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Abstract— In this work, we first formulate the problem of
robotic water scooping using goal-conditioned reinforcement
learning. This task is particularly challenging due to the
complex dynamics of fluids and the need to achieve multi-
modal goals. The policy is required to successfully reach both
position goals and water amount goals, which leads to a large
convoluted goal state space. To overcome these challenges, we
introduce Goal Sampling Adaptation for Scooping (GOATS),
a curriculum reinforcement learning method that can learn
an effective and generalizable policy for robot scooping tasks.
Specifically, we use a goal-factorized reward formulation and
interpolate position goal distributions and amount goal distri-
butions to create curriculum throughout the learning process.
As a result, our proposed method can outperform the baselines
in simulation and achieves 5.46% and 8.71% amount errors
on bowl scooping and bucket scooping tasks, respectively,
under 1000 variations of initial water states in the tank and
a large goal state space. Besides being effective in simulation
environments, our method can efficiently adapt to noisy real-
robot water-scooping scenarios with diverse physical configura-
tions and unseen settings, demonstrating superior efficacy and
generalizability. The videos of this work are available on our
project page: https://sites.google.com/view/goatscooping.

I. INTRODUCTION

Scooping is an essential skill for humans to acquire in
various aspects of life. We utilize tools such as spoons
and shovels to efficiently scoop diverse types of materials,
including fluids and granules. This skill can be applied to
a wide range of tasks, from ladling soup and collecting
peas at the dining table to excavating soil at a construction
site. Despite extensive research in the field of robotic au-
tomation, only a limited number of studies have investigated
autonomous scooping for robots, as demonstrated in [1], [2],
[3], [4]. Scooping poses a significant challenge due to the
high-dimensional interaction between the end-effector and
the dynamic materials. Furthermore, the problem of fluid
or water scooping remains underexplored, with the complex
dynamics of the fluid materials adding to the difficulty. Per-
forming goal-conditioned water scooping, such as scooping a
specific amount of water from a tank and then transferring it
to a designated location, would introduce even greater chal-
lenges. Nevertheless, goal-conditioned water scooping holds
significant potentials in both industrial and daily settings,
facilitating downstream tasks like water transportation [5],
water pouring [6], [7], and caregiving [8], [9].

In this work, we formulate the problem of goal-
conditioned water scooping, and propose a goal sampling
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Fig. 1: This figure depicts our goal-conditioned water scoop-
ing tasks. The task is randomly initialized over different
water states (i.e., waterlines and fluctuations in the tank), dif-
ferent targeted water amounts and targeted positions (shown
as a small white box). Our method can scoop the water to
the targeted place with a small amount error using different
containers in simulation, and can generalize well to real-
robot scooping under various configurations.

adaptation method for curriculum reinforcement learning
method to solve long-horizon goal-conditioned scooping
tasks. As shown in Figure 1, our proposed method can
successfully scoop a specific amount of water from a water
tank with small errors, and then reach a desired goal position
with different containers in both simulations and physical
robot settings. This task presents three main challenges.
Firstly, it is a long-horizon task with a multi-modal goal
state space which incorporates the position and water amount
goals, so the policy is required to learn different types of
motions to reach both goals, i.e., the container needs to first
move downwards to scoop a targeted amount of water, and
then lift to reach the desired position goal. Secondly, the
initial state of the task is randomly initialized over different
water states, and a large space of position goals and water
amount goals. Thus, the policy needs to accommodate a wide
range of high-dimensional random situations and has good
generalizability. Thirdly, the water dynamics is complex,
controlling the water amount of scooping under various
changing conditions is nontrivial.

To this end, our work is developed to solve these chal-
lenges, and we summarize our contributions as follows.

• To the best of our knowledge, we are the first to formu-
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late and benchmark the tasks of goal-conditioned water
scooping with reinforcement learning, which would be
beneficial to the robotics and robot learning community.

• We propose a goal-factorized reward formulation and
a novel goal sampling adaptation method, GOATS, for
efficient curriculum reinforcement learning on our water
scooping tasks.

• Our proposed method achieves 5.46% and 8.71%
amount errors on bowl scooping and bucket scooping
tasks respectively, in simulation with 1000 variations of
initial water states and a large desired goal space, and
can control the amount error below 10% in most cases
on the real-robot scooping tasks. Our method can also
generalize well to unseen tasks and maintain the same
performance on two challenging unseen initial settings.

