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IDA: Informed Domain Adaptive Semantic Segmentation

Zheng Chen!, Zhengming Ding?, Jason M. Gregory?, and Lantao Liu'

Abstract— Mixup-based data augmentation has been vali-
dated to be a critical stage in the self-training framework for
unsupervised domain adaptive semantic segmentation (UDA-
SS), which aims to transfer knowledge from a well-annotated
(source) domain to an unlabeled (target) domain. Existing
self-training methods usually adopt the popular region-based
mixup techniques with a random sampling strategy, which
unfortunately ignores the dynamic evolution of different seman-
tics across various domains as training proceeds. To improve
the UDA-SS performance, we propose an Informed Domain
Adaptation (IDA) model, a self-training framework that mixes
the data based on class-level segmentation performance, which
aims to emphasize small-region semantics during mixup. In
our IDA model, the class-level performance is tracked by an
expected confidence score (ECS). We then use a dynamic sched-
ule to determine the mixing ratio for data in different domains.
Extensive experimental results reveal that our proposed method
is able to outperform the state-of-the-art UDA-SS method by a
margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes
and of 0.9 mIoU in the adaptation of SYNTHIA to Cityscapes.
Code link: https://github.com/ArlenCHEN/IDA.git

I. INTRODUCTION

Semantic segmentation (SS) aims to learn a pixel-wise
classification for a given image and plays a critical role in
various applications such as infrastructure/industrial inspec-
tions [1], biomedical diagnoses [2], and vehicle autonomy
[3]. Current mainstream segmentation models [4] [5] [6]
heavily rely on deep neural networks (DNNs) which usually
require a huge amount of manual annotations in order to
achieve desirable performance, e.g., labeling for a single
image might require more than 1.5 hours on average [7].
There exist some public datasets that provide dense an-
notations, e.g., Cityscapes [7], ACDC [8]. However, these
existing datasets are far from providing sufficient coverage
for other miscellaneous novel environments, leading to deep
models that fail to generalize. In this case, how to transfer the
knowledge in the easy-to-access data (e.g., data in simulators;
existing public datasets) to boost the model generalization for
unseen data of other domains is critical as there is usually a
domain shift between the data used to train the model and
the data encountered during deployment (see Fig. [I)).

To achieve the model transfer, a broadly studied task is
domain adaptation (DA), where we define the data with
labels as a source domain, and the data to be processed and
used for prediction as a target domain. In many real-world
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Fig. 1. Domain adaptation aims at diminishing the model per-
formance drop due to the shift of different data domains, e.g.,
simulated data vs. real data.

scenarios, it can be challenging or costly to quickly create
labels for target data. In this case, unsupervised domain
adaptation (UDA) provides a means to solve the special DA
setting where the target domain has no labels.

A critical step for UDA-SS is the mixup-based data aug-
mentation which oftentimes utilizes random sampling where
certain rectangular regions (e.g., in CutMix [9]) or class
regions (e.g., in ClassMix [10]) are randomly selected with a
predefined size and mixed. This strategy can generally mix
the visual contents and mitigate the understanding shift of
the DNNs. Unfortunately, this strategy ignores the dynamic
evolution of the two domain data along the training progress,
and can fail in leveraging important “informative” data that
however are obscured amid the process. The “informative-
ness” of data can be defined as its significance to the final
performance. In greater detail, in UDA-SS the segmentation
of multiple classes are predicted such that the final perfor-
mance of the model depends on the performance of each
individual class. We conjecture that the model performance
is mainly driven by the performance of “bottleneck™ classes
that usually have low-quality segmentations. Note also, the
bottleneck classes may vary during the training process. The
model performance can be significantly improved if we can
identify what bottleneck classes are so as to inform us to
specially improve their performance. Regions associated with
those bottleneck classes are defined as informative data, and
our proposed method is thus termed as Informed Domain
Adaptation (IDA).

