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Abstract— Augmented and mixed-reality techniques harbor a
great potential for improving human-robot collaboration. Visual
signals and cues may be projected to a human partner in
order to explicitly communicate robot intentions and goals.
However, it is unclear what type of signals support such a
process and whether signals can be combined without adding
additional cognitive stress to the partner. This paper focuses
on identifying the effective types of visual signals and quantify
their impact through empirical evaluations. In particular, the
study compares static and dynamic visual signals within a
collaborative object sorting task and assesses their ability to
shape human behavior. Furthermore, an information-theoretic
analysis is performed to numerically quantify the degree of in-
formation transfer between visual signals and human behavior.
The results of a human subject experiment show that there
are significant advantages to combining multiple visual signals
within a single task, i.e., increased task efficiency and reduced
cognitive load.

I. INTRODUCTION

Among the many roles future robots are envisioned to
assume, one particularly challenging role is that of a human
teammate. In such collaborative scenarios, robots have to
provide continuous assistance to a human partner, while
also ensuring a mutual understanding of the cooperative task
and its individual elements. Consequently, there has been
significant research interest in generating interpretable robot
behavior that allows a human partner to better anticipate
the goals, intentions, and future actions of a robot for the
purpose of fluent teaming. For instance, the Roadmap for
U.S. Robotics report highlights that “humans must be able
to read and recognize robot activities in order to interpret the
robot’s understanding" [1].

To achieve such a shared mental model, several approaches
use implicit cognitive cues to communicate robot intentions,
e.g., by adjusting robot motion to elicit a specific interpre-
tation from a human observer [2]–[4]. Alternatively, other
approaches use explicit cognitive cues, e.g., visual, haptic or
auditory signals to improve human understanding of robot
intentions [5]–[8]. To this end, the use of augmented and
mixed-reality techniques has gained considerable attention
in recent years [9]–[14]. The work in [15] presented a robot
system which projects information about a collaborative
task directly into the shared workspace – a mixed reality
approach. For example, by projecting a warning sign onto a
particular object in the scene, a robot may identify a goal
object it intends to manipulate. As a result, the environment
becomes a canvas for the display of perceptual messages

S. Sonawani, Y. Zhou, and H. Ben Amor are with the School of Comput-
ing and Augmented Intelligence, Arizona State University {sdsonawa,
yzhou298, hbenamor}@asu.edu

Fig. 1: The setup of our experiments: a human subject is
tasked with sorting all cubes indicated by green squares,
while a robot sorts all the cubes shown by white squares on
the laptop screen. Here, a static cue (red semi-circular disc),
and a dynamic cue (digital twin of the robot) are projected
onto the physical environment showing the current goal of
the robot.

that can rapidly be processed by the human visual cortex.
Another way to provide visual cues is discussed in [16]–
[21], e.g., using virtual reality glasses or head-mounted
displays which augment the environment around humans.
Various works have provided ample evidence that such visual
projection of intent improves critical dimensions of human-
robot collaboration tasks, e.g., efficiency, fluency, and trust.

However, there are still critical questions and challenges
that are not well understood. In particular, it is unclear how to
choose and design visual signals so as to achieve the desired
transfer of information between the robot and the human
partner. To date no objective measures of information transfer
have been established that could answer such questions. In a
similar vein, it is unclear whether static visual signals (e.g.
signs) are preferable to dynamic ones (e.g. and an animation
of a moving object or robot). Insights from related fields such
as Semiotics [22], [23] and Human-Computer Interaction
(HCI) [24], [25] can partially be transferred to this scenario
but do not fully address the relationship between human,
robot and physical environment.