II. RELATED WORK

a) Robotic Water Manipulation: Robotic water manip-
ulation is a challenging problem as the dynamics of the water
are complex to model. Many previous works have explored
robotic water manipulation tasks, with a focus on pouring
water from one container to another. Chen et al. propose to
model water dynamics using a recurrent neural network and
control pouring with model predictive control (MPC) [7].
LaGrassa and Kroemer learn a model precondition where
the dynamics models are accurate for pouring water [10].
The above methods rely on an accurate water dynamic
model which is time-consuming to compute and may not
be accurate. Other approaches reduce the burden of dynamic
modeling with model-free methods [11], [12]. Guevara et
al. use a goal-based method and directly parameterize the
objective over the space of actions that a robot can perform
[11]. Rozo et al. propose to learn force-torque traces of
pouring skills from human demonstration using Gaussian
mixture regression [12]. However, those model-free methods
suffer from generalization problems if the scenarios change.
With the development of physics simulation, some works
evaluate the pouring pose [13] and learn pouring RL policy
[14] in simulation and transfer it to the real world. Despite
the abundance of research on pouring water, to the best of
our knowledge, there has been no study conducted on water
scooping, especially goal-conditioned water scooping.

b) Goal-Conditioned Learning for Deformable Object
Manipulation: Compared to rigid object manipulation, de-
formable object manipulation presents challenges due to
complex dynamics, large state spaces, and diverse sensing
configurations. Many works rely on heuristics, expert demon-
strations, or dense supervised signals. They mainly focus on
cables [15], [16], [17], [18], fabrics [19], [20], bags [21],
or granular materials [22]. Jin et al. learn cable routing ma-
nipulation primitives based on a spatial representation from
goal configurations [15], while the goal spatial representation
can only be applied to linear objects. Wang et al. generate a
visual plan between the initial and the goal configurations for
cable routing tasks via casual InfoGAN [16], but the visual
trajectory might be infeasible for liquids. Jangir et al. study
position goal reaching on cloth by combining reinforcement

learning and behavior cloning [19], while the methods are
only verified in simulation, and the expert demonstrations are
difficult to generate within our task. Canberk et al. propose
a canonicalized-alignment objective to avoid local minima
for cloth unfolding [20]. Seita et al. propose to embed
image-based goal-conditioning into Transporter Networks
and manipulate 2D and 3D deformable objects to the desired
states [21]. These works rely on preset or parameterized
action primitives, which are not suitable for our multi-modal
goal-conditioned water scooping tasks.

c) Learning or Optimization for Scooping: Various
scooping tasks have been studied in both household and
construction scenarios. In the household scenario, Schenck
et al. learn to scoop pinto beans with a predictive model [1].
Wang et al. learn generative models for scoop manipulation
skills [2]. Antonova et al. employ Bayesian Optimization
with differentiable simulation to scoop a cube from the water
in a tank and raise it to the highest possible position [3].
ToolFlowNet uses behavior cloning from point clouds to
perform water pouring and ball scooping tasks [4]. In the
construction scenario, Jin et al. study the excavation of rigid
objects with offline reinforcement learning [23]. Egli et al.
learn an RL policy for soil excavation with an analytical
soil model [24]. All of these works are developed with
model-based learning or optimization, or depend on human
demonstrations, which can be challenging for fluids with
complex dynamics. Besides, none of the above focus on solv-
ing fluid/water scooping tasks. In this work, we formulate the
problem of the goal-conditioned water scooping and provide
a generalizable model-free RL solution for this task.

III. BACKGROUND

In this paper, we formulate the water scooping task as a
goal-conditioned reinforcement learning problem. In this sec-
tion, we will introduce the basics of reinforcement learning
and Hindsight Experience replay.

A. Reinforcement Learning (RL)

A Markov Decision Process (MDP) M is defined by
a tuple (S,A, p, r, γ, ρ0). S is the state space, A is the
action space, p(st+1|st, at) is the probability of transitioning
from state st to state st+1, when applying an action at,
r(st, at) is the reward received by an agent for executing
the action at in state st, γ ∈ [0, 1] is the discount factor,
and ρ0(s0) is the initial state distribution. A policy π(at|st)
gives the probability of an agent taking action at in state
st. The goal of RL is to find the optimal policy, π∗ =

argmaxπ Eτ∼ρπ

[∑T
t=0 γ

tr(st, at)
]

to maximize cumula-
tive discounted reward, where τ = (s0, a0, · · · , sT , aT )
is an agent’s trajectory sampled from a distribution ρπ
induced by policy π, initial state ρ0 and the transition
probability p. In this work, we employ Soft Actor-Critic
(SAC) [25] as our backbone RL algorithm. SAC is based
on the maximum entropy RL framework, which augments
the objective with the expected entropy of the policy over
ρπ as Eτ∼ρπ

[∑T
t=0 γ

tr(st, at) + αH(π(·|st))
]
, where α is

the temperature parameter of the entropy term. In many



cases, SAC can induce better exploration and learn more
robust policies. The objective of the soft critic function
parameterized by θ can be formulated as:

JQ(θ) =E(st,at)∼D[
1

2
(Qθ(st, at)− r(st, at)

− γEst+1∼D,at+1∼π[Qθ̄(st+1, at+1)

− α log πϕ(at+1|st+1)])
2] (1)

where θ̄ is the parameter of the target critic network, and
D is the replay buffer. The objective of the soft actor
parameterized by ϕ can be expressed as:

Jπ(ϕ) = Est∼D[Eat∼πϕ
[α log(πϕ(at|st))−Qθ(st, at)]]

(2)

B. Multi-Goal RL via Hindsight Experience Replay

Hindsight Experience Replay (HER) is a method that can
improve the sample efficiency of off-policy RL methods
for environments with multiple goals and sparse rewards,
thus alleviating the efforts in designing shaped rewards and
dependencies on domain knowledge. Following the idea from
Universal Value Function Approximators [26], the trained
policy takes in both the state st and the goal g at time
step t. Given a goal-based task, for the standard experience
replay of a chosen off-policy RL method, the transition
(st||g, at, rt, st+1||g) will be stored in the replay buffer,
where rt is the output of a reward function r(st, at, g). The
key idea of HER is to revisit achieved hindsight goals and use
them to construct new transitions used for training. A new
transition corresponding to (st, at, st+1) can be represented
as (st||g′, at, r′t, st+1||g′), where g′ is a hindsight goal, and
r′t = r(st, at, g

′). The achieved hindsight goals could be
sampled from the states which come from the same episode
as the transition (st||g, at, rt, st+1||g). HER can be regarded
as an implicit curriculum learning method as it generates less
challenging intermediate goals that the current policy is able
to achieve.

IV. METHODOLOGY

A. Problem Formulation for Water Scooping

In this paper, we formulate the water scooping task as
a goal-conditioned RL task. We aim to learn a policy
parameterized by θ, πθ, to control the container to scoop a
specific amount of water in the tank and move to a targeted
position above the tank. Thus we can conveniently apply this
policy to various downstream tasks like water pouring and
transportation.

At the start of each episode, the initial water state in
the tank, which encloses the water amount, dynamics, and
the initial position of the container, is sampled from the
environment’s initial state distribution ρ0. Meanwhile, the
desired goal state gdesired = {gpdesired, g

a
desired} is sampled

from a goal distribution ρg . Here, gpdesired ∈ R3 is the
desired position goal of the container in the workspace,
and gadesired ∈ [0%, 100%] is the desired water amount goal
in the container. At time step t, the scooping policy πθ

will take in an observation ot from the environment, the

desired goal state gdesired (fixed through an episode), and an
achieved goal state gtachieved, and output a policy distribution
πθ(ot, gdesired, g

t
achieved). The achieved goal state gtachieved =

{gp(t)achieved, g
a(t)
achieved} is a mapping or a subspace vector from

the current observation ot. Here, it shares the same space as
gdesired, and includes the real-time position of the container
g
p(t)
achieved and the water amount in the container ga(t)achieved. From

the policy distribution πθ(ot, gdesired, g
t
achieved), an action at

can be sampled and executed. Then, the agent will obtain
an observation for the next time step ot+1, a newly achieved
goal gt+1

achieved, and a reward rt = r(gt+1
achieved, gdesired), where

r(·) is the reward function of our defined water scooping
task. As gt+1

achieved is a result of executing at on ot, so the
reward function rt = r(gt+1

achieved, gdesired) is a transformed
version of r′(ot, at, gdesired), which is introduced in Section
III-B. The objective of this problem is to maximize the
expectation of the discounted total reward, similar to a
general RL problem.

This task is challenging because the model needs to learn
a policy to accommodate different high-dimensional initial
water states and the desired goal states. What is more, the
task requires long-horizon planning of the policy, i.e., the
container needs to first move downwards to scoop water of
a specific amount and then move to a targeted place.

B. Goal-Factorized Reward Formulation

To enable the RL algorithm to learn a good policy for the
defined goal-conditioned water scooping task, it is important
to design a good reward function with regards to the achieved
goal gt+1

achieved and the desired reward gdesired. For notation
convenience, we also represent gt+1

achieved and gdesired as the
concatenated vectors of their position goal and amount goal
vectors (e.g., g

p(t+1)
achieved||g

a(t+1)
achieved and gpdesired||gadesired), respec-

tively. A binary and sparse reward formulation that does not
require human engineering and shaping proposed in [27] is

r(gdesired, g
t+1
achieved) = −1(∥gt+1

achieved − gdesired∥ > ϵ) (3)

where 1 represents the indicator function, ∥ · ∥ represents
a distance between two vectors, and ϵ is a tolerance value.
This reward function means that a reward of 0 will be only
obtained when the achieved goal and the desired goal are
close enough, otherwise, there will be a penalty of −1. It has
advantages over the shaped dense rewards when the shaped
rewards are hard to define and there is a discrepancy between
the optimized rewards and the true success condition of the
task. It also encourages exploration because some behaviors
might be inappropriate for the short term but will bring larger
benefits in the long term. For example, to scoop the water,
the container needs to first go down to get the water. The
downward movements will get the container further away
from its position goal above the water tank but it is essential
for the long-term goal.