The key to the proposed IDA framework is a novel mixup
technique — Informed Mix (IMix) built upon ClassMix [10].
Different from the ClassMix, our IMix bridges data from
two domains according to the confidence values of training
progress indicators. Thus the IMix is informed by and prior-
itizes, the regions indicated by a low indicator value which
means the classes are balanced in both raw image space and
label space, and the training will be unbiased, leading to an
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increase of final performance. To comply with the training
dynamics, we also propose a novel adaptation schedule for
IDA. The proposed schedule adaptively determines the ratio
of image regions from two domains for mixing because the
dynamic changes in training progress are related not only
to the type of bottleneck classes but also to the number
of bottleneck classes. Setting a fixed number will either
miss effective data or introduce possible noise. Our proposed
schedule has three phases. In the first phase, IMix mainly
selects easy classes from source images for adaptation. In
the second phase, hard/bottleneck classes from source images
are selected and the number of the selected classes decreases
from a high level to a low level while the selections from
target images increase from a low level to a high level. In the
third phase, the numbers of selections from the source and
target domains will be maintained at low and high levels,
respectively. To summarize the contribution of this work,

e We propose a principled model, IDA, for the UDA-
SS. The IDA model is a self-training framework that
exploits the obscured informativeness of data, which has
not been previously studied in DA.

« We propose a new mixup technique, IMix, that bridges
the source and target domains according to the training
progress defined by an expected confidence assessment.

« We propose a novel dynamic adaptation schedule which
can adaptively adjust the mixing ratio for different
domains to optimize the adaptation efficiency. We will
make the code of this work public.

Finally, our extensive evaluations on popular datasets show

that our IDA outperforms the current SOTA model HRDA
[11] with a remarkable margin under the same settings.

II. RELATED WORK

Domain Adaptive Semantic Segmentation: Mainstream
methods for tackling UDA can be categorized into two
classes — feature alignment (FA) [12] [13] [14] [15] [16]
[17] [18] [19] [20] and self-training (ST) [21] [22] [23] [24]
[11]. FA adapts the model by aligning the features from
the source domain to the target domain using adversarial
training, i.e., features from two domains are expected to be
indistinguishable through a domain discriminator. However,
FA suffers from two issues. First, FA aligns features from
two domains in a global way by evaluating the domain
discrimination using features of the whole image. This can
be problematic for semantic segmentation as each image
contains multiple classes. Aligning features globally cannot
guarantee the class-level shift is eliminated, and even worse,
it is possible that features are aligned at a global level but
severely misaligned at a class level, causing the so-called
negative transfer [25]. Recently, some class-level FA methods
[16] [18] [20] [19] are proposed to consider a finer level
of feature structure, but they still suffer from the lack of
target labels and show a weak performance. Second, FA
adopts an adversarial training paradigm which is known to be
unstable to train [26]. On the other hand, ST tackles the UDA
by a teacher-student framework[11] [24] [27], where the
teacher is trained on the source domain and predicts pseudo

labels for target images. Then the student is supervised by
those predicted pseudo labels. Recently ST [11] [24] has
been prevalent since it constantly breaks the state-of-the-art
record of UDA-SS due to the highly efficient feedback for
adaptation from pseudo-labels.

Mixup Data Augmentation: mixup-based data augmen-
tation has been demonstrated to be a vital step for UDA-SS
as it can achieve adaptation directly in the raw input space
and label space, by forcibly mixing different domains for
each data sample. Region-based mixups, e.g., CutMix [9] and
ClassMix [10] are two representative mixups used in UDA-
SS. CutMix and ClassMix typically adopt a random sampling
strategy when mixing data from two domains, i.e., the region
in one domain is randomly selected with a predefined size
while the rest regions are from the other domain. DACS
[28] is recently proposed to apply the idea of ClassMix to
domain adaptation. DACS randomly selects regions of half
of the classes in source images and pastes the target data to
the rest regions. DACS has been validated to be effective in
recent ST methods [24], [11].

III. METHODOLOGY
To organize the presentation, in Sect. we provide
preliminary knowledge about the domain adaptive semantic
segmentation. In Sect. we describe the general struc-
ture of our IDA model. In Sect. [[lI-C} we first describe how
we perform the identification of bottleneck classes on the fly
along the training process. Then we introduce the IMix data
augmentation by carefully considering the spatiotemporal

changes of domain data during training.