This paper extends prior work on intention projection by
investigating the effectiveness of different types of signals in
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Fig. 2: Overview of the system architecture and experiment setup. Information about the current state of the real world
environment is captured using a camera. In turn, a robot motion planner generates the intended following actions. The result
is used to produce 3D visualizations of either static visual cues or dynamic motion cues. Finally, generated visual signals
are projected into the world using a projection device. In this work, we use the projected signals only for the robot actions.
However, the designed mixed reality system can also show other signals such as human goals (green) shown in the left
image.

human-robot collaboration tasks. Specifically, we compare
static and dynamic cues, as well as combinations thereof,
to assess their impact on user performance. To this end,
we discuss a collaborative sorting task in which a human
user has to anticipate the robot’s motion to avoid potential
collisions or conflicting sub-goals, e.g., reaching for the same
object as the robot. We discuss a dynamic signal in which
a simulated digital twin of the robot (projected using mixed
reality) performs future actions ahead of the real, physical
one. Accordingly, the human user can visually anticipate the
upcoming motion of the robot. We contrast this mode with a
static signaling type, in which the target object is highlighted
using a stationary visual cue. Rather than focusing on the
actions of the robot, this mode focuses on the underlying
goal object only. By comparing the performance of users in
dynamic and static conditions, we aim to understand whether
different types of signals affect the human user in different
ways. The contributions of this paper can be summarized as
follows:

• A mixed reality system for static and dynamic signaling
of robot intention. The system features a novel mode for
dynamic signaling that leverages a projected digital twin
of the robot to preview upcoming actions.

• A human subject experiment focusing on multiple pro-
jection modes, along with an extensive analysis of sub-
jective and objective metrics. In addition, information-
theoretic approaches are used to numerically quan-
tify the amount of information transferred to the user
through visual cues.

• An open-source release of the proposed system along
with all necessary components to reproduce the de-
scribed experiments or investigate other visual cues.
link: https://github.com/ir-lab/IntPro.git

II. RELATED WORK

In human-robot collaboration, efficiently communicating
a robot’s intentions to a human co-worker is a well-known
challenge [26]. Inherently, humans are excellent at under-
standing and communicating to each other through non-
verbal cues. However, this ability does not apply when

the human tries to predict a robot’s motion or trajectories
in a collaborative setting. To date, robots lack the skill,
physical subtlety, and human-like appearance to provide
such nonverbal cues effectively. Thus, substantial research
has been devoted to different modalities such as gesture,
gaze, and haptic feedback to overcome this communication
gap [27]–[30]. All of these modalities have shown promising
results in improving human-robot collaboration. However,
humans are visual creatures and can often process explicit
visual cues faster than implicit or indirect cues. In addition,
visual cues can be co-located with the environment or context
they refer to. To convey the presence of a dangerous object,
for example, we can display a hazard sign in close proximity
or on top of it. Virtual or mixed-reality frameworks provide
an excellent technological platform for visualizing such cues
in an engaging and interactive fashion. For example, a survey
and overview of different modes of visualization that can
be used in industrial applications can be found in [11].
The work in [31] uses a head-mounted display to show
augmented reality signals indicating an indoor drone’s path
and navigation points. In a similar vein, [32] uses head-
mounted displays to depict robot workspace and trajectory
information. A technical requirement to achieve this effect
is virtual reality headsets or see-through displays. However,
as a side effect of this requirement, users may develop
fatigue or nausea during the operation of the task. Similarly,
such setups may make involving multiple humans in the
interaction scenario difficult since one headset per participant
is needed. Alternatively, a mixed-reality setup can be used.
Specifically, a camera-projection stereo system can be used
to accurately project information on 3D surfaces without
needing external hardware such headset. The concept of
providing the robot intentions via mixed-reality projections
framework called intention projection was previously ex-
plored in [33]. This work compared different interfaces, such
as textual descriptions, monitor displays, and projections in
human-robot collaboration tasks. Results show that users find
the projection interface to be more reliable and effective.
Similarly, [15] discusses how projected patterns can form a
rich visual language used in a specific context or domain,

https://github.com/ir-lab/IntPro.git


e.g., collaborative assembly. Independently of the specific
technical implementation, all of the above papers build upon
the same principle – the use of virtual, augmented, or mixed-
reality to visually communicate information to a human
interaction partner [19], [34], [35]. Unlike previous work,
the main focus of our paper is on the types of signals and
their effectiveness in transferring information between agents
rather than on the technical details of intention projection.
The aim is to gain insights into various signaling strategies
that can be used in any system. By providing a methodology
for studying the effectiveness of different types of visual
cues, the paper provides a framework for designing and
improving intention projection systems.