However, a fully-sparse reward is still not appropriate
for our water scooping task, because the policy needs to
achieve the water amount goal besides the position goal, and
formulating a binary reward function for both types of goals
will make it really hard to get any positive feedback during



the training process. Meanwhile, we find using a simple-
shaped reward function specified for the amount goal will
not bring any discrepancy in reaching the water amount
goal. This shaped reward can be simply defined by the
difference between the current water amount and the desired
amount. Therefore, we propose to factorize the goal states
and construct a hierarchical reward function as follows:

r(gdesired, g
t+1
achieved) =1(∥g

p(t+1)
achieved − gpdesired∥ ≤ ϵ)×

(1− ∥ga(t+1)
achieved − gadesired∥)− 1

(4)

This reward function means that dense positive feedback
will be produced when the container is close enough to the
position goal. It takes advantage of both the binary sparse
reward and the shaped (but simple) dense reward, and thus
it can help to both position goal and amount goal reaching.

C. Curriculum Learning via Factorized Goal Sampling
Adaptation

Fig. 2: This figure demonstrates the process of position
goal sampling adaptation and the amount goal sampling
adaptation. Here, diamonds on the left are samples from the
desired, interpolation, or initial distributions.

As stated in IV-A, our desired goal state gdesired subjects to
a desired goal distribution ρg . Specifically, we represent it as
ρg = {ρpg, ρag} which decomposes ρg into a desired position
goal distribution ρpg and a desired amount goal distribution
ρag . To train a policy that can reach the goals from the desired
goal distribution, a straightforward way is to directly sample
goals from the goal distribution (i.e., task distribution) during
training, like the approaches in [27], [28], [29]. However,
our task is long-horizon and the initial state and the initial
achieved goal distributions are not overlapped with, and
sometimes can be far away from the desired goal distribution
(e.g., the container with no water above the water tank v.s.
the container with a targeted amount of water at a targeted
place). This would lead to a total failure of our task. We
display the corresponding results of SAC+HER in Section
V-C. Some other works on multi-goal RL develop explicit
curriculum by sampling new goals that are in or close to the
distribution of achieved goals to solve long-horizon problems
[30], [31], [32], but they do not provide good solutions for
our water scooping task with multi-modal goal distributions.

In this work, we propose Goal Sampling Adaptation for
Scooping (GOATS), which performs factorized goal sam-
pling adaptation by generating intermediate position goal

distributions and amount goal distributions. First, an initial
position goal distribution, ρp0, and an initial amount goal
distribution, ρa0 , are selected to represent the initial state
or initial achieved goal distribution of the task. Then the
intermediate distributions, ρpk and ρak, are generated by in-
terpolating between the initial goal distributions (e.g., ρp0
and ρa0) and the desired goal distribution (e.g., ρpg and ρag),
respectively. Then the adaptive desired position goals g

p(k)
desired

and amount goals g
a(k)
desired that represent simpler tasks can be

sampled from ρpk and ρak. A principled approach to measure
the task distribution similarity is the 2-Wasserstein distance
[33]. Thus, the interpolations are the Wasserstein barycenters
on a geodesic,

ρpk := argmin
ρ′

(1− k)W (ρp0, ρ
′) + kW (ρ′, ρpg), (5)

ρak := argmin
ρ′

(1− k)W (ρa0 , ρ
′) + kW (ρ′, ρag), (6)

where W (·, ·) denotes the Wasserstein distance between two
distributions, k ∈ [0, 1] is a temporal factor to indicate the
procedure of the curriculum learning.

As shown in Figure 2, in our scooping task, ρp0 is a
uniform distribution over positions on a cuboid region near
the bottom of the water tank, ρpg is a uniform distribution
over positions on a cuboid region that encloses the targeted
region, ρa0 is a distribution over the 0% water amount, and
equally distributed desired (discrete) amount goals, and ρag is
a uniform distribution over only the desired (discrete) amount
goals. We select the initial position goal distribution at the
bottom of the tank because the adaptive desired position goal
g
p(t)
desired can start from the locations near the water, which

shortens the horizon between water scooping and position
goal reaching. We add 0% water amount to ρa0 because 0%
water amount will help the policy to learn to move to position
goals in the workspace and enable the model to receive useful
learning signal at the early training stage, which lowers
the task difficulty. We do not interpolate distributions that
include water amounts between 0% and the desired amount
goals. This is because scooping a very small amount of
water can sometimes be more difficult than scooping a larger
amount of water; thus, it is not necessary to create too many
goal amounts. To this end, we explicitly parameterize the
initial position goal distribution ρp0 as a continuous uniform
distribution U [a0, b0], where a0 and b0 are 3D vectors
that represent the lower bound and the upper bound of the
3D space, respectively. Similarly, the desired position goal
distribution ρpg can be parameterized as U [ag, bg]. Then,
the interpolation objectives in Equation (5) give closed-form
solutions for the intermediate distributions as,

ρpk = U [(1− k)a0 + kag, (1− k)b0 + kbg]. (7)

For the intermediate amount goal distributions ρak, the solu-
tions of Equation (6) are linear interpolations between the
two discrete distributions, ρa0 and ρag . Given the explicit
interpolation distributions, the intermediate desired position
goals g

p(k)
desired and amount goals g

a(k)
desired can be adaptively

sampled from ρpk and ρak for training.



