybrid Nonlinear Hybrid
Roll-out Nonlinear

Merit Adaptive Cost function Constant
Function Constant

Cost function
Expectaion Exact Approximate Simple

Model Approximate

3) Compute the optimal control policy (11) using one of
the four DDP variants.

4) Perform backtracking line search using either hybrid
roll-out or nonlinear roll-out, the adaptive merit func-
tion (16) and the acceptance condition (17).

5) Check the cost convergence criterion and feasibility.
Go to 2) if not satisfied, and terminate otherwise.

The MS-DDP framework herein provides a unified per-
spective since it enables multiple configurations, as sum-
marized in Table I. Four DDP variants could be used in
performing the backward sweep, and two forward roll-
out methods could be employed for line search. Further,
the penalty method and the adaptive merit function offer
additional options for improving the algorithm robustness
and flexibility. As we will show in the next section, the per-
formance of an algorithm to solve (2) is problem-dependent.
The unified MS-DDP framework enables easy comparison
across different algorithm configurations. In fact, if we
choose the MS-iLQR for computing the backward sweep
(eq. (8) and eq. (9)), the hybrid roll-out for line search,
and γ = 0 for the acceptance condition, then the proposed
framework can be simplified to GN-iLQR [14]. If we choose
the MS-iLQR for the backward sweep, the nonlinear roll-out
for line search, and compute EC with an approximate model,
the MS-DDP framework is then simplified to FiLQR [16]1.

VI. NUMERICAL RESULTS

The MS-DDP framework is benchmarked on three prob-
lems for numerical analysis. Each problem is associated with
moving a robotic system from an initial state to a terminal
state. A semi-implicit Euler method is used for integration,
with the integration time step 0.02 s. Quadratic cost functions
are used for all problems. We use the L2-norm to measure
the total defect. Algorithm convergence is approximately
achieved if the normalized cost change is within 1e−8, and
the total defect is less than 1e−3. We briefly describe each
problem here.

1) Acrobot: A two-link manipulator where only the sec-
ond joint is actuated. The acrobot needs to swing from
a downward configuration up to an upward configura-
tion in four seconds.

1For consistency with the nomenclature in this paper, we depart from
the name “FDDP” used in [16] and use FiLQR instead, which reflects the
exclusive use of first-order dynamics sensitivities in the method.

MS-iLQR MS-DDP
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Fig. 3: Local convergence for 1000 randomly sampled initial trajectories of
the quadrotor in the neighborhood of the optimal trajectory. Left: MS-iLQR
(Gauss-Newton Hessian approximation). Right: MS-DDP with full Hessian.

2) Quadrotor: The quadrotor is modeled as a rigid body
with four thrust inputs, each at a certain distance from
the center of mass [30]. The quadrotor is supposed to
travel 5 m from one static position to another static
position in four seconds.

3) Manipulator: The Kuka iiwa 7-DoF serial manipulator
is used. The robot needs to swing from an upward con-
figuration to a bending configuration in four seconds.

A. Numerical Convergence Analysis

The local convergence rate of an algorithm is defined
in the neighborhood of a local optimum, whereas global
convergence is characterized by its capability to move a
remote initial guess to a local optimum. In this section, we
statistically quantify these properties for the MS-DDP frame-
work configured with and without second-order dynamics.

1) Local Convergence: Denote (X∗,U∗) a local optimum
of problem (2), (Xj ,Uj) the jth iterate produced by the MS-
DDP framework, and (∆Xj ,∆Uj) the difference between
the jth iterate and the local optima (X∗,U∗). The rate of
local convergence is characterized by

lim
j→∞

∥(∆Xj+1,∆Uj+1)∥2 = κ ∥(∆Xj ,∆Uj)∥ϵ2 (21)

