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Abstract— This work presents a novel method for point
registration in 3D space. The proposed algorithm utilizes
transformation-invariant geometry information to estimate the
pose of objects based on correspondences between points in two
sets. Conventional methods use geometry descriptors to find
these correspondences, which can result in a large number of
outliers. Most existing algorithms are error-prone when outliers
are present. Instead of formulating point registration as a non-
convex optimization problem, we propose an intuitive method
that filters out spurious correspondences. This is achieved
by evaluating three different geometry-based transformation-
invariant descriptors for outlier removal. We construct fully
connected graphs with the proposed descriptors on corre-
spondences, and convert the outlier removal problem into a
subgraph isomorphism problem that is solved using a binary
clustering approach. The resulting inlier clustering is used to
estimate the transformation between the two point sets. The
effectiveness of the proposed approach is evaluated on standard
3D data and the 3DMatch scan matching dataset, and compared
against existing state-of-the-art methods. Results show that our
method effectively reduces outliers and performs similarly to
these methods.

I. INTRODUCTION

Point cloud registration is a core operation in computer
vision and robotics that computes the pose transformation
between two-point sets. It has applications in MRI/CAT
scan alignment [1], robot manipulation [2] (Fig. 1), ob-
ject recognition and localization, 3D reconstruction, etc.
A standard approach to point registration without assumed
correspondence is based on the iterative closest point (ICP)
algorithm [3], [4] by alternatively finding correspondence
and solving correspondence-based problems. However, the
success of ICP relies heavily on a good initial alignment.
The correspondence-based approach is another prevalent
paradigm approach. It estimates the transformation 𝑻 be-
tween two point sets by giving the putative correspondences.
The transformation 𝑻 can be analytically solved [5], [6],
[7], [8] if the putative correspondences are all correct. In
practice, most correspondence point sets contain a large frac-
tion of outliers. Even state-of-the-art local descriptors such
as FPFH [9] and some deep learning-based methods [10]
have difficulties in producing acceptable outlier rates in
real-world problems and inevitably produce mismatches. As
a result, this leads to a poor estimation of these solvers.
RANSAC [11] is probably the most widely used algorithm
for estimating transformations assuming the presence of
outliers. The aim of RANSAC is to maximize the Consensus
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Fig. 1: The picture on the left shows the scanned scenes, and
the one on the right illustrates an excerpt of bunny alignment
and outlier removal.

set by randomly sampling the smallest subset and estimating
the transformations using least squares. The transform with
maximum consensus is returned as the solution. However,
the sampling phase of RANSAC would be inefficient given
a large fraction of outliers. The global method [12], [13],
[14] is an alternative algorithm that guarantees robustness.
Branch-and-bound (B&B) algorithms are used to optimize
the parameters of the objective function. However, a general
weakness of global algorithms is their high computational
cost, especially on data with large size 𝑁 and high outliers.

Contribution: In our previous work, we used the rotation-
invariant descriptor [15] to address the object classifica-
tion problem. In this work, we further explore the use
of geometry-based transformation-invariant descriptors, in-
cluding the Triangle Angle Invariant (TAnI), Triangle Dot
Product Invariant (TDoI), Triangle Area Invariant (TArI),
and Triangle Dot Product Invariant (TDoI), for robust point
cloud registration by removing outliers. We construct two
fully connected graphs using the proposed descriptors on
the putative correspondences and convert the outlier removal
into the subgraph isomorphism problem, aiming to find two
subgraphs from these two fully connected graphs that have
the same topology (isomorphism). The subgraph isomor-
phism problem is proven to be NP-complete based on the
reduction of the clique problem. In this work, we present
a novel approach to reformulate the subgraph matching
problem as a clustering approach to enhance the perfor-
mance of outlier removal, where one cluster is identified as
outliers and the other is denoted as inliers. The remaining
two subgraphs contain only inliers, which exhibit the same
topology and can be transformed into each other with the
estimated transformation matrix. Based on our mathematical



proofs and experimental observations, the proposed geom-
etry transformation invariant descriptor effectively removes
spurious correspondences from , resulting in a subset of
true inliers, denoted as ′

. Some previous works, such as
GORE [16], formulate the outlier removal as an optimization
problem (maximization Consensus set). However, our pro-
posed transformation invariant descriptor uses the geometry
information for outlier removal without any additional effort,
as the geometry information is inherently available from
the point cloud. We present our technique as an efficient
preprocessing step for robust point cloud registration. The
remaining correspondences are further fed into the trans-
formation estimation process. There are many off-the-shelf
estimators that can be used to achieve this goal. We evaluated
the presented transformation-invariant registration algorithm
on multiple datasets, including Standard 3D data [17] and
3DMatchData [18]. Extensive experiments demonstrate that
the presented approach matches or exceeds the accuracy of
state-of-the-art robust registration pipelines.

II. RELATED WORK

6D pose estimation is a well-established and extensively
studied topic in computer vision, and point registration is a
common technique used to determine the spatial relationship
between two sets of 3D points. Correspondence-based [13],
[19], [20] and correspondence-free [21], [22], [23], [24] are
two popular paradigms for registering 3D point clouds. In
this work, we mainly focus on the correspondence-based
approach.