A. Preliminaries of UDA-SS

We consider a source domain distribution & and a target
domain distribution 7 over the joint space of X’ x ), where
X is the input space and )Y is the label space, respec-
tively. In UDA-SS, we have access to N; labeled samples

(XS ={x }fV; Vs =1y} }fV; 1) for the source domain, and

N
only access to N; raw images &; = {x’]} for the target
-

domain. A neural network g comprising of a feature extractor
fo parameterized by 6 and a segmentation head sy param-
eterized by ¢, i.e., go,9 = hy(fp), is usually adopted as the
adaptation model. The expected error on the source domain
is denoted by

Ls(0,0) =E( s [[(g0.0(x),)], (1)

where [(-,-) represents the loss function. In UDA-SS, typ-
ically the standard cross-entropy with one-hot ground-truth
(gt) label is used to compute the training loss: [(gg,¢ (x),y) =
— Y&, [ logge ¢(x)¢], where C is the class size.

Similarly, the expected error on the target domain is
denoted by L7(60,¢), but we cannot obtain an expression
for L7(6,¢) as we have no labels for target data. However,
we have an indirect way to approximate L7(6,¢) by

LT(9>¢) = EXNT [l(ge,(b(x)ay)] ) (2)

where § is a pseudo label generated by the model trained
on the source domain, y = one-hot(argmax.(ge, 4, (x))).
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Fig. 2. Overall structure of our IDA model. Four training stages
are involved. x represents the input image; y denotes the label; s
is the model prediction; L means the standard cross-entropy loss;
Model M is the student model while M is the teacher model.

where O; and ¢, represent the neural network parameters
trained on the source domain. Based on Eq. (I)) and Eq. (2),
we can obtain the adaptation objective as

B. Model Framework

We build the proposed IDA model based on the teacher-
student model in self-training (see Fig. 2] M represents the
student model and M represents the teacher model). The
teacher model shares the same network structure as the
student’s. Four stages are involved in one training iteration.
In the beginning of each iteration, we use the exponential
moving average (EMA) to update the teacher model’s pa-
rameters by the ones of the student model such that the
teacher model can be synchronized with the latest weights
of the student model. Then the student model is trained with
source labels. In the second stage, we use the teacher model
to generate pseudo labels for target images without back-
propagation. In the third stage, our proposed IMix module
(described in Sect. [-C] later) takes as input the source
image, source prediction, source label, target image, and
target prediction (pseudo label) to generate a new pair of
data that mixes the data from the two domains. In the fourth
stage, the student model is further trained using the newly
generated mixed data.

In the proposed IDA model, our approximation to the
expected error on the target domain differs from the Eq.
(2), where the generated pseudo label j is directly used
for training the model. Instead, we use the newly generated
data pair (x,, y,,) to compute Ly, as illustrated in Fig. @
We denote the distribution of the mixed data as M. The
adaptation objective of our IDA model is

Using L, to approximate L7 has been validated in existing
work [28] [24] [11]. The reason for this effectiveness lies in
that Eq. (3) separates the supervision from the source domain
and the target domain while Eq. (@) mixes supervision signals
from the two domains in the term of L. This mixture can
efficiently guide the model to understand the target data with
the accompanying source data at the sample level.

C. Informed Mix

We propose Informed Mix (IMix) which is an important
module in our IDA. The IMix considers dynamic temporal-
spatial changes of data during the training process and is able
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Fig. 3. (a) - (c) The changes of the categorical probability under the
supervision of a (d) one-hot vector in different training iterations.
K represents the total number of training iterations.
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Fig. 4. Smoothed ECS values for source and target classes.

to adjust the mixture strategy accordingly. Different from
previous mixup techniques [9] [10] [28] that use random
sampling to select mix regions from images, our IMix
informatively selects the regions based on the class-level

performance during training.
1) Class-level Performance Indicator: To monitor the

training progress, we usually observe how the loss changes
over multiple epochs/iterations. However, we have no labels
for target data in UDA-SS and thus are unable to use a
loss-like indicator. In this work, we propose to use the
confidence score (CS) of the predicted probability as the
indicator. CS has been used by previous works as the
uncertainty approximation, e.g., [29]. The metric is defined
as CS(x) =max(gg,¢(x)), where the model g usually has the
softmax function as the last layer. The reason for using the
confidence score is related to the standard cross-entropy (CE)
loss function which assumes that the label is a one-hot vector
and minimizing the CE loss is equivalent to maximizing the
CS. In this case, a higher CS value can indicate a lower loss
and thus better performance.