D. Algorithm of GOATS

GOATS combines the explicit curriculum learning proce-
dure of goal sampling adaptation described in Section IV-
C, and an implicit curriculum learning procedure HER, and
provides an algorithm in Algorithm 1. We summarize it as
follows. At the start of each episode, the temporal factor
for curriculum learning k will be first updated, and then
ρpk and ρak can be obtained by solving Equation (5) and (6)
respectively. The adaptive desired position goal g

p(k)
desired and

amount goal g
a(k)
desired ∼ ρak for this episode can be sampled

from ρpk and ρak. Within each step of this episode, we will
sample an action at ∼ πθ, step the environment to get ot+1

and gt+1
achieved, and compute the reward rt with our proposed

reward function in Section IV-B. Then we can update the
replay buffer R with this information, and update the policy
θ using SAC and HER. Please note that here SAC can be
replaced by any other off-policy RL algorithms.

Algorithm 1 Goal Sampling Adaptation for Scooping (GOATS)
with Curriculum Reinforcement Learning

Input: Desired position goal distribution ρpg , desired amount
goal distribution ρag , initial position goal distribution ρp0,
initial amount goal distribution ρa0 , reward function r(·),
initialized policy θ, replay buffer R

Output: Learned policy πθ

for each episode do
Update temporal factor k for curriculum learning
Update adaptive desired goal distributions ρpk and ρak

with k, ρpg , ρp0, ρag and ρa0 by solving Eq. (5, 6)
Sample adaptive desired goals g

p(k)
desired ∼ ρpk, ga(k)desired ∼ ρak

for each step t do
Sample action: at ∼ πθ(ot, g

k
desired, g

t
achieved)

Step environment:ot+1 ∼ p(ot+1|ot, at)
Get gt+1

achieved from ot+1

Compute reward: rt = r(gkdesired, g
t+1
achieved)

Update replay buffer R
Update policy θ via SAC, HER

end for
end for

V. EXPERIMENTS

In this section, we will first introduce the simulation envi-
ronment settings we used for training the water manipulation
policies. Then we summarize and analyze the results from
our proposed method and baselines. At last, we demonstrate
a real-robot water scooping experiment on a UR5 robot arm
with a bucket container as its end effector.

A. Simulation Setup

We design the task and build our simulated scenarios
based on SoftGym [5], a 3D simulator for deformable object
manipulation by reinforcement learning. We test all the
methods on two types of containers, including a bowl and
a bucket, which have different shapes, sizes, and volumes,
as shown in Figure 1. At the start of each episode, the
initial water state is sampled from 1000 variations that are

generated by dropping different numbers of water particles
in the tank. This generation process produces different water
fluctuations and initial waterlines that range from shallow
levels to complete immersion of the containers. The duration
of each episode in our task is set to 75 steps.

We use the state vector representation as the input to the
network. The observation space is represented by positions,
rotation, velocities, angular velocity of the container, water
amount in the container, and estimated waterline in the
tank. The goal state space includes the positions of the
container and the water amount in the container. The actions
for the scooping task include the accelerations and angular
acceleration of the container. The radius of the bowl is 7.7cm,
and the front length of the bucket is 11.7cm. For the bowl-
scooping task, the position goal area is a cuboid from 27cm
to 40cm above the ground (7cm to 20cm above the highest
edge of the water tank), while for the bucket scooping, it
is a cuboid from 37cm to 50cm (17cm to 30cm above the
highest edge of the water tank) above the ground due to the
size difference of the container. These are considerably large
areas compared to the sizes of the containers and the length
of the episode. The amount goals are 60%, 65%, 70%, 75%,
80%. We also compare the results of training on a single
amount goal (70%) and multiple amount goals in Section
V-C.

B. Baselines in Simulation

We provide the following six types of baselines to inves-
tigate the effectiveness of each component of GOATS.

SAC is a strong off-policy RL method that is widely used
especially in environments with continuous action spaces.

SAC+HER implements HER on SAC without any explicit
curriculum learning.

SAC+Universal Goal Sampling (GS) does not apply
adaptive goal distributions for SAC. Instead, it uses a fixed
ρpk to cover a larger cuboid region that covers both the bottom
region in the tank and the targeted region. It also fixes ρak to
sample the 0% amount goal with a fixed probability of 50%.

SAC+Partially Adaptive GS uses the same {ρpk} as
GOATS but fixes ρak for SAC.

SAC+HER+Universal GS fixes ρpk and ρak for SAC and
HER.

SAC+HER+Partially Adaptive GS uses the same {ρpk}
as GOATS but has a fixed ρak for SAC and HER.

All the methods use the same hyperparameters for SAC
and HER, and the models are trained on two desktops with
Nvidia GeForce GTX 1080 Ti GPUs.