where ϵ = 1 and 0 < κ < 1 indicates linear convergence, and
ϵ = 2 and κ > 0 indicates quadratic convergence. Four MS-
DDP configurations are studied here: with and without the
second-order dynamics in eq. (8), and hybrid vs. nonlinear
roll-out. All algorithms are benchmarked on the quadrotor
problem. Each algorithm is configured to have 200 shooting
segments, and is tested in a Monte Carlo fashion with 1000
initial guesses. The state guess is randomly sampled from
a uniform distribution around X∗ while the control guess
remains the same as U∗. Figure 3 depicts the local con-
vergence results for all four algorithms. Linear convergence
is always obtained if only first-order dynamics is used in
(eq. (8)). Adding the second-order dynamics can improve
the convergence rate. Quadratic convergence is consistently



achieved over all samples with the nonlinear roll-out. For
MS-DDP with the hybrid roll-out, the local convergence rate
for certain samples is somewhere between linear convergence
and quadratic convergence. This difference is reasonable in
the sense that the shooting state update is based on the
linearized dynamics with the hybrid roll-out, thus subject to
prediction error, whereas it is based on nonlinear dynamics
with the nonlinear roll-out, thus free of prediction error.

B. Effects of Acceptance Condition

We show the effect of the acceptance condition on the
algorithm convergence using the acrobot problem. The pro-
posed exact EC (18) is compared against the approximated
EC as used by FiLQR [16]. Three algorithms are evaluated,
FiLQR, FiLQR-exact, and MS-iLQR. FiLQR-exact differs
from FiLQR only in the expected cost change. MS-iLQR
is configured to use the adaptive merit function and the
exact EC (18), and shares everything else (backward sweep
and nonlinear roll-out) in common with FiLQR. All three
algorithms are configured to regard all state variables as
shooting states, i.e., M = N−1. The initial state trajectories
are obtained by linearly interpolating the initial and terminal
states, while the initial controls are zero.

Figure. 4 shows the comparison results in terms of
cost convergence and dynamics feasibility. FiLQR fails to
make progress on the given initial trajectory, whereas both
the FiLQR-exact and MS-iLQR converge in 25 iterations,
demonstrating the benefit of using the exact EC (18). To
have a better understanding, the actual change in cost and the
expected cost change are compared for FiLQR and FiLQR-
exact. To do so, we run FiLQR-exact for several iterations,
and perform a line search for both methods. The results are
shown in Fig. 5. For FiLQR, the difference between the
actual change and expected change is obvious, whereas for
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Fig. 4: Effects of expected cost change on the global convergence for the
acrobot with different algorithm configurations: FiLQR, FiLQR with exact
expected cost change (eq. (18)), MS-iLQR with adaptive merit function and
nonlinear roll-out.

Fig. 5: Expected cost change and actual cost change for the acrobot vs. step
size. Left: FiLQR. Right: FiLQR with the proposed exact EC (eq. (18)).
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Fig. 6: Effects of penalty method on algorithm convergence with a varying
number of shooting nodes, benchmarked on the manipulator and quadrotor
examples. Benefits are observed only for a low number of shooting nodes.

FiLQR-exact, the actual change and expected change share
the same slope and concavity at step size 0, demonstrating
the proposed EC is more accurate. The MS-DDP framework
thus is configured to use (18) for the rest of this work.

C. Effects of Penalty Method

Roughly speaking, for the multiple-shooting OCP (2), the
fewer the number of shooting segments, the more nonlinear
the problem (2) is. This subsection investigates the effect
of the penalty method on algorithm convergence rate for
problems with different nonlinearity. To do so, we employ
a varying number of shooting segments for the manipulator
and the quadrotor examples. Figure 6 illustrates the results
in terms of the cost at convergence and number of iterations
to converge, acquired with and without the penalty method.
MS-iLQR is configured with a hybrid roll-out and the
adaptive merit function. For each example, similar costs
are achieved at convergence with and without the penalty
method, given the same number of shooting nodes. The
penalty method, however, significantly reduces the number
of iterations for the case of two shooting nodes, where
higher nonlinearity arises compared to the case of more
shooting nodes. Though the penalty method does not show
obvious performance improvement for the quadrotor problem
with four shooting nodes and above, it enables the more
nonlinear manipulator problem to achieve 48 fewer iterations
to converge with four shooting nodes. These observations
indicate that the proposed penalty method is helpful to
promote faster convergence for more nonlinear problems.
Closer examinations reveal that larger step sizes are enabled
with the penalty method. This result is not surprising, since
both sides of the defect are considered in computing the
search direction, thus facilitating faster convergence.