III. METHODOLOGY

In this section, we will first describe the task used through-
out the paper. Thereafter, we will provide details regarding
our intention projection system and two types of visual
signals that are representative of a broader class of signals.
Furthermore, details about the transfer entropy and its use for
finding a causal relationship between the robot and human
is explained.

A. Collaborative Task

In order to investigate the effects of visual signals, an
object sorting task was designed, see Fig. 1. The task
involves sorting eighteen 3D-printed cubes placed on a
tabletop surface. Human participants are asked to sort twelve
cubes while an autonomous robot (Universal Robot UR5) is
assigned six cubes. Sorting involves picking assigned cubes,
one at a time, and placing them in designated areas. For
participants, this designated area is a second table placed
on their left-hand side. By contrast, the robot has to place
cubes into boxes to its left and right. Visual signals are
used throughout the task to visualize the target objects or
the motion of the robot.

B. Intention Projection System

Following the rationale of this paper, visual cues of robot
intention are projected into the joint workspace. Fig. 2
depicts these cues and provides a detailed overview of our
intention projection system. First, a webcam observes the
current scene and tracks the location of physical objects on
a table. Tracking is performed using simple fiducial mark-
ers [36]. The resulting scene information (object positions
and orientations) is sent to a motion planner (developed using
[37]) in order to generate valid robot motions to reach the
intended next goal. In turn, the plan is simulated, and the re-
sulting data is used to generate visualizations of future states
of the system (robot or object). Finally, the generated visual
cues are projected into the physical environment using a pro-
jection device. For calibration purposes, we use the method
explained in [38]: the camera-projector system can be treated
as a stereo system consisting of a monocular camera and
a projector (inverse camera) by projecting multiple binary
patterns on a checkerboard and, in turn, computing intrinsic
and extrinsic parameters of the projector in relation to the

Fig. 3: Dynamic signal: A virtual robot (bottom) moves
ahead of the real robot resulting in a brief window for
visualization of future motions.

camera via homographies. To render different projections,
we leveraged the combination of the Unity game engine and
OpenCV. Furthermore, to provide seamless communication
between the robot and the simulation, we used the Robot
Operating System (ROS) Noetic version.

C. Visual Signal Types

As mentioned before, we are interested in contrasting two
types of signals, i.e., Static and Dynamic visual cues of robot
intent. Static visual signals, depicted as red semi-circular
disks, highlight the target cube to be picked next by the robot.
As Dynamic visual signals, the projection system displays
a continuous animation of the intended robot motion. It is
important to note that robot motions are shown ahead of
time – the user sees a preview of upcoming actions. An
example of this Dynamic mode is shown in Fig. 3. A virtual
twin of the physical robot is projected onto the table. This
virtual robot moves ahead of time and provides a window
into the future motion of the real robot. This information
allows the user to avoid areas of the shared workspace that
are soon to be inhabited by the robot. In addition, this
information provides an early indication of the object (or
group of objects) that will likely be the target. The temporal
offset, or delay, between the virtual and real robots, is an
adjustable parameter. These two visual signal modes allow
four distinct mode combinations:

1) No-Projection Mode: This mode provides no visual
cues and merely displays information about assigned
cubes to the human subject on a laptop screen in the
form of a grid with green colored squares. The six
cubes assigned to the robot are shown in white.

2) Static Mode: A visual cue showing a semi-circular
disc is projected for one second to indicate the next
target cube (out of six possible cubes). This visual
information is intended to provide the human partner
with information about the robot’s next objective.

3) Dynamic Mode: A real-time rendered animation of a
virtual robot is projected onto the table. This rendered
digital twin previews the motion of the physical robot
before they occur. A time delay of one second between
the virtual and real robot arm is used.

4) Dual Mode: A hybrid mode combining visual cues
from both Static and Dynamic Mode.