A simple illustration can be seen in Fig.[3] where Fig. [3(d)]
shows a one-hot vector label, the change of the corresponding
probability over multiple training iterations can be seen from
Fig. B(a)| to Fig. The increased CE value can be a dual
form of training error for indicating the training progress.
By tracking the CS value during training, we are able to
monitor the class-level performance on the fly, thus we can
adaptively identify the data of the maximal informativeness.

In this work, we use the expected confidence score (ECS)
as the class-level performance indicator. The ECS for class
¢ can be computed by

ECS.(x) = Exwc[CS(x)], (5)

where with a slight abuse of notation, we use the first ¢ to
conceptually represent the ¢ class, while the second ¢ to
represent the distribution of the ¢/ class. The ECS for the
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Fig. 5. Reliability diagram for class-level ECS.

source domain and the target domain can be expressed by
ECS.(x) = Exes amc [CS (1),

BCS!(x) = Exur e [C5(0)]. ©

To further validate the property of ECS? and ECSL, we
show the changes of the two ECSs during training in Fig. [
Here we smooth the value of raw ECS by the EMA.

JECSS « t-/'ECS! + (1 —1)-/ECSS,

. . . 7)
JECS «+ t-/'ECS, + (1 —1)-/ECSL,

where 7 is the smoothness weight; j represents the ;'
iteration during training. As we can see from Fig. d ECS
values of almost-all classes are monotonously increasing
during training for both the source domain and target domain.

To further validate that the class-level ECS is well cal-
ibrated, we also show the reliability diagram for some of
the representative classes from Cityscapes [7] in Fig. [3]
where we show the relation between the ECS values and
the widely-adopted segmentation performance metric mean-
Intersection-over-Union (mloU). We can see that in general
the mloU is positively correlated with the value of ECS.

2) Class Selection Strategy: We propose our Informed
Mix (IMix) based on the DACS [28] which is a variant of
ClassMix [10], and build upon the idea of bridging images
across domains. DACS is the first to apply the idea of
ClassMix [10] to domain adaptation. In DACS, x, is selected
from the source domain while x;, is selected from the target
domain. Our IMix follows the idea of DACS and applies
a ClassMix-based data augmentation for domain adaptation.
The differences between the proposed IMix and DACS lie
in two aspects. First, we are not using random sampling to
select classes instead, we select classes based on the ECS
values (Eq. @)). Second, we do not use a fixed ratio, e.g.,
0.5, but a dynamic schedule to determine the value of the
selection ratio. Details about ClassMix and IMix can be
found in Algorithm [T}

Our IMix is based on the spatiotemporal change of data
during training. We want to find a finer structure for this
change to make the mixup more focused on bottleneck
classes. The intuition is two-fold. First, both domains have

Algorithm 1: Functions of ClassMix and IMix

1 def ClassSample (i) :

2 M=zero_like (i,.shape)

3 ug,=unique (i,)

4 f,=randint (0, C, size=int (C/2))
5 MIli,3] =1 if i,[1,73] is in i,
6 return M

7

8 def ISample(i,, e, N):

9 M=zero_like (i;.shape)

10 Uz,=unique (i)

11 k=n-C

12 t, = topk (e, k)

13 i, = t,.indices

14 MIli, 3] =1 if i,[1,]3] is in i,
15 return M

16

17

18

19

20 asses
21 # n: A cation ratio

22 def Mix (x,, xp, method, e, 1):