The correspondence-based approach involves pre-
matching the two point clouds using feature descriptors [25],
[9] to generate putative correspondences, followed by
applying an estimator to compute the transformation.
Closed-form solutions [5], [6], [7], [8] exist for finding
the optimal solution when the correspondences are correct
(outlier-free) and the points are affected by isotropic
zero-mean Gaussian noise. However, even state-of-the-art
feature descriptors cannot guarantee all correct matches.
Local geometrical descriptors such as the Fast Point Feature
Histogram (FPFH) [9] induce a large fraction of outliers if
the point clouds are noisy or have different distributions.
Even advanced deep learning-based feature descriptors
such as 3DSmoothNet [10] cannot guarantee sufficient
correspondences and are not generalizable to new datasets.
Moreover, outliers are common in real-world applications,
making robust registration methods essential.

Random sample consensus (RANSAC) is a popular ap-
proach against outliers, widely used in vision and robotics
applications. RANSAC is efficient and can be formulated
as an optimization problem by maximizing the consensus
set. However, as the outlier ratio increases, RANSAC’s
convergence becomes slow, and its accuracy decreases since
it is challenging to sample the true inliers (good consensus
set). Global methods are a variant of RANSAC for improving
robustness. Yang et al. proposed Globally Optimal ICP
(GO-ICP) [13], which uses a branch-and-bound framework
to improve robustness, but the runtime of B&B increases

exponentially with the input size, making it unrealistic for
real-world applications. Zhou et al. proposed Fast Global
Registration (FGR) [20], which significantly improves GO-
ICP by using a scaled Geman-McClure estimator to describe
the error function and leveraging graduated non-convexity
(GNC) to solve the resulting non-convex optimization. How-
ever, FGR exhibits poor performance when the outlier ratio
increases. Yang et al. proposed the Teaser++ algorithm [19],
which reformulates robust registration as a Truncated Least
Squares Registration problem (TLS) and applies GNC to
solve the non-convex optimization problem. Teaser++ is
highly robust to a large fraction of outliers. However, the
practical maximum clique algorithm [26] used in Teaser++
is not robust when evaluated with real datasets. Parra et al.
proposed Guaranteed Outlier Removal (GORE)[16] as a data
preprocessing step for point registration by directly removing
outliers and resulting in a high true inliers consensus set.
GORE uses the global algorithm (B&B) to tackle the prob-
lem. Parra et al. [26] also proposed a practical maximum
clique (PMC) algorithm to find pairwise-consistent corre-
spondences in 3D registration. GORE and PMC are similar
in spirit to our proposed approach, which solves the problem
with a global optimization algorithm. We propose a new
approach for robust 6D pose estimation based on geometry-
based transformation invariant descriptors. However, instead
of directly removing outliers as in GORE, we use the
putative correspondences to build transformation invariant
descriptors and then cluster them to achieve outlier removal.
This approach enables us to take advantage of any estimator
for inferring transformation as the backend.

III. PROBLEM FORMULATION

The correspondence-based point registration problem can
be formulated as a nonlinear least squares problem, which
is given by the following equation:

min
𝑹∈SO(3),𝒕∈ℝ3

𝑁
∑

𝑖=1

‖

‖

𝒑𝑖 −𝑹𝒒𝑖 − 𝑡‖
‖

2 , (1)

Here, (𝒑𝑖, 𝒒𝑖), ; 𝑖 = 1,… , 𝑁 are given putative correspon-
dences, and 𝝐𝑖 is a zero-mean Gaussian noise with isotropic
covariance 𝜎2𝑖 𝐈3. In the outlier-free case, where the puta-
tive correspondences are correct, equation (1) has a closed
form [8] and the estimation of rotation and translation can
be decoupled. However, in practical applications, the outlier-
free case is non-existent as putative correspondences can be
incorrect due to erroneous keypoint matching (e.g., FPFH
matching [9] or other feature-based matching approaches).
Such mismatches result in a large fraction of correspon-
dences being outliers. The nonlinear least squares problem
is not robust to outliers and a single outlier can signifi-
cantly affect the estimation. Therefore, this work proposes to
utilize geometry-based transformation invariant descriptors
to remove outliers. Mathematically, this approach aims to
maximize the cardinality of true inliers from the putative
correspondences.



IV. ALGORITHM

The putative correspondences (𝒑𝑖, 𝒒𝑖) obey the following
generative model:

𝒒𝑖 = 𝑹𝒑𝑖 + 𝒕 + 𝒐𝑖 + 𝝐𝑖 , (2)

where 𝒐𝑖 is zero if (𝒒𝑖,𝒑𝑖) is an inlier, otherwise 𝒐𝑖 is
arbitrary (outlier). The noise 𝝐𝑖 is assumed to be bounded
with |𝝐𝑖| ≤ 𝛿. The relative position between two correspond-
ing pairs can be formulated as

𝒒𝑗 − 𝒒𝑖 = 𝑹(𝒑𝑗 − 𝒑𝑖) + 𝒐̃𝑖𝑗 + 𝝐𝑖𝑗 , (3)

with 𝒐̃𝑖𝑗 = 𝒐𝑗 − 𝒐𝑖 and 𝝐𝑖𝑗 = 𝝐𝑗 − 𝝐𝑖. We can further
define 𝒒̂𝑖𝑗 = 𝒒𝑗−𝒒𝑖 and 𝒑̂𝑖𝑗 = 𝒑𝑗−𝒑𝑖. The relative location of
pairs (𝒒̂𝑖𝑗 , 𝒑̂𝑖𝑗) depends only on the rotation but its distance
is invariant to 𝑹 and 𝒕, which can be described as

‖

‖

‖

𝒒̂𝑖𝑗
‖

‖

‖

= ‖

‖

‖

𝑹𝒑̂𝑖𝑗 + 𝒐̃𝑖𝑗 + 𝝐𝑖𝑗
‖

‖

‖

. (4)