VII. MS-DDP FOR MPC ON A QUADRUPED ROBOT

One motivation for this work is to develop a robust and
efficient solver for real-time MPC. This section investigates
the performance of the MS-DDP framework in the context of
MPC for dynamic quadruped locomotion. The MPC problem
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Top: SS-DDP for MPC on MIT Mini Cheetah

Bottom: MS-DDP for MPC on MIT Mini Cheetah
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Fig. 7: Snapshots of the running-to-jump gait captured in the Mini Cheetah simulator. Kick disturbance to the lateral velocity is applied before jumping.
The MS-DDP (bottom) succeeds in recovering the robot from the kick, whereas the SS-DDP (top) diverges in the middle of the jump.

is constructed based upon a hybrid kinodynamics (HKD)
model [7], which reasons about then trunk dynamics and
contact-dependent leg kinematics. In previous work [7], the
HKD-MPC problem was solved using a SS-DDP variant
that is tailored for hybrid systems [31]. In this work, we
adapt the previous solver to use MS-DDP, and compare its
performance against the previous SS-DDP implementation.

A. Simulation Results

The comparisons are conducted on the MIT Mini Cheetah
[32] in a high-fidelity simulator for multiple gaits, including
mildly dynamic gaits (e.g., trotting and bounding), and highly
dynamic motions (e.g., jumping). In all cases, the HKD-MPC
(50 Hz) runs asynchronously from the low-level controller
(500 Hz). The prediction horizon was chosen as 0.5 s with
an integration time step of 10 ms. At each MPC control step,
the DDP solver is terminated after two iterations.

SS-DDP and MS-DDP perform equivalently well for trot-
ting and bounding, which is reasonable since the feedback
policy may be sufficient to prevent each solver from diverg-
ing for mildly-dynamic gaits. The same equivalence was not
observed for the more dynamic behavior of jumping. For
this motion, the robot accelerates to 2 m/s using a bounding
gait, makes a jump at 2.5 s with a duration of 0.35 s, and
recovers to bounding. A 0.4 m/s lateral velocity disturbance
is injected before the jump. The MS-DDP enables the robot
to recover stability, whereas the SS-DDP does not due to
divergence in the middle of the jump. The snapshots of this
result are shown in Fig. 7. To understand this difference, the
accumulated costs (i.e., evaluation of the cost function (2a))
are shown in Fig. 8. Both tend to increase during the jump,
but SS-DDP quickly diverges. Though MS-DDP encounters
a relatively-large dynamics infeasibility (i.e., total defect of
3) during the jump, this violation is temporary and is helpful
to keep the accumulated cost bounded. To unveil the cause of
SS-DDP divergence, we check the nominal roll-out trajectory
of each algorithm at the MPC step immediately before SS-
DDP diverges. Note that the roll-out trajectory is along the
prediction horizon, as opposed to along the MPC step in
Fig. 8. The roll rate and the roll angle are depicted in Fig. 9.
At about 0.36 s, a foot contact is established, and the nominal

Fig. 8: Accumulated cost of SS-DDP and MS-DDP, and total defect of MS-
DDP at each MPC step. The defect of SS-DDP is always zero since it is
inherently dynamically feasible. The grey area indicates the jumping period.
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Fig. 9: Nominal roll-out of SS-DDP and MS-DDP along the prediction
horizon at the MPC step immediately before SS-DDP diverges. The roll
angle and the angular velocity around x−axis are depicted.

control policy (with feedback) of SS-DDP fails to stabilize
the roll motion, thus the initial state trajectory diverges. By
contrast, the MS-DDP does not suffer from this problem
since its state trajectory is warm-started as well.