23 Yo = F(x4) # y, shape: [C, H, W]
24 o = F(xp)

25 iy, = argmax(y,, axis=0)

26 if method == ’'ClassMix’:

27 M = ClassSample (i;) # ClassMix
28 elif method == ’IMix’:

29 M = ISample(i,, e, 1) # IMix
30 Xm=MOx,+(1—M)Oxp

31 Ym=MOy,+(1-M)Oy,

32 return x,,ym

increasing performance as the training proceeds, the allo-
cation ratio for mixing regions should incline to the target
domain in a gradual manner as our goal is to boost the
inference capability on the target domain. However, in the
early phase of training, the ratio for source classes should
be high as we still want to extract the main knowledge from
the source domain. Second, we can empirically find that
the performance of some classes is inferior to others during
training. The overall performance might be significantly
improved if those inferior classes are ameliorated. As we
can learn, the dominating domain and the ratio for mixing
should be adaptively adjusted along the training process.

For the convenience of analysis, we propose two
concepts, Source-Select-Target-Follow (SSTF) and Target-
Select-Source-Follow (TSSF). The difference between the
two is the order of the class selection — which domain
(selecting domain) provides the guaranteed selection of cer-
tain classes while the other one (following domain) acts ac-
cordingly. The data from the selecting domain is guaranteed
to be exposed more during training, thus dominating the
knowledge transfer process.



TABLE I

QUANTITATIVE COMPARISON FOR THE ADAPTATION OF GTA-V — CITYSCAPES.

= cﬁq = . 8 g‘) .g g 5 45 =) ®
e 5 3 § § % 2 & @ § » 5§ 2% & & 7 F 9 =2
Method F 4 A B E A& & v > B # A KB O B @ B 2 A |ppu
APODA [30] 856 328 79.0 295 255 268 346 199 837 406 779 592 283 84.6 346 492 80 326 39.6| 459
PatchAlign [31] |[923 519 82.1 292 251 245 338 330 824 328 822 586 272 843 334 463 22 295 323 | 465
AdvEnt [17] 89.4 33.1 810 26.6 268 272 335 247 839 367 788 587 305 84.8 385 445 1.7 31.6 324 | 455
CBST [21] 91.8 535 805 327 21.0 340 289 204 839 342 809 531 240 827 303 359 160 259 428 | 459
MRKLD-SP [29] | 90.8 46.0 79.9 274 233 423 462 409 835 192 59.1 635 308 835 36.8 520 28.0 36.8 464 | 49.2
BDL [32] 91.0 447 842 346 27.6 302 360 36.0 850 436 830 586 31.6 833 353 49.7 33 288 356 485
CADASS [33] 91.3 46.0 845 344 29.7 32,6 358 364 845 432 830 60.0 322 832 350 467 00 337 422 492
MRNet [34] 89.1 239 822 195 20.1 335 422 39.1 853 33.7 764 602 337 860 36.1 433 59 228 30.8| 455
R-MRNet [35] 904 312 851 369 256 375 48.8 485 853 348 8l.1 644 36.8 863 349 522 1.7 29.0 44.6| 503
PIT [36] 87.5 434 788 312 302 363 399 420 792 37.1 793 654 375 832 460 456 257 235 499 | 50.6
SIM [37] 90.6 44.7 84.8 343 287 31.6 350 37.6 847 433 853 57.0 31.5 83.8 426 485 19 304 39.0| 49.2
FDA [38] 925 533 824 265 27.6 364 40.6 389 823 398 78.0 626 344 849 341 53.1 169 277 46.4 | 5045
CAG-UDA [39] |904 51.6 83.8 342 278 384 253 484 854 382 78.1 58.6 34.6 847 219 427 41.1 293 372 | 50.2
IAST [23] 93.8 57.8 85.1 395 267 262 43.1 347 849 329 880 626 29.0 873 392 49.6 232 347 39.6| 515
DACS [28] 89.9 39.7 879 30.7 395 385 464 528 88.0 44.0 888 672 358 845 457 502 0.0 273 34.0| 52.1
CorDA [40] 947 63.1 87.6 30.7 40.6 402 478 51.6 87.6 47.0 89.7 66.7 359 90.2 489 575 00 398 56.0| 56.6
ProDA [41] 87.8 560 79.7 463 44.8 45.6 53.5 535 88.6 452 821 707 392 888 455 594 1.0 489 564 | 575
DAFormer [24] 940 59.0 87.0 38.8 30.8 429 495 51.0 88.1 48.6 89.0 693 39.8 913 72.0 694 488 522 612 622
HRDA [11] 948 640 88.1 527 282 455 484 492 893 484 914 739 383 922 749 768 622 615 64.1| 654
IDA (ours) 954 72.0 87.8 499 36.6 40.6 46.8 504 883 452 921 742 504 928 79.2 818 53.8 614 64.5| 66.5
When selecting classes from one domain, we also need to 1.0 o
decide whether well-performing classes or under-performing 2 2 o.s
classes should be selected. Different types of classes in EE L 0'6
. . . . c U
differing domains have different values. For example, under- 2 — s1b 204
performing classes in the source domain might indicate g —omsbm S §02
a strong signal for selection as those classes are bottle- < <50
0.0 ‘
ngck classes and the ground-truth label of those classes Training Progress Training Progress
might boost the performance. On the contrary, the under-
performing classes in the target domain might be out of @ ®
choice as they can contain too much noise. The quality of Fig. 6. (a) Kumaraswamy Cumulative Density function. (b) The