Note that 𝒐̃𝑖𝑗 = 0 for the case, where the corresponding
pair (𝒒𝑖,𝒑𝑖) is an inlier. The eqn. (4) holds the following in-
equality by applying ‖

‖

‖

𝝐𝑖𝑗
‖

‖

‖

≤ 𝛿𝑖𝑗 and the triangle inequality:

‖

‖

‖

𝑹𝒑̂𝑖𝑗
‖

‖

‖

− 𝛿𝑖𝑗 ≤
‖

‖

‖

𝑹𝒑̂𝑖𝑗 + 𝝐𝑖𝑗
‖

‖

‖

≤ ‖

‖

‖

𝑹𝒑̂𝑖𝑗
‖

‖

‖

+ 𝛿𝑖𝑗 , (5)

hence we can rewrite (4) as
‖

‖

‖

𝒒̂𝑖𝑗
‖

‖

‖

= ‖

‖

‖

𝑹𝒑̂𝑖𝑗
‖

‖

‖

+ 𝑜̃𝑖𝑗 + 𝒄𝑖𝑗 =
‖

‖

‖

𝒑̂𝑖𝑗
‖

‖

‖

+ 𝑜̃𝑖𝑗 + 𝒄𝑖𝑗 , (6)

with |

|

|

𝑐𝑖𝑗
|

|

|

≤ 𝛿𝑖𝑗 , and 𝑜̃𝑖𝑗 = 0 if both 𝑖 and 𝑗 are inliers
or is an arbitrary scalar otherwise. The equation (6) shows
that the geometry information between corresponding pairs
can be exploited for the outlier removal if some specific
conditions are fulfilled. However, the standalone information
of distance is too sparse for removal and can be sensitive
to the predefined threshold value. In this work, we propose
three different geometry-based transformation invariant de-
scriptors, which implicitly contains the distance preservation
property and also other geometry invariant attribute.

A. Geometry-based Transformation-invariant Descriptors

We define the relative position between arbitrary triple
corresponding pairs with respect to (𝒒𝑖,𝒑𝑖) as Ω𝑖𝑗𝑘 =
{(𝒒̂𝑖𝑗 , 𝒑̂𝑖𝑗), (𝒒̂𝑖𝑘, 𝒑̂𝑖𝑘)}.

1) Triangle Angle Invariance (TAnI): The dot product of
Ω𝑖𝑗𝑘 can be computed as

< 𝒒̂𝑖𝑗 , 𝒒̂𝑖𝑘 > =< 𝑹𝒑̂𝑖𝑗 + 𝒐̃𝑖𝑗 + 𝝐𝑖𝑗 ,𝑹𝒑̂𝑖𝑘 + 𝒐̃𝑖𝑘 + 𝝐𝑖𝑘 >
= 𝒑̂𝑇𝑖𝑗 𝒑̂𝑖𝑘 + 𝒑̂𝑇𝑖𝑗𝑹

𝑇 (𝒐̃𝑖𝑘 + 𝝐𝑖𝑘) + 𝒑̂𝑇𝑖𝑘𝑹
𝑇 (𝒐̃𝑖𝑗 + 𝝐𝑖𝑗)

+ (𝒐̃𝑖𝑗 + 𝝐𝑖𝑗)𝑇 (𝒐̃𝑖𝑘 + 𝝐𝑖𝑘) (7)

If corresponding pair (𝒒ℎ,𝒑ℎ), ℎ ∈ {𝑖, 𝑗, 𝑘} are inliers, then
𝒐̃𝑖𝑗 , 𝒐̃𝑖𝑘 are equal to zero, the eqn. (7) can be simplified as

𝒒̂𝑇𝑖𝑗 𝒒̂𝑖𝑘 = 𝒑̂𝑇𝑖𝑗 𝒑̂𝑖𝑘 + 𝒑̂𝑇𝑖𝑗𝑹
𝑇 𝝐𝑖𝑘 + 𝒑̂𝑇𝑖𝑘𝑹

𝑇 𝝐𝑖𝑗 + 𝝐𝑇𝑖𝑗𝝐𝑖𝑘 (8)

We normalized the point cloud to [0, 1]3. Since the noise |𝝐𝑖|
is bounded, it can be confirmed that ‖

‖

‖

𝒑̂𝑇𝑖𝑘𝑹
𝑇 𝝐𝑖𝑗

‖

‖

‖

is also
bounded. Therefore, it leads to

𝒒̂𝑇𝑖𝑗 𝒒̂𝑖𝑘 = 𝒑̂𝑇𝑖𝑗 𝒑̂𝑖𝑘 + Δ𝑖 , (9)

where Δ𝑖 is bounded as well. Specifically, when 𝝐 = 0 (noise-
free), it can be confirmed that the angle between relative
position of triple corresponding pairs is invariant regarding
rotation and translation. The angle can be computed as

𝜃𝑝𝑖𝑗𝑘 = arccos
( 𝒑̂𝑇𝑖𝑗 𝒑̂𝑖𝑘
‖𝒑̂𝑖𝑗‖‖𝒑̂𝑖𝑘‖

)

, and 𝜃𝑞𝑖𝑗𝑘 = arccos
( 𝒒̂𝑇𝑖𝑗 𝒒̂𝑖𝑘
‖𝒒̂𝑖𝑗‖‖𝒒̂𝑖𝑘‖

)

.
The operation of arccos and ‖.‖ requires an amount of
computational resource.