In our study, we utilized a 3 × 6 grid displayed on a
screen to depict the location of 18 cubes on a table, as shown
in Fig. 1. The grid comprises twelve green squares and six
white squares that are randomly distributed across the grid.
Users are tasked with picking up cubes located on the green
squares, while the robot is assigned to collect cubes located
on the white squares. The Static, Dynamic, or Dual Mode
may provide users with visual cues about the robot’s target
objects.

D. Measuring Information Transfer and Causality

A critical question for identifying efficient signals for
intention projection is how to measure their influence on
human behavior. How much information transfer is there
between the robot projecting its intent using a specific visual
signal and the interacting human partner? How can this be
quantified in an objective manner?

To this end, we employ a formal, information-theoretic
approach to describe information transfer. More specifically,
we calculate the Transfer Entropy (TE) [39] between the
sender (robot) and receiver (human). In this formulation, the
visual signals form a communication channel between the
two partners. TE measures the directed transfer of informa-
tion between two processes and is widely used for inferring
causal relationships between observed processes [40]. We
can calculate it as:

TEX→Y = H(Yt|Yt−1:t−K)−H(Yt|Yt−1:t−K , Xt−1:t−K)

where X and Y are the source and target time series. In
our specific case, X corresponds to information about the
robot projections (when did the robot project), whereas Y
corresponds to observations of the human behavior (when
did the human pick an object). H indicates the Shannon
entropy while K is a history length or past observations of
the source time series. For best practices on how to set an
optimal value of K we refer the reader to [41]. In this case,
we set the parameter to the average time window between
two human pick events, i.e., K = 9. For small sample sizes,
the transfer entropy estimates are known to be biased [42].
To correct for bias, we use a specific variant of TE called
Effective Transfer Entropy (T̂E) [42]:

T̂EX→Y = TEX→Y − 1

Z

Z∑
1

TEX′→Y

where Z = 100 as proposed in [41] and X
′

is the shuffled
source time series. TE can be calculated in a data-driven
fashion, i.e., by performing an experiment and collecting
data about the timing of when certain visual signals were
projected as well as data about when the human performed
a certain action (e.g. a pick or lifting action).

IV. EXPERIMENTS AND RESULTS

To compare the efficiency and impact of different visual
cues, an Institutional Review Board (IRB)1-approved human

1This study was approved by Arizona State University
(#STUDY00016445)

subject study was conducted with 22 subjects between the
ages of 18-28. All participants voluntarily agreed to partic-
ipate in the experiment, which was advertised as a sorting
game with a robot in a flyer. They were not given any form
of compensation for their participation. Additionally, partic-
ipants were not provided with any information regarding the
technical aspects or analysis of the experiment, except for
the logistics of how the experiment would be conducted.
Participants were asked to engage in the cube sorting task
described in Section III-A. Throughout the task, the human-
robot team has to sort all cubes simultaneously. Hence, the
coordination of actions is critical for safety and efficiency.
Since the study is conducted in a within-subjects (or repeated
measures) manner, the order in which the four modes were
introduced to each participant was randomized, making sure
any potential bias or influence due to familiarity with the task
can be minimized, allowing for a more accurate assessment
of the effects of each mode on task execution. In addition,
the robot speed was set to variable safe speeds sampled from
a Gaussian distribution with µ = 0.44, σ = 0.35 (m/s).

An overall underlying question in our experiments is
whether the modes introduced above for visual signaling
provide different and distinct degrees of improvement in the
specific human-robot collaboration task discussed here. More
specifically, the following hypotheses are investigated in this
experiment:

• H1: At least one projection mode enhances task effi-
ciency compared to the No-projection mode.

• H2: Cognitive load indices are substantially lower in
projection modes compared to the No-projection mode.