each class is represented by the corresponding ECS value
(Eq. (7).

3) Adaptation Schedule: To account for the spatial change
of the data during training, we propose a dynamic schedule
to determine the value of 1 in the function of ISample in
Algorithm [T] The reason for using a dynamic schedule rather
than a fixed ratio value is that any single fixed ratio might
fail to capture the change throughout the training process.
An extreme ratio, e.g., 0.1 or 0.9 can lead to a highly
imbalanced mixing. We use the Kumaraswamy Cumulative
Density Function (KCDF) as our basic scheduling function.
The KCDF has a formulation of y = 1 — (1 —x“). Different
KCDFs with different parameters a and b are shown as
the solid curve in Fig. Another variant of KCDF
is expressed by y = (1 —x%)®, we denote this variant as
Reversed KCDF (RKCDF), and show different RKCDFs as
the dash curves in Fig. [6(a)l Based on this basic function, we
propose to use a truncated version of the functions to avoid
extreme ratio values (see Fig. [6(b)).

IV. EXPERIMENTS
A. Evaluation Setup
Datasets: We test on three datasets. (1) GTA-V is a syn-
thetic dataset collected in a simulated city environment. This
dataset contains 24,966 synthetic frames with a resolution

schedule we use for assigning allocation ratio to the dominating
domain (shown in a bold curve). In this work, the source domain
dominates the allocation.

of 1914 x 1052. Images are provided with dense semantic
annotations of 33 classes. (2) SYNTHIA is another city-
like synthetic dataset that has 9,400 synthetic images with
a resolution of 1280 x 760. Pixel-level semantic annotations
for 13 classes are provided in SYNTHIA. (3) Cityscapes is a
dataset containing 2,975 training images and 500 validation
images with a resolution of 2048 x 1024. All images are
collected in real European cities.

We perform two Sim2Real adaptations — one is the
adaptation of GTA-V — Cityscapes and the other is the
adaptation of SYNTHIA — Cityscapes. We evaluate seg-
mentation performance with the standard mean-Intersection-
over-Union (mloU) metric. Evaluations for both adaptation
scenarios are conducted on the 500 validation images in
Cityscapes.

Implementation Details: We base our IDA framework on
the self-training framework in HRDA [11]. We use a batch
size of 1 and set the crop resolution as 952 due to the limited
GPU memory. We compare our proposed IDA with recent
SOTA methods [24] and [11]. To make the comparison fair,
we also set the same batch size and image resolution for both



TABLE 11
QUANTITATIVE COMPARISON FOR THE ADAPTATION OF SYNTHIA — CITYSCAPES.