2) Triangle Dot product Invariance (TDoI): To reduce
the computational complexity of TAnI, we introduce another
geometry based descriptor which requires only dot product.
The dot product preserves the triple corresponding pair
triangle geometry information, which is utilized to search
for the Consensus set. The descriptor of TDoI is defined as

Γ𝑞𝑖𝑗𝑘 = 𝒒̂𝑇𝑖𝑗 𝒒̂𝑖𝑘 + 𝒒̂𝑇𝑗𝑖𝒒̂𝑗𝑘 + 𝒒̂𝑇𝑘𝑗 𝒒̂𝑘𝑖 (10a)

Γ𝑝𝑖𝑗𝑘 = 𝒑̂𝑇𝑖𝑗 𝒑̂𝑖𝑘 + 𝒑̂𝑇𝑗𝑖𝒑̂𝑗𝑘 + 𝒑̂𝑇𝑘𝑗 𝒑̂𝑘𝑖 . (10b)

The descriptor TDoI is much more efficient than TAnI. But
it can be sensible to noisy dataset. We further study the area
of triangle, which is more robust than the TAnI and TDoI in
the experiments, since it contains the information of angle,
and distance information.

3) Triangle Area Invariance (TArI): The area of trian-
gle built on the triple corresponding pairs, denoted as Δ𝑝𝑖
and Δ𝑞𝑖 , respectively is computed as

Δ𝑞𝑖𝑗𝑘 =
‖

‖

‖

𝒒̂𝑖𝑗 × 𝒒̂𝑖𝑘
‖

‖

‖

2
, Δ𝑝𝑖𝑗𝑘 =

‖

‖

‖

𝒑̂𝑖𝑗 × 𝒑̂𝑖𝑘
‖

‖

‖

2
, (11)

since 𝒒̂𝑖𝑘 and 𝒑̂𝑖𝑘 are translation invariant. It is straightfor-
ward to prove that the triangle area is preserved if triple
corresponding pairs are inliers. Mathematically speaking, in
the case of inliers, the following equation is satisfied:

𝒒̂𝑖𝑗 × 𝒒̂𝑖𝑘 = (𝑹𝒑̂𝑖𝑗 + 𝜖𝑖+1) × (𝑹𝒑̂𝑖𝑘 + 𝜖𝑖) (12)
‖

‖

‖

𝒒̂𝑖𝑗 × 𝒒̂𝑖𝑘
‖

‖

‖

= ‖

‖

‖

𝑹𝒑̂𝑖𝑗 + 𝜖𝑖+1
‖

‖

‖

‖

‖

‖

𝑹𝒑̂𝑖𝑗 + 𝜖𝑖+1
‖

‖

‖

sin(𝜃𝑞𝑖 )

= ‖

‖

‖

𝒑̂𝑖𝑗
‖

‖

‖

‖

‖

𝒑̂𝑖𝑘‖‖ sin(𝜃𝑞𝑖 ), if|𝜖𝑖| ≤ 𝛿 . (13)

As proven from the previous section, the angle is preserved
if these triple corresponding pairs are inliers, then

‖

‖

‖

𝒒̂𝑖𝑗 × 𝒒̂𝑖𝑘
‖

‖

‖

= ‖

‖

‖

𝒑̂𝑖𝑗
‖

‖

‖

‖

‖

𝒑̂𝑖𝑘‖‖ sin(𝜃𝑞𝑖 )

= ‖

‖

‖

𝒑̂𝑖𝑗
‖

‖

‖

‖

‖

𝒑̂𝑖𝑘‖‖ sin(𝜃𝑝𝑖 ) =
‖

‖

‖

𝒑̂𝑖𝑗 × 𝒑̂𝑖𝑘
‖

‖

‖

. (14)

Therefore, the triangle area is preserved (Δ𝑞𝑖𝑗𝑘 ≈ Δ𝑝𝑖𝑗𝑘 ) in
case of |𝜖𝑖| ≤ 𝛿 and three corresponding pairs are denoted
as inlier pairs. It is known that the cross product requires a
lot of computing resources. In the experiment section, we
will discuss the efficiency of these three geometry based
transformation descriptors in terms of time in Table III.

B. Robust registration problem formulation
We can formulate the robust registration problem as search

for a Consensus set by satisfying the geometry-based trans-
formation invariance conditions:

Card

(

Fcls
(

Set
{

|𝑁|

∑

𝑖
𝟙
(

pMetric(𝛽𝑖𝑗𝑘), 𝑐2
)

,∀𝑖 ≠ 𝑗 ≠ 𝑘
}

)

)

,

(15)



where |𝑁| is the number of corresponding pairs, 𝟙 is the
indicator function, and returns one if the pMertic value is
smaller than the predefined threshold value. For simplicity,
we define 𝐹1 = 𝟙

(

pMetric(𝛽𝑖𝑗𝑘), 𝑐2
)

. We sum the indicator
results at index 𝑖 and add the sum result into a set. The
function Fcls is used to decide if the corresponding pairs are
inliers, which will be discussed in detail in Section IV-C. For
simplification, we reformulate (15) as

Card
(

Fcls
(

Set
{

Fcount,𝑖,∀𝑖 ≠ 𝑗 ≠ 𝑘
}

))

, (16)

where Fcount,𝑖 =
∑

|𝑁|

𝑖 𝐹1. The variable of pMetric(𝛽𝑖𝑗𝑘)
is defined as the norm the triangle angle differ-

ence ‖

‖

‖

(𝜃𝑞𝑖𝑗𝑘 − 𝜃𝑝𝑖𝑗𝑘 )
‖

‖

‖

2
by using the TAnI, and the difference

of ‖

‖

‖

(Γ𝑞𝑖𝑗𝑘 − Γ𝑝𝑖𝑗𝑘 )
‖

‖

‖

2
with the TDoI. By applying the TArI,

this value becomes ‖

‖

‖

(Δ𝑞𝑖𝑗𝑘 − Δ𝑝𝑖𝑗𝑘 )
‖

‖

‖

2
.