To provide evidence for or against the above hypothe-
ses, we combined both subjective and objective analyses.
Participants were asked to fill in the NASA-TLX (Task
Load Index) questionnaire [43] after experimenting with
each mode, which comprises six sub-scales (Mental Demand,
Physical Demand, Temporal Demand, Performance, Effort,
and Frustration) rated on a 0-20-point scale. However, for
visualization purposes these scores were normalized between
0-100. To evaluate data distribution, subjective and objective
measures were analyzed with the Friedman test, as described
in [44]. In particular, the Friedman test was used to determine
if there were any significant differences in the distribution
of data across the four modes. Subsequently, a Wilcoxon
signed rank test, as described in [45], was conducted to
identify any statistically significant differences between the
four modes. The estimated p values were adjusted with a
Bonferroni correction to prevent Type-I error. These analyses
are discussed in detail respectively in Sec. IV-A and Sec. IV-
B.

A. Hypothesis 1: Task Efficiency

To investigate task efficiency, we analyze the relative finish
time of the robot with respect to the human interaction
partner across all users and modes. Relative finish time was
used to gauge human-robot collaboration effectiveness. This
decision was influenced by its capability to account for vary-
ing task conditions like robot speed fluctuations and visual



TABLE I: Results on objective (Relative Finish Time) and subjective (NASA-TLX) measures using Wilcoxon signed rank
test on pairs of proposed modes as their p value. Here, the (+) and (-) notation results from whether the difference between
the mean values of the compared modes (e.g. for Du vs St difference is calculated as µ(Du)-µ(St) for objective or subjective
measures) is positive or negative. [Du = Dual, St = Static, Dy = Dynamic and No = No-Projection], [Statistically Significant,
Not Statistically Significant]

Objective Measure (p value) Subjective Measures (p value)
Relative Finish Time Mental Demand Physical Demand Temporal Demand Performance Effort Frustration

Du vs St (+) 0.1907 (-) 0.0062 (-) 0.4380 (-) 0.0721 (-) 0.1154 (-) 0.2314 (-) 0.1157
Du vs Dy (+) 0.2760 (-) 0.6163 (-) 0.4669 (-) 0.1441 (-) 0.3740 (-) 0.3232 (-) 0.2467
Du vs No (-) 0.0101 (-) 0.0007 (-) 0.1350 (-) 0.0039 (-) 0.1081 (-) 0.0135 (-) 0.0191
St vs Dy (+) 0.4120 (+) 0.3591 (+) 0.4577 (+) 0.5701 (+) 0.8885 (+) 0.4308 (+) 0.6182
St vs No (-) 0.0481 (-) 0.0551 (-) 0.3104 (-) 0.3464 (-) 0.3130 (-) 0.3307 (-) 0.0770
Dy vs No (+) 0.2029 (-) 0.0754 (-) 0.3217 (-) 0.2044 (-) 0.9629 (-) 0.0104 (-) 0.0254

signal changes. It allowed to quantitatively determine which
visual signals significantly enhanced human task efficiency
in the collaborative scenario. We calculate the relative finish
time ∆t = (tr − th) where tr is the robot finish time,
and th is the human finish time. A positive value for ∆t
indicates that the participant finished the sorting task before
the robot. A negative value of ∆t indicates that the human
was slower than the robot at sorting. Fig. 4 shows the
distributions of relative finish times across all modes, and
after passing the Friedman test (p < 0.05) over all four modes,
the corresponding p values of paired Wilcoxon signed ranked
tests with regards to ∆t were calculated and shown in Table I.
Based on the results presented in Fig. 4, it can be observed
that the mean ∆t is higher for the Dual mode (−1.2 sec.)
when compared to the No-projection mode ( −7.1 sec.). This
result has been statistically validated in the significance test
presented in Table I (p < 0.05). Conversely, the difference
in ∆t between the Static and Dynamic modes was found to
be insignificant (p > 0.05), despite the mean value of ∆t
being higher in the Static mode than in the Dynamic mode.
Additionally, the Static mode exhibited a significantly faster
∆t on average (56 %) compared to the No-projection mode
(p < 0.05).

These findings support hypothesis H1: both the Static and
Dual modes show a significant difference when compared
to the No-projection mode. Significant improvements in task
efficiency can be observed – especially in the case of the
Dual mode. Compared to that, the Dynamic mode shows no
significant difference from the No-projection mode.