C. Results in Simulation

We demonstrate our results from the simulation in Fig-
ure 3 and Table I. The learning curves of four evaluated
tasks from Figure 3 present similar trends. Our method,
GOATS, can converge faster and achieve higher perfor-
mance than all the baselines. The most competitive base-
line is SAC+HER+Partially Adaptive GS, and it has very
close performance to GOATS in the task of bucket scoop-
ing with multiple amount goals. The reward gaining of



Fig. 3: In this figure, we display the learning curves of different methods in the tasks of (a) bowl scoop with single water
amount goal, (b) bowl scoop with multiple water amount goals, (c) bucket scoop with single water amount goal, and (d)
bucket scoop with multiple water amount goals. The evaluation rewards under desired goals are averaged over three seeds,
and the shaded region represents the standard error.

SAC+HER+Universal GS is larger than all other methods at
the early training stage. The reason is that it directly samples
the position goals from the entire space including the tank
bottom and the position goal area, so it can apply the learned
skills from the bottom to the position goal area at an early
stage. All other methods totally fail in all evaluated tasks.

From the table results, we can tell that, besides reaching
good rewards, GOATS can also achieve lower success water
amount error than other methods (Table I). This means
that our method can successfully finish both the position
goal and amount goal reaching tasks. In the task of bucket
scooping with a single amount goal, SAC+HER+Partially
Adaptive GS has lower rewards but shows fewer deviations
from the amount goals. One possible reason is that the
bucket might get a better amount of water without reaching
the goal in some cases. Please note that the water amount
error of SAC+HER in bucket scooping with multiple amount
goals is higher than expected because one of the tested
models is trained to bump into the tank and get some water
but never reach the position goals. Comparing the amount
errors between using a single amount goal and multiple
amount goals on the same task, we can tell that training
on multiple goals can be beneficial and improve the amount
goal-reaching performance.

Compiling the results in both Fig. 3 and Table I,
SAC+HER+Partially Adaptive GS is always better than
SAC+HER+Universal GS, from which we can conclude that
performing position goal sampling adaptation is very helpful
to our scooping tasks. Meanwhile, the performance discrep-
ancy between GOATS and SAC+HER+Partially Adaptive
GS shows the effectiveness of the amount of goal sam-
pling adaption. The results here indicate that GOATS can
accommodate complex water dynamics, different position
and amount goals, and different types of containers in the
water scooping task.

D. Sim-to-Real Transfer

To train a policy in our built scenarios that can be trans-
ferred to the real world and enable the robot to successfully
perform the scooping task, we revise a few settings in
simulation. First, we change the tank size in the simulation
to match the real tank. To ensure the scooping movements do
not violate the physical limitations of the UR5, we constrain

the acceleration and velocity ranges to 1
5 of their original

versions and lower the upper bound of the position goal
area to 33cm. Because the acceleration and velocity of the
container are significantly decreased, we extend the training
episode length to 110 steps to give the agent considerable
time to finish the scooping task.

E. Real-World Experiment

Fig. 4: The figure shows our experiment setup, including the
UR5 robot arm, 3D printed bucket, water container on the
right-hand side, and a kitchen scale on the left-hand side.
Note that the ruler line is stuck on the side wall of the
container and we test three waterlines (7.5, 8.0, 8.5 cm).

To validate the practical scooping performance, we apply
our trained policy to a real scenario as shown in Fig. 4,
where a 3D printed bucket of the same size as that in the
simulation is mounted on a 7-DoF UR5. In addition, there is
a long plastic box located on the black table storing water,
and a kitchen scale on the white table is intended to measure
scooped water from the bucket.

Before the experiment, we adjust the waterline in the
container by adding or reducing water to meet the prescribed
height according to the ruler line on the side wall of the
container. After the bucket returns to the initial pose, as
presented in Fig. 4, the UR5 could control the bucket to
scoop water along the trajectory generated from waypoints
given by the trained policy. Then, it will release the water
into a box above the scale and the resulting water amount
scooped by the bucket can be measured accordingly.

We display the average absolute amount errors in both
robot and (sim-to-real) simulation settings in Table II. We can
find that when the amount goals (AG) are smaller than 75%,



TABLE I: In this table, we display the performance of our proposed methods and the baselines in bowl scooping and bucket
scooping tasks with a single water amount goal (70%) or multiple water amount goals (60%, 65%, 70%, 75%, 80%). The
results are averaged over 3 seeds, and the standard errors are provided. For each seed, the reward is from the best evaluation
reward during training. The corresponding model is then evaluated on 100 episodes, with randomly sampled initial waterlines,
position goals, and water amount goals, to obtain the absolute amount error. The upper arrow means higher is better, and
the down arrow means lower is better. The best performance of each task is marked in bold.