1) Build Full Graph: In general, all corresponding pairs
can be described as a corresponding-pair full graph using
the Kronecker product ⊗. Let 𝐺 = (𝑉 ,𝐸), 𝐻 = (𝑉 ′, 𝐸′)
be graphs, find out a subgraph {𝐺0 = (𝑉0, 𝐸0) ∣ 𝑉0 ⊆
𝑉 ,𝐸0 ⊆ 𝐸 ∩ (𝑉0 × 𝑉0)} and {𝐻0 = (𝑉 ′

0 , 𝐸
′
0) ∣ 𝑉 ′

0 ⊆
𝑉 ′, 𝐸′

0 ⊆ 𝐸′ ∩ (𝑉 ′
0 × 𝑉 ′

0 )} such that 𝐺0 ≅ 𝐻0, which
means the 𝐺0 and 𝐻0 has the same topology. The proof
of subgraph isomorphism being NP-complete. The relative
position between two locations is denoted as the edge and
can be computed as 𝑸 = 𝑰 ⊗ 𝒑 − 𝒑⊗ 𝑰 , removing 𝑁 zero
rows, which contains the itself. To this end, we split the
𝑸 into a three-dimensional matrix as 𝑸 = [𝑸0⋯𝑸𝑵−𝟏] ∈
ℝ𝑁×(𝑁−1)×3, where 𝑸𝒊 =

[

𝒑𝑖 − 𝒑0, ⋯ , 𝒑𝑖 − 𝒑𝑁−1
]𝑇 .

2) The computational complexity: The pairwise metrics
function pMetric(⋅) defined in (16) is used to compute
the metric between each two relative position. The num-
ber of triple corresponding pairs |𝐶| is upper-bounded by
𝑁×(𝑁−1)×(𝑁−2)

2 .
3) Discussion the possibility of inlier corresponding pair:

In equation (16), the function 𝐹1 determines whether the
pair (𝒑𝑖, 𝒒𝑖) should be considered an inlier, by comparing its
corresponding metric value pMetric(𝛽𝑖𝑗𝑘) with a predefined
threshold value. Table I shows that if (𝑝𝑖, 𝑞𝑖) is an outlier,
then pMetric(𝛽𝑖𝑗𝑘) will always be greater than the threshold
value, resulting in a small value for Fcount,𝑖; ideally, this value
should be zero. On the other hand, if (𝒑𝑖, 𝒒𝑖) is an inlier, the
value of 𝐹1 will be one only if the other two corresponding
pairs are also inliers. As a result, Fcount,𝑖 will be a large
value 𝑛, as triangles can be formed with other inlier pairs.
For instance, if we have 𝑁 putative corresponding pairs with
an inlier ratio of 𝛿, then in the ideal case, if (𝒑𝑖, 𝒒𝑖) is an
inlier, 𝑛 should equal (𝛿𝑁−1)(𝛿𝑁−2)

2 , based on Table I. In the
end, the value of Fcount,𝑖 can be used to prune edges inside the
fully connected graphs 𝐺 and 𝐻 . The resulting subgraphs,
𝐺0 and 𝐻0, can be transformed into each other using the
estimated transformation.

C. Clustering for inliers and outliers

1) Limitations of using single threshold: The function
Fcount,𝑖 is a useful tool for classifying corresponding pairs

TABLE I: Case study to determine the value of 𝐹1 for the
corresponding pairs (𝒑𝑖, 𝒒𝑖), where T denotes that the pair is
an inlier, F denotes that it is an outlier, and * can represent
either a T or an F.

inlier/outlier 𝐹1

(𝒑𝑖, 𝒒𝑖), (𝒑𝑗 , 𝒒𝑗 ), (𝒑𝑘, 𝒒𝑘) TTT 1
(𝒑𝑖, 𝒒𝑖), (𝒑𝑗 , 𝒒𝑗 ), (𝒑𝑘, 𝒒𝑘) T*F 0
(𝒑𝑖, 𝒒𝑖), (𝒑𝑗 , 𝒒𝑗 ), (𝒑𝑘, 𝒒𝑘) TF* 0
(𝒑𝑖, 𝒒𝑖), (𝒑𝑗 , 𝒒𝑗 ), (𝒑𝑘, 𝒒𝑘) F** 0

as inliers or outliers. One intuitive approach is to consider a
pair an inlier if its Fcount,𝑖 value is greater than a predefined
hyper-parameter. However, this parameter can be difficult
to tune and may need to be adjusted for different dataset
distributions. To address this issue, we propose the use of
clustering techniques. The goal of consensus maximization
is to identify inliers and outliers, so we can interpret Fcls
as a means of clustering corresponding pairs into inlier and
outlier clusters, where the inlier clusters have a significantly
larger Fcount,𝑖 than the outlier clusters.

2) Clustering for the inliers and outliers: Instead of
directly optimizing the non-convex nonlinear problem (16),
we can treat it as a standard binary clustering problem, which
can be solved using state-of-the-art clustering approaches
such as K-means with two clusters. K-means is a popular
clustering algorithm that partitions a set of observations
(𝑥1, 𝑥2,⋯ , 𝑥𝑛), where 𝑥𝑖 ∈ ℝ𝑑 , into 𝑘 ∈ 𝑛 clusters, denoted
as 𝑆 = 𝑆0,⋯ , 𝑆𝑘, with the goal of minimizing the variance
within each cluster. In the context of clustering outliers
and inliers with 𝑘 = 2, each observation 𝑥𝑖 corresponds
to a single value of Fcount,𝑖 in the triple corresponding pair
containing the corresponding pair (𝒑𝑖, 𝒒𝑖), and has dimension
𝑑 = 1. We can classify the smaller cluster mean as the outlier.