B. Hypothesis 2: Cognitive Load
To address the second hypothesis, we focus on the sub-

jective feedback provided by users in the form of NASA
TLX scores. Fig. 5 shows a summary of mean scores across
all modes and workload indices (lower values correspond to
better subjective responses). Looking at Fig. 5, we notice
that all projection modes consistently produce better scores
when compared to the No-projection mode. The Dual mode
(combining visual cues) substantially decreases all indices,
e.g., frustration is reduced by 48%, the mental demand is
reduced by 37% and effort sees a 39% reduction compared to
No-projection mode. Furthermore, all cognitive load indices
across all four modes show significant differences in the
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Fig. 4: Histogram of ∆t between robot vs human finish
times. A positive ∆t indicates that the subject finished earlier
than the robot. In other words, the efficiency was higher.
From this figure, there is an explicit lean toward the right in
Dual mode, indicating a higher efficiency than other modes.

subjective score as verified by the Friedman test (p < 0.05).
Table I provides additional details regarding the pairwise
significance of the four modes across six different cognitive
load indices. With regards to Mental Demand, we find
that the Dual mode results in significantly better scores
(highlighted in green) when compared to the Static projection
and No-projection modes (p < 0.05). However, when looking
at the difference between the mean values of compared
modes, we note that both the Dual and Dynamic modes
performed better than the Static and No-projection modes, as
indicated in Table I. Interestingly, the Dynamic mode showed
better scores than the Static mode. Contrary to what we
observed for relative finish times in Sec. IV-A, the Dynamic
mode seems to provide marginal improvements in reducing
cognitive load.

On the other hand, cognitive load indices such as Phys-
ical Demand and Performance did not see any statistically
significant change in scores (p > 0.05). However, given that
the sorting task remained the same across all four modes,
with the only variation being the information feedback in
the form of visual signals to human subjects, it is reasonable



to assume that their Performance and Physical Demand
would remain similar across all four modes. Regarding Effort
and Frustration, we find that both the Dynamic and Dual
modes have statistically significant scores (highlighted in
green) when compared to the No-projection mode (p < 0.05).
Furthermore, although the Static mode did not demonstrate
a significant improvement in terms of frustration and effort
when compared to the No-projection mode, the differences
in their mean scores indicate that human subjects still pre-
ferred the Static mode over the No-projection mode. Finally,
Temporal Demand shows that Dual mode has a statistically
significant (lower) score when compared to No-projection
mode, which means that human subjects were not hurried or
rushed by the robot’s actions and were able to finish tasks
with ease. Nonetheless, the Dual mode is again slightly better
than the Static mode, i.e., differences in mean and close
to significant p value in the first row of Temporal Demand
column in Table I.

In summary, our hypothesis H2 is partially supported
by the evidence: both the Dual and Dynamic modes see
significant or close to significant reductions in load indices
with respect to Mental Demand, Temporal Load, Effort, and
Frustration. With regard to these cognitive load indices, the
Dynamic mode marginally outperforms the Static mode.

Fig. 5: Visualization of all subjective mental workload in-
dices across all the modes.

C. Transfer Entropy Analysis

The insights and conclusions drawn above are based
on objective metrics (relative finish time) and subjective
human feedback (cognitive load indices). In this section,
we investigate if similar insights can be drawn without any
insight into the task, i.e., purely from the motion data of both
humans and the robot.

More specifically, we use a (task-agnostic) information-
theoretic metric to analyze recorded data during experiments
and evaluate whether the findings corroborate the results
observed in Sec. IV-A and Sec. IV-B. We conducted a
posthoc analysis using Transfer Entropy [39], [42] and videos

collected during the experiment. We manually annotated time
stamps in which one of the following events/actions occur:
human pick (hp), robot stop (rs), virtual robot stop (vs), and
Static goal (sg). Events (hp) indicate timestamps at which
the human picked a cube. Similarly, (rs) indicates timestamps
wherein the real robot stops moving to pick up an object.
Events (vs) indicate timestamps in which the virtual robot
stopped moving, while the event (sg) shows the time stamp
at which the Static goal was projected. These four actions
result in four separate time series τa with binary values of
0 or 1, depending on whether the respective action occurred
or not. For Static and No-projection mode, (vs) will be a
time series of zero values. We define each participant as Pn

where n ∈ {1, 2, ...., N}. For each participant, we define
time series for four actions (a) per mode:

τa(m) = [v1, v2, ..., vT ] where a ∈ {hp, rs, vs, sg},

with m ∈ {No-Projection,Dynamic,Static,Dual} and T
being the number of time steps. The variables v1, v2, ..., vt
are binary variables indicating whether the action a occurs
at the current timestamp (t).