Method
Bowl Scooping Bucket Scooping

Single Amount Goal Multi. Amount Goals Single Amount Goal Multi. Amount Goals

Reward ↑ Amount Error↓ Reward↑ Amount Error↓ Reward↑ Amount Error↓ Reward↑ Amount Error↓

SAC −69.41± 0.78 69.60%± 0.33% −61.21± 2.00 71.02%± 0.34% −71.20± 1.12 69.99%± 0.01% −69.47± 0.77 71.00%± 0.35%

SAC+HER −72.72± 0.32 67.28%± 1.66% −69.59± 2.32 63.36%± 5.91% −73.40± 0.47 52.35%± 13.79% −72.15± 1.05 55.76%± 0.35%

SAC+Universal GS −71.7± 0.69 69.51%± 0.40% −72.05± 0.41 71.02%± 0.34% −72.96± 0.65 70.00%± 0.00% −71.48± 1.28 70.83%± 0.43%

SAC+Partially Adaptive GS −72.89± 0.59 70.00%± 0.00% −71.87± 0.18 67.51%± 2.23% −73.73± 0.24 69.81%± 0.15% −73.14± 1.01 70.98%± 0.35%

SAC+HER+Universal GS −36.45± 4.41 26.18%± 14.33% −37.88± 2.48 11.24%± 2.51% −42.48± 1.04 12.76%± 2.60% −37.32± 1.24 13.39%± 0.69%

SAC+HER+Partially Adaptive GS −28.80± 0.41 8.54%± 1.11% −28.98± 0.43 7.43%± 1.41% −35.22± 0.35 9.61%± 2.68% −33.12± 0.60 14.16%± 3.16%

GOATS (Ours) −25.67± 0.32 5.93%± 1.20% −25.77± 0.60 4.99%± 0.37% −33.36± 0.69 9.97%± 2.09% −32.51± 0.61 7.45%± 1.65%

Fig. 5: This figure depicts trajectories under different scooping conditions for the UR5 robot. Here, all initial positions are
at 23 cm above the ground. AG means the amount goal, PG means the position goal (all cases have the same PG), and WL
means the initial waterline. The bucket dives deeper when the initial waterline is lower and the targeted amount is larger.

TABLE II: In this table, we display the absolute water amount errors in both the sim-to-real simulation environment and the
real robot environment using a single trained model by GOATS. Each value is an average over three tested position goals.

Initial Position Waterline 60% Amount Goal 65% Amount Goal 70% Amount Goal 75% Amount Goal 80% Amount Goal

(cm) Sim. Robot Sim. Robot Sim. Robot Sim. Robot Sim. Robot

Height 23cm
7.5 3.33%± 0.57% 1.66%± 0.75% 3.80%± 0.70% 6.58%± 3.06% 4.91%± 0.91% 11.27%± 1.75% 5.47%± 1.38% 14.05%± 1.44% 9.52%± 1.25% 13.55%± 1.24%

8.0 6.15%± 1.12% 4.39%± 2.94% 3.47%± 0.60% 2.67%± 0.98% 4.93%± 0.48% 4.95%± 2.62% 5.26%± 0.34% 9.58%± 0.83% 6.43%± 0.60% 11.47%± 1.72%

8.5 6.52%± 1.13% 5.64%± 0.83% 4.67%± 0.37% 3.74%± 1.51% 5.13%± 0.29% 5.31%± 2.79% 8.71%± 1.38% 11.08%± 1.85% 6.20%± 2.27% 9.71%± 1.57%

Height 30cm
7.5 3.66%± 0.23% 1.76%± 0.18% 5.79%± 1.20% 7.83%± 1.95% 5.08%± 0.92% 11.43%± 1.73% 5.07%± 1.82% 11.51%± 2.47% 8.47%± 1.41% 14.23%± 1.18%

8.0 3.98%± 0.30% 4.78%± 1.81% 3.64%± 1.53% 1.83%± 1.19% 3.28%± 0.52% 5.07%± 2.14% 4.23%± 0.03% 8.64%± 1.38% 4.48%± 0.54% 11.35%± 2.80%

(Unseen in training) 8.5 6.53%± 0.91% 6.90%± 0.99% 5.17%± 1.25% 2.93%± 1.14% 4.25%± 0.75% 1.78%± 0.73% 6.10%± 1.19% 10.73%± 2.74% 6.53%± 0.97% 11.66%± 1.37%

Height 40cm
7.5 4.31%± 2.31% 6.96%± 0.44% 5.21%± 0.99% 6.31%± 0.89% 3.92%± 0.50% 11.47%± 1.99% 4.49%± 0.81% 11.15%± 4.49% 7.06%± 0.90% 12.90%± 0.48%

8.0 3.94%± 0.56% 2.29%± 0.73% 3.06%± 1.34% 3.81%± 1.64% 4.13%± 1.01% 6.95%± 0.53% 4.47%± 0.54% 9.50%± 1.09% 4.81%± 0.84% 11.97%± 1.11%