D. Estimation rotation matrix

After the outlier removal, an estimator has been applied
to infer the transformation between two point clouds. For
further improving the robustness against the outlier, we
randomly sample a subset of the Card, which contains a
large fraction of the true inliers. In this work, we directly
used the work from Kabsch–Umeyama algorithm [5], [6],
[7], [8], which is a method for minimizing the root-mean-
square deviation (RMSD) of the point corresponding pairs
to find the optimal translation, rotation, and scaling, so that
two sets of points can be aligned. As mentioned before, any
estimator that can be applied to infer the transformation is
suitable for our approach. We also demonstrate in V-C that
our proposed transformation invariant descriptor can improve
the performance of the existing algorithm.

The set of corresponding pair is defined as  =
(

𝐩1,… ,𝐩𝑛
)

,𝒑𝑖 ∈ ℝ3,  =
(

𝐪1,… ,𝐪𝑛
)

, 𝒒𝑖 ∈ ℝ3. The
problem formulation is defined in (1). The translation 𝒕 is
computed with

𝒕 = 𝜇𝑝 −𝑹𝜇𝑞 , (17)



Algorithm 1 Geometry based transformation invariant Point
registration with clustering algorithm
Input: N putative corresponding pairs (𝒑𝑖, 𝒒𝑖), threshold 𝑐, 𝐻

1: Built fully connected corresponding pair Graph
2: Compute the 𝐹1 for each (𝒑𝑖, 𝒒𝑖), and Fcount,𝑖
3: Clustering the inliers/outliers with K-Means
4: for ℎ = 1 ∶ 𝐻 do
5: Randomly select a subset of inliers
6: Estimate the Rotation matrix, and translation vector
7: Compute the RMSE for the whole inlier sets
8: save the minimal RMSE, and its corresponding 𝑻op⋆

9: end for
10: return 𝑻op⋆

where 𝜇𝑝 and 𝜇𝑞 are centroids of point sets  and ,
respectively: 𝜇𝑝 = 1

𝑛
∑𝑛

𝑖=1 𝐩𝑖, 𝜇𝑞 = 1
𝑛
∑𝑛

𝑖=1 𝐪𝑖. Therefore
the rotation and translation can be decoupled, and the equa-
tion (1) can be reformulated as

𝐸2 = min
𝑁
∑

𝑖=0
((𝒑𝑖 − 𝜇𝑝) −𝑹(𝒒𝑖 − 𝜇𝑞))2 (18)

The equation (18) depends only on the rotation, and by
expanding this equation, we can have

𝐸2 = min
𝑁
∑

𝑖=0
(𝒑𝑖

𝑇𝒑𝑖 + 𝒒𝑖
𝑇𝒑𝑖 − 2𝑹𝒒𝑖𝒑𝑖

𝑇 ) (19)

with 𝒑𝑖 = (𝒑𝑖−𝜇𝑝) and 𝒒𝑖 = (𝒒𝑖−𝜇𝑞). Therefore, to minimize
𝐸2 is equivalent to maximize

𝐹 =
𝑁
∑

𝑖=0

(

𝑹𝒒𝑖𝒑𝑖
𝑇
)

= trace

( 𝑁
∑

𝑖=0

(

𝑹𝒒𝑖𝒑𝑖
𝑇
)

)

= trace (𝑹𝑨)

where 𝑨 =
∑𝑁

𝑖=0

(

𝒒𝑖𝒑𝑖
𝑇
)

. This is known as rotation search
in computer vision or Wahba’s problem in aerospace [27].

Lemma 1: For any positive definitive matrix 𝑨 and any
orthonal matrix 𝐵, the following constraint is satisfied

trace(𝑨) ≥ trace(𝑩𝑨) (20)
Lemma 2: Let 𝐑𝐷×𝐷 be an unknown orthonomal matrix

and 𝐀𝐷×𝐷 be a known real square matrix. Let 𝐔𝑆𝑆𝐕𝑇 be
a Singular Value Decomposition (SVD) of 𝐀, where 𝐔𝐔𝑇 =
𝐕𝐕𝑇 = 𝐈 and 𝑆𝑆 = d

(

𝑠𝑖
)

with 𝑠1 ≥ 𝑠2 ≥,… ,≥ 𝑠𝐷 ≥ 0.
Then the optimal rotation matrix 𝐑 that maximizes tr (𝐑𝑨)
is 𝐑 = 𝐕𝐂𝐔𝑇 , where 𝐂 = d

(

1, 1,… , 1, det
(

𝐕𝐔𝑇 ))

The translation vector 𝐭 is updated using (17). We sum-
marize the algorithm in 1. In general, the corresponding pair
is given or computed by using the FPFH matching.

V. EXPERIMENTS

We evaluated the proposed approach against other state-
of-the-art registration algorithms (FGR [20], RANSAC-1k
(implemented in Open3D [28]), TEASER++ [19]) on a Stan-
ford 3D Scanning Repository [17] and 3DMatch Dataset [18]
regarding rotation error, translation error, and time. The algo-
rithm presented in this paper is labeled as TAnIPR, TDoIPR,
and TArIPR, respectively. Three different experiments were
conducted. The tested point sets were downsampled for

TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(a)

TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(b)

Fig. 2: Benchmark results for all algorithms on the Bunny
dataset with three levels of Gaussian noise by ranging the
outlier from 10%-90%. The corresponding point sets are
founded using the FPFH descriptors.