TABLE II: Average Effective Transfer Entropy Across Dif-
ferent Modes (m) for annotated time series.

No Proj. Static Dynamic Dual

T̂E[vs]→[hp] 0.0 0.0 0.00864755 0.0148222
T̂E[sg]→[hp] 0.0 0.01296397 0.0 0.00418501
T̂E[rs]→[hp] 0.00968205 0.00919081 0.00484169 0.01176273

Based on the above time series we compute the effective
Transfer Entropy for different modes as seen in Table II.
Here, T̂E[vs]→[hp] signifies the information transfer between
the virtual robot stopping and the human picking an object,
since this visual cue is only used in the Dynamic and Dual
modes, we only observe an information transfer in either
one of these modes. T̂E[sg]→[hp] shows information transfer
between the static goal (signal) and human picking action
and final T̂E[rs]→[hp] shows information transfer between
physical robot and human picking. The T̂E2 of about 0.0086
for the virtual robot in the Dynamic mode is higher than the
real robot in the No-projection mode with T̂E = 0.0091.
Moreover, an even higher value of 0.0129 can be achieved
when projecting a static signal. The highest overall value for
the effective Transfer Entropy of 0.0148 is observed in the
Dual mode – which again emphasizes the power of projecting
multiple visual cues in conjunction.

The T̂E between the real robot and human picks never
exceeds 0.011, i.e., robot actions influence human behavior
to a lesser degree than the visual signals. Generally, it can
be noticed that the information transfer is highest between
visual signals and human actions. The overall trend identified
via Transfer Entropy mirrors the similar trends found in
the earlier analysis of relative finish times and subjective

2General notation for Effective Transfer Entropy. Includes all the different
combinations of source and target time series show in Table II.



mental workload assessment: the Dual mode shows the best
performance, followed by the individual projection modes
(Static and Dynamic), and finally, the No-projection mode.

V. DISCUSSION AND LIMITATIONS

Contrary to previous assumptions, this paper found that
projecting combination of visual cues during human-robot
interactions significantly improves collaborative task perfor-
mance. Objective, subjective, and information-theoretic met-
rics all support this conclusion. Moreover, carefully design-
ing static and dynamic visual cues can enhance collaborative
tasks. Nevertheless, further research is necessary to explore
the boundaries of this finding. For instance, it remains to be
seen whether there is an upper bound to the effective design
and combination of these visual cues that, if exceeded, might
hamper collaborative task efficiency. One potential avenue
for future research is to investigate whether the visual signals
convey different aspects of the task. For the current study,
a possible rationalization about the design aspect of signals
is that the static signal communicates the robot’s intended
destination. In contrast, the dynamic signal conveys how the
robot will reach that location. Additionally, while the time
delay between virtual and real robot trajectories was constant
in this study, future investigations could explore the impact
of variable time delays on human-robot collaboration.

The results of our experiment showed a clear distinction
between Dual and No-projection mode. However, there was
no significant distinction between dynamic and static signals.
We suggest conducting a more careful investigation of the
experiment dimension to better understand the extent of the
role of visual signals in human-robot interactions. Specifi-
cally, further research should focus on studying the type and
appearance of visual signals to confirm their vital role in
affecting how human subjects interact with the robot system.

Finally, our investigation on Transfer Entropy indicated
that information-theoretic measures are able to provide early
indications regarding the amount of information transferred
by a visual cue to human users. Nevertheless, more in-depth
studies are required to confirm the effectiveness of Transfer
Entropy on a broader setup in the future.
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