- % =} — 8 @3 g =

= 2 = F 2 2 2 5 » z & 2 = 3z g £
Method & v @ B2 & =5 & 2 & e g 3 A& = & | U
PatchAlign [31] | 824 380 786 87 06 260 39 111 755 846 535 216 714 326 193 317 | 400
AdvEnt [17] 85.6 422 797 87 04 259 54 81 804 841 579 238 733 364 142 330 | 412
CBST [21] 680 299 763 108 14 339 228 295 776 783 606 283 816 235 188 398 | 42.6
MRKLD [29] | 67.7 322 739 107 16 374 222 312 808 805 608 29.1 828 250 194 453 | 438
MRNet [34] 820 365 804 42 04 337 180 134 811 808 613 217 844 324 148 457 | 432
R-MRNet [35] | 87.6 419 831 147 17 362 313 199 816 806 630 218 862 407 236 53.1 | 479
PIT [36] 83.1 276 815 89 03 218 264 338 764 788 642 276 796 312 310 313 | 440
CAG-UDA [39] | 847 408 817 78 00 351 133 227 845 776 642 278 809 197 227 483 | 445
IAST [23] 819 415 833 177 46 323 309 288 834 850 655 308 865 382 331 527 | 498
DACS [28] 80.5 251 819 214 28 372 226 239 836 90.7 676 383 829 389 284 475 | 483
DAFormer [24] | 823 369 761 418 60 445 451 465 859 829 680 444 849 473 491 575 | 562
HRDA [11] 83.0 439 765 498 43 517 558 528 852 800 682 430 807 567 591 597 | 59.4
DA (ours) 889 442 782 491 49 486 523 493 849 832 70 470 853 582 587 569 | 603

Fig. 7.

DAFormer

Comparison of dlfferent methods on the Cityscapes validation images that show challengmg situations. IDA can still maintain a

high segmentation quality even when objects are small, ambiguous, and highly irregular, e.g., regions marked by the white dotted boxes.

baselines as ours. More details about network structure and
hyperparameters can be found in HRDA [11].

B. Comparison

We compare our proposed IDA model with the baseline
UDA-SS methods both quantitatively and qualitatively. We
first consider the adaptation of GTA-V — Cityscapes. The
quantitative comparison can be seen in Table. [ Our IDA
model exhibits the best overall mloU performance among
all the listed methods. IDA outperforms the current UDA-SS
SOTA work HRDA [11] in the majority of classes (10 out of
19) and shows a considerable advantageous margin of 1.1%
mloU. The IDA model also shows superior performance for
some challenging classes, e.g., Person, Rider, Car, Truck,
Bus, Bike, etc. This superiority is consistent with our expec-
tation for the IDA model as it especially aims to improve the
performance of bottleneck classes during training. Note that
the results of DAFormer and HRDA in Table [l are different
than the reported ones in the original works as we have

new hyperparameter settings for a fair comparison with our
IDA model. The quantitative comparison for the adaptation
of SYNTHIA—Cityscapes is shown in Table [lIl The IDA
model can still outperform the strongest baseline HRDA by
a margin of 0.9% mloU and show advatanges on challenging
classes such as Person, Rider and Bus. The effectiveness of
our proposed IDA model can also be seen in visual examples
in Fig. [7]

C. Ablation Studies

Fixed selection ratios: In IDA we adopt the SSTF-U mixing
strategy where we first select the ground-truth regions of
source under-performing classes to construct the mixing
mask and then the target regions are selected according to
the reverse source mask. Throughout the training process,
we use a dynamic schedule to determine the value of the
ratio for source class selection. Thus we conduct the ablation
study showing issues with different fixed ratio values under
different source class selection strategies, see Table. [ITI}



TABLE III
COMPARISON OF USING DIFFERENT RATIO VALUES UNDER DIFFERENT
SELECTION STRATEGIES.