TABLE II: The benchmark results for the proposed invariant
descriptors on three point sets were evaluated with respect to
the confusion matrix metrics: TPR (true positive rate), FPR
(false positive rate), FNR (false negative rate), TNR (true
negative rate), accuracy, F1-score, and time.

TPR FPR FNR TNR Acc F1score time

TAnIPR 0.9613 0.0038 0.0387 0.9963 0.9757 0.9645 0.2901
TDoIPR 0.9944 0.0156 0.0056 0.9844 0.9843 0.9627 0.1681
TArIPR 0.9996 0.0058 0.0004 0.9942 0.9948 0.9845 0.5993

every algorithm into small-scale numbers (1000–5000) using
voxel filtering to reduce the computational burden. Besides,
we limited the number of putative corresponding pairs to
𝑁 = 1000. All evaluations were performed on a laptop
with a 2.6 GHz Intel Core i7-6700HQ and 16 GB of RAM.
Note that in practical settings, ICP often fails to compute
the correct transformation due to the fact that the initial
guess is not in the basin of convergence of the optimal
solution. Additionally, we did not compare our approach
to deep learning-based pose estimation approaches, which
typically require additional training for individual datasets.

A. Comparison Transformation Invariant Descriptors

This section evaluates Bunny, Buddha, and Dragon point
clouds from the standard 3D scanning repository [17]. We
scaled the point cloud into [0, 1]3 to create the source point
cloud, denoted as  . The target point cloud, denoted as  is
created by transforming the  with a random transformation
(𝑹, 𝒕), where 𝑹 ∈ SO(3) is an arbitrary rotation matrix,
and 𝒕 is bounded to ‖𝒕‖ ≤ 1. Furthermore, three different
noise level (0, 1∕1000, 1∕100) are added to each point. To
generate a more realistic outlier correspondence, we replace
a fraction of the 𝑞𝑖 with other points on the same dataset but
not included in . It is a different approach than presented
in [19], in which they uniformly sampled inside the sphere
of radius. We evaluate the performance by increasing outlier
rates from 10% to 90%. All statistics are computed over
40 times on a set of 40 random transformation matrices..
The table II summarizes the confusion matrix, accuracy,
F-measure, and time by computing the mean of all three
point Sets. The proposed TArIPR outperforms the other



TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(a) noise=0

TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(b) noise=0.0001

TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(c) noise=0.001

TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(d) noise=0

TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(e) noise=0.0001

TAnIPR TArIPR TDoIPR

FGR RANSAC TEASER++

(f) noise=0.001

Fig. 3: Benchmark results were obtained for all algorithms on the Bunny dataset with three levels of Gaussian noise, while
varying the outlier percentage from 10% to 90%. The corresponding point sets were generated randomly by introducing
outliers.

TABLE III: Benchmark results are presented for all algorithms on three different point sets with three levels of Gaussian
noise. The best result is highlighted in green color. The time is valuable only when the estimated transformation is correct.

noise = 0.0000 noise = 0.0001 noise = 0.001
Outlier: 10% − 90% Outlier: 10% − 90% Outlier: 10% − 90%

𝜖rotation[deg] 𝜖translation[unit] 𝑡[𝑠] 𝜖rotation[deg] 𝜖translation[unit] 𝑡[𝑠] 𝜖rotation[deg] 𝜖translation[unit] 𝑡[𝑠]

B
un

ny
[1

7]

RANSAC-1k 23.91890 0.1079 0.00714 23.4184 0.11172 0.0060 21.24770 0.1125 0.00633
FGR 13.52710 0.0365 0.02405 17.1287 0.03566 0.0246 5.78010 0.0106 0.02518

TEASER++ 0.12122 0.0015 0.10733 0.1241 0.00154 0.1037 0.13055 0.0016 0.10543
ours(TAnIPR) 0.07098 0.0003 0.29000 0.1223 0.00051 0.2925 0.63773 0.0050 0.29138
ours(TDoPR) 0.30984 0.0030 0.17034 0.3611 0.00341 0.1708 0.35333 0.0034 0.17120
ours(TArIPR) 0.01790 0.0001 0.58515 0.0217 0.00014 0.6044 0.02274 0.0002 0.60134

B
ud

dh
a

[1
7]

RANSAC-1k 13.93100 0.0642 0.10656 13.7947 0.07142 0.0802 14.97420 0.0693 0.10033
FGR 5.52130 0.0271 0.02463 9.9373 0.04819 0.0260 9.42950 0.0462 0.02443

TEASER++ 0.21389 0.0022 0.13121 0.2155 0.00212 0.1394 0.21020 0.0021 0.12843
ours(TAnIPR) 0.49360 0.0045 0.28966 0.5152 0.00447 0.2889 1.14830 0.0082 0.28977
ours(TDoIPR) 0.69047 0.0031 0.16699 0.6017 0.00316 0.1668 0.68674 0.0044 0.16678
ours(TArIPR) 0.32625 0.0023 0.60058 0.2109 0.00201 0.5994 0.33126 0.0025 0.60032

D
ra

go
n

[1
7]

RANSAC-1k 28.55990 0.1447 0.00394 22.2231 0.12044 0.0037 22.64380 0.1210 0.00423
FGR 16.42770 0.0542 0.02400 13.4796 0.06122 0.0244 17.46470 0.0571 0.02436

TEASER++ 0.06505 0.0011 0.08062 0.0663 0.00109 0.0763 0.06849 0.0011 0.07912
ours(TAnIPR) 0.03915 0.0001 0.28916 0.0668 0.00030 0.2896 0.43992 0.0050 0.29015
ours(TDoIPR) 0.01817 0.0001 0.16641 0.0156 0.00007 0.1666 0.03920 0.0005 0.16670
ours(TArIPR) 0.01200 <0.0001 0.60219 0.0107 <0.00010 0.5990 0.01280 0.0001 0.60140

two methods w.r.t TPR, Accuracy, and F1 score. However,
the other two approaches are much more computationally
efficient. In the context of point registration, the value of TPR
should be higher since it reflects the true inliers numbers,
which is returned as the Consensus set.