The results shown in Figs. 7, 8 and 9 demonstrate the
superior performance of MS-DDP over SS-DDP for highly
dynamic locomotion. This conclusion is aligned with [18],
which focuses on enabling the robot to traverse more com-
plex environments using multiple shooting.

B. Hardware Results

We qualitatively validate the performance of MS-DDP on
the Mini Cheetah hardware. The control setup in hardware
largely matches the simulation setup with the following
exceptions. First, the HKD-MPC is executed at 100 Hz



on hardware. We found that 50 Hz was not sufficient to
stabilize the jumping motion largely due to the increased
model mismatch of the hardware. An alternative approach
could be to employ a QP-based whole-body controller at
a high rate. To avoid crossing singularity for the swing
legs, we reduce the desired forward velocity to 1.0 m/s.
Further, we manually push the robot to imitate the velocity
disturbance. Time-series snapshots of hardware results are
shown in Fig. 1, while the complete results are in the
accompanying video.

VIII. CONCLUSIONS

This work presents a unified framework for extending
DDP to a multiple-shooting OCP solver. The proposed
framework provides multiple configurations and several en-
hancements, allowing for easy comparison with and between
previous algorithms. The novel derivation of the defect-aware
DDP backward pass enables using second-order dynamics,
and is shown to have local quadratic convergence when used
with the nonlinear roll-out method. We show that the ex-
pected cost change model is important for algorithm conver-
gence, and propose an exact model that further improves the
performance of a state-of-the-art solver. A penalty method
is introduced to provide additional robustness for problems
with higher nonlinearity, and is shown to be effective in
the case of a small number of shooting nodes. Future work
will focus on generalizing the results to more problems with
broader statistical assessment.

IX. ACKNOWLEDGEMENTS

The Mini Cheetah is sponsored by the MIT Biomimetic
Robotics Lab and NAVER LABS.

REFERENCES

[1] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2018, pp. 1–8.

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2018, pp. 1–9.

[3] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc for
torque-controlled legged robots,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2019, pp. 4730–4737.

[4] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, no. 3, pp. 429–455,
2016.

[5] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” Int. Journal of Con-
trol, vol. 3, no. 1, pp. 85–95, 1966.

[6] L.-z. Liao and C. A. Shoemaker, “Advantages of differential dynamic
programming over newton’s method for discrete-time optimal control
problems,” Cornell University, Tech. Rep., 1992.

[7] H. Li, T. Zhang, W. Yu, and P. M. Wensing, “Versatile real-time
motion synthesis via kino-dynamic mpc with hybrid-systems ddp,”
arXiv preprint arXiv:2209.14138, 2022.

[8] C. Mastalli, S. Prasad Chhatoi, T. Corbères, S. Tonneau, and S. Vi-
jayakumar, “Inverse-dynamics mpc via nullspace resolution,” arXiv
e-prints, pp. arXiv–2209, 2022.

[9] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control ap-
plied to the HRP-2 humanoid,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 3346–3351.

[10] E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse,
M. Taı̈x, and N. Mansard, “Whole-body model predictive control for
biped locomotion on a torque-controlled humanoid robot,” in IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids), 2022, pp. 638–644.

[11] M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S. Zimmermann, and
M. Hutter, “Whole-body mpc and online gait sequence generation for
wheeled-legged robots,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2021, pp. 8388–8395.

[12] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” IFAC Proceedings Volumes,
vol. 17, no. 2, pp. 1603–1608, 1984.

[13] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” in Fast
motions in biomechanics and robotics, 2006, pp. 65–93.

[14] M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl,
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