(Unseen in training) 8.5 6.34%± 1.88% 7.90%± 1.97% 5.63%± 2.06% 3.85%± 0.52% 5.40%± 0.44% 5.11%± 3.04% 4.54%± 0.27% 10.75%± 1.80% 5.21%± 1.51% 10.31%± 5.21%

the amount errors of robot scooping are under 8% in most
cases, and the sim-to-real gap is small. With the increase of
the targeted amount (75% and 80%), in simulation, the policy
still produces scooping actions with small amount errors,
while the errors on the robot get larger. One reason for this
sim-to-real gap is that when the amount goal increases, the
robot bucket usually dives deeper and sometimes it hits the
bottom of the tank. Then it takes longer to lift the bucket
than in the simulation, resulting in running-off of the water.
In addition, we demonstrate some trajectories from real robot
experiments, as shown in Fig. 5. In Fig. 5 (a) and Fig. 5 (b),
we set the same water amount goal and position goal (PG)
with two waterlines (WL), i.e., 8.5 and 7.5 cm. The trained
policy can adaptively adjust the trajectory from the identical
start point and PG to meet the same AG, and the bucket dives
deeper when the waterline is lower. As a result, the amount
errors on the robot of these two cases are 5.92% and 3.07%,

respectively. Furthermore, with the same WL, e.g., 8cm in
Fig. 5 (c) and Fig. 5 (d), different AGs are desired. It is shown
that the bucket can dive deeper to get more water when the
targeted amount is larger. The corresponding amount errors
on the robot are 2.76% and −3.31%, respectively. Therefore,
we can conclude that our trained policy can adapt to different
water states in the tank and adjust scooping schemes to reach
different amount goals on the physical robot.

F. Generalization to Unseen Initial Bucket Positions

In both the sim-to-real simulation environment and the
physical robot environment, we directly apply the trained
policy to unseen initial bucket positions in training without
fine-tuning. The results are displayed in Table II. Compared
to the performance on the in-distribution task (23cm), our
method shows no evident performance drop on two more
difficult out-of-distribution tasks (30cm, 40cm), and are sur-



prisingly better at various amount goal and waterline settings.
This shows that GOATS has good generalizability and are
empowered with the potential to achieve more complicated
tasks when only training on simpler ones.

VI. CONCLUSION

In this paper, we first formulate the goal-conditioned
water scooping problem. This task is challenging due to the
complex dynamics of fluid and multi-modal goal-reaching
requirements. To tackle the challenges, we propose a goal-
factorized reward formulation and a novel goal-sampling
adaptation method for efficient curriculum reinforcement
learning. We validate the effectiveness of our method on
extensive water scooping experiments. Our method achieves
better performance than baselines, on bowl scooping with an
average amount error of 5.46%, and on bucket scooping with
an average amount error of 8.71% in simulation. In physi-
cal robot experiments, our method can adaptively generate
trajectories for scooping and achieves amount errors lower
than 10% in most cases. What is more, our trained policy
can generalize well to two more challenging unseen settings
in both simulation and the physical world.
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“Learning compositional models of robot skills for task and motion
planning,” The International Journal of Robotics Research, vol. 40,
no. 6-7, pp. 866–894, 2021.

[3] R. Antonova, J. Yang, K. M. Jatavallabhula, and J. Bohg, “Rethinking
optimization with differentiable simulation from a global perspective,”
arXiv preprint arXiv:2207.00167, 2022.

[4] D. Seita, Y. Wang, S. J. Shetty, E. Y. Li, Z. Erickson, and D. Held,
“Toolflownet: Robotic manipulation with tools via predicting tool flow
from point clouds,” arXiv preprint arXiv:2211.09006, 2022.

[5] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation,” in
Conference on Robot Learning, 2020.

[6] T. Tsuji and Y. Noda, “High-precision pouring control using online
model parameters identification in automatic pouring robot with cylin-
drical ladle,” in 2014 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE, 2014, pp. 2563–2568.

[7] T. Chen, Y. Huang, and Y. Sun, “Accurate pouring using model
predictive control enabled by recurrent neural network,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 7688–7694.

[8] Z. Erickson, Y. Gu, and C. C. Kemp, “Assistive vr gym: Interactions
with real people to improve virtual assistive robots,” in 2020 29th
IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2020, pp. 299–306.

[9] D. Park, Y. Hoshi, H. P. Mahajan, H. K. Kim, Z. Erickson, W. A.
Rogers, and C. C. Kemp, “Active robot-assisted feeding with a general-
purpose mobile manipulator: Design, evaluation, and lessons learned,”
Robotics and Autonomous Systems, vol. 124, p. 103344, 2020.

[10] A. LaGrassa and O. Kroemer, “Planning with learned model precon-
ditions for water manipulation,” 2022.

[11] T. L. Guevara, N. K. Taylor, M. U. Gutmann, S. Ramamoorthy, and
K. Subr, “Adaptable pouring: Teaching robots not to spill using fast
but approximate fluid simulation,” in Proceedings of the Conference
on Robot Learning (CoRL), vol. 2, 2017.
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