Selection | Class | Ratio | mloU 6 (D) | A (D)
0 0.1 37.2 -29.3
1 0.3 41.4 -25.1
2 SSTF W 0.5 50.7 -15.8 | -22.5
3 0.7 49.2 -17.3
4 0.9 41.3 -25.2
5 0.1 40.0 -16.5
6 0.3 454 -11.1
7 SSTF U 0.5 58.2 -3.3 -8.32
8 0.7 55.2 2.3
9 0.9 48.1 -8.4
10 0.1 50.6 -15.9
11 0.3 473 -19.2
12 TSSF W 0.5 38.4 -28.1 -25.9
13 0.7 35.0 -31.0
14 0.9 314 -35.1
15 0.1 47.2 -19.3
16 0.3 49.3 -17.2
17 TSSF U 0.5 45.6 -209 | 254
18 0.7 334 -33.1
19 0.9 30.2 -36.3

We show the testing performance on validation data of
Cityscapes in the column of mloU and the degradation from
the best IDA model in the column of 8. The column of A
shows the mean of § for each selection with a certain class
type. We can see none of the settings in Table. [Il| can achieve
a positive A. All methods with fixed ratios are degrading with
a significant drop. The best result with a fixed ratio (SSTF-
U-0.7) still has a gap of 2.3% mloU compared with the best
IDA.

From the value of A in Table. [lll] we can first validate
that the SSTF is the most effective selection method. Based
on the SSTF selection, we should give priority to selecting
the region of under-performing classes in the source domain.
Those underperforming classes can be treated as bottleneck
classes for both domains, thus they can provide strong super-
vision to drive the improvement of the overall performance.
An extreme value of the ratio might cause unacceptable
damage to the adaptation. The performance with a mild value
of the selection ratio, e.g., 0.5 or 0.7 can be better than other
values, but still worse than the performance with dynamic
scheduling. Our IDA model is even better than HRDA. The
reason for this is we use the dynamic scheduling to balance
the bias that we have introduced into the data, thus we are
able to extract knowledge from under-performing classes
while maintaining the data unbiased. One thing we need to
note is that HRDA [11] uses a selection ratio of 0.5, but
the performance of HRDA is better than IDA-SSTF-U-0.7.
The reason for this drop is the bias we have injected by
the selection strategy of SSTF-U to either well-performing
classes or underperforming classes. On the contrary, HRDA
uses random sampling such that the classes of the new data
are not biased to any certain types, leading to better results.
Smoothness of the indicator: We use the smoothed ECS
as the class-level performance indicator. Here we show
the necessity of using the smoothed values instead of
the raw values. The quantitative comparison is shown in

TABLE IV
COMPARISON OF USING DIFFERENT SMOOTHNESS FOR ECS.

Smoothness weight| 0 0.1 03 05 0.7 09 0.999
mloU 62.1 61.5 60.8 632 649 66.2 66.5

Table. [[V] It can be seen that the performance is gen-
erally increasing as the smoothness is lifted. The per-
formance with the raw indicator values is the lowest.
The reason for this
trend is the smoothed
indicator is more sta- 60
ble than the raw values 501
of the indicator which 3497
may change significantly 3]
among iterations, causing 201
instability in the selection 109
of classes and possibly
a large distribution shift
during training.
Different mixups: In our
work we propose a new mixup, IMix, for augmenting data
in the IDA model. We compare the performance of the
adaptation with different mixups, which is shown in Fig.
[B] Compared with previous region-based mixups that use
random sampling to generate new mixed data, our IMix
considers dynamic changes in the data from the two domains.
By capturing the fine structure of the adaptation, our IMix
achieves the best performance among all listed mixups.
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Fig. 8. Comparison of using dif-
ferent mixups.

V. CONCLUSION

We present a principled model, Informed Domain Adapta-
tion (IDA), for the un-supervised domain adaptive semantic
segmentation. Our proposed IDA model is a self-training
framework that exploits the obscured informativeness of
data to improve the learning efficiency. To achieve this,
we propose a new mixup technique, IMix, that bridges
the source and target domains according to the training
progress defined by an expected confidence assessment. We
also propose a novel dynamic adaptation schedule which
can adaptively adjust the mixing ratio for different domains.
Extensive evaluations on popular datasets reveal that the IDA
outperforms the SOTA model with a remarkable margin.
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