B. Benchmarking on Standard Datasets

We compared our approach with other state-of-the-art
algorithms on three point sets with varying outlier rates

and three levels of noise. The evaluation metrics we used
were rotation error, translation error, and computation time.
The rotation error was defined as the geodesic distance
between the rotation estimate 𝑅̂ and the ground-truth 𝑅◦,
while the translation error was defined as the 2-norm of
the difference between the estimate 𝒕 and the ground-truth
𝒕◦. The duration time was measured after searching for
corresponding point sets. We used the same testing setup
as described in Section V-A. Figure 3 shows the boxplots
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Fig. 4: Qualitative evaluation of the 3DMatch Dataset [18] was performed using TArIPR. The first row (a-f) shows the scans
before alignment, while the second row (g-l) displays the results after alignment.
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Fig. 5: Benchmark results for all algorithms on the 3DMatch dataset. TArIFGR, TArIICP, and TArITEASER++ are the
variant using the TArI descriptor as an outlier removal.

of the rotation errors and translation errors on the Bunny
point set, and Table III provides a detailed comparison of the
performance of each algorithm across all three datasets. Our
results demonstrate that our approach outperforms the other
methods in terms of robustness, accuracy, and efficiency.

1) Outlier Robustness: We examined the robustness of
each algorithm against varying outlier rates,illustrated in
Fig 3 and found that TAnIPR, TDoIPR, TArIPR, RANSAC,
FGR, and TEASER++ can handle up to 70% outliers. How-
ever, our proposed algorithms (TAnIPR, TDoIPR, TArIPR)
outperform the other approaches in terms of accuracy. Specif-
ically, TArIPR can still produce a reasonable estimate up to
90%. In contrast, RANSAC, FGR, and TEASER++ start to
fail after 70%.

2) Noise Robustness: Different levels of Gaussian noise
can have a significant impact on the performance of point
registration algorithms by changing the data distribution
and significantly affecting the corresponding point set. To
evaluate the algorithms under these conditions, we tested
them with three different levels of Gaussian noise (0, 0.0001,
and 0.001). As shown in Fig 3, TArIPR demonstrated the
most robust performance on all three levels. The accuracy of
FGR and TEASER++ gradually decreased as the noise level

increased. RANSAC had the worst performance among all
the algorithms tested.

3) FPFH for Corresponding Points Set: In the pre-
vious section, we generated outliers by replacing true in-
liers randomly. To create a more realistic point registra-
tion scenario, we used FPFH to compute local descriptors
for each point cloud and generated correspondences using
a nearest-neighbor search. We utilized advanced matching
strategies [23], [20] to find good correspondences and then
evaluated all algorithms using the same putative correspon-
dences. Fig 2 reports the rotation and translation errors at
different noise levels. These results highlight the need for
better keypoint detectors since even state-of-the-art local
descriptors, such as FPFH, struggle to produce acceptable
outlier rates in real problems. Our proposed algorithm out-
performs the other approaches in terms of the metrics.

C. Evaluation on Scanning Dataset

Point cloud registration is widely used in robotics appli-
cations that require robust scan matching, such as 3D recon-
struction and loop closure detection in SLAM. We evaluated
our proposed algorithms using the 3DMatch dataset [18],
which contains RGB-D scans from 62 real-world indoor



scenes. Without loss of generalization, we selected five in-
door scenes and randomly chose two frames in each scenario
for registration, resulting in a total of 2000 frame pairs.
We evaluated all algorithms using the same testing setup
described in section V-B.3, and we also added the proposed
transformation invariant descriptor to the existing algorithm.

The results are reported in Fig. 5, which shows that
FGR with TArI (TArIFGR) improves performance by re-
ducing rotation and translation error. However, this comes
at the cost of increased computational time. The variant
of TArITEASER++ shows similar performance, but with a
significantly decreased computational time. Most notably,
TArIICP shows similar performance to TEASER++, while
ICP performs the worst in all experiments. This demonstrates
that the proposed transformation invariant descriptor can
improve robustness and is an efficient preprocessing step for
robust registration.

In Fig. 4, we qualitatively demonstrate an excerpt of robust
registration alignment using TArIPR on 3DMatch. These
results highlight the potential of our proposed approach
to improve the robustness and accuracy of point cloud
registration in real-world scenarios.

VI. CONCLUSION

We have presented three different geometry-based,
transformation-invariant descriptors for outlier removal in
robust point registration, where outlier removal is formulated
as a binary clustering problem. The proposed approach can
be considered an efficient preprocessing step for robust point
cloud registration by reducing the outlier ratio in the putative
correspondences. Our approach is global, requiring no initial-
ization, and extensive experiments have fully demonstrated
its effectiveness. However, our approach has a limitation in
that building a fully connected graph and computing the pair
distance equation in (16) has a complexity of (𝑁3), where
𝑁 is the given number of putative corresponding pairs. We
plan to address this issue in future work.
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