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Abstract— Generating dynamic jumping motions on legged
robots remains a challenging control problem as the full
flight phase and large landing impact are expected. Compared
to quadrupedal robots or other multi-legged robots, bipedal
robots place higher requirements for the control strategy given
a much smaller footprint. To solve this problem, a novel
heuristic landing planner is proposed in this paper. With the
momentum feedback during the flight phase, landing locations
can be updated to minimize the influence of uncertainties
from tracking errors or external disturbances when landing.
To the best of our knowledge, this is the first approach to
take advantage of the flight phase to reduce the impact of the
jump landing which is implemented in the actual robot. By
integrating it with a modified kino-dynamics motion planner
with centroidal momentum and a low-level controller which
explores the whole-body dynamics to hierarchically handle mul-
tiple tasks, a complete and versatile jumping control framework
is designed in this paper. Extensive results of simulation and
hardware jumping experiments on a miniature bipedal robot
with proprioceptive actuation are provided to demonstrate that
the proposed framework is able to achieve human-like efficient
and robust jumping tasks, including directional jump, twisting
jump, step jump, and somersaults.

I. INTRODUCTION

With significant progress being made in recent decades,
it has been proven that legged robots have the potential to
go anywhere humans can go and do whatever humans can
do. To fulfill this great potential, dynamic jumping is another
required capability besides walking and running. However,
apart from higher actuation requirements for the torque
density and speed, dynamic jumping control yet remains a
challenging problem since it involves a long flight phase
where the floating base is uncontrollable without contacts
and a large landing impact is expected which requires a more
robust control strategy.

Early studies on legged robotic jumping are significantly
influenced by Raibert’s single-leg hopping machine with a
heuristic controller [1]. Using a similar controller, Hyon and
Mita designed another one-legged hopping robot that had an
articulated leg composed of three links [2]. More recently,
model-based methods gain more and more attention. In [3],
[4], the whole-body dynamic model is used in the low-level
whole-body control. With commanding the liftoff velocity,
simple jumping can be achieved. To generate versatile jump-
ing with a longer horizon, manually finding the trajectory is
nearly impossible due to the high degrees of freedom (DoF)
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Fig. 1. Somersault of BRUCE off of a 35 cm platform.

of legged robots, especially bipedal robots. Directly using the
whole-body model for planning, the robot can produce more
intricate behaviors [5]–[7]. However, due to the complexity
of high-dimensional models, these problems sometimes end
up being intractable [5], [8], [9]. In [10], [11], the spring-
loaded inverted pendulum (SLIP) is accepted as the simpli-
fied model to plan running and jumping motions. Despite
its success, the point mass is considered with the angular
momentum being ignored. Jumping motions involving body
rotations, which is fairly normal in animals and humans,
is hard to accomplish with it. To mitigate this issue, the
single rigid body model (SRBM) is a potential solution. [12]
successfully implemented it on a quadruped robot for aerial
motion trajectory optimization with the assumption of mass-
less legs. Unfortunately, bipedal robots require more actuated
joints for each leg and non-point feet for active balancing.
Basically, the mass-less leg assumption is easily violated for
most bipedal robots. Recently, many approaches [13]–[17]
consider a more versatile kino-dynamic planner for bipedal
robots based on the centroidal dynamics [18] which is an
exact projection of the whole-body dynamics. Centroidal dy-
namics efficiently introduce the angular momentum into the
planner, which benefits arbitrary jumping motion generation.

For landing stabilization, three different methods can be
considered: 1) heuristic local damping control [19], [20],
2) unique structure design of feet to handle impact pas-
sively [21], 3) actively consider the whole-body dynamics
between the robot and the environment. In the last decade,
the solution has converged to the last one with a certain
class of optimization-based whole-body control [22], which
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finds optimal solutions to motor commands online based on
real-time feedback via solving a convex quadratic program
(QP). For quadrupedal robots, this technique is enough to
guarantee the safety [7], [17] if the robot deviates from
the optimal trajectory when leaving the ground and is even
disturbed in the air since 4 legs provide enough support
regions for recovery when landing. For bipedal robots, the
tolerance is much lower given a smaller footprint. Besides
improving the robustness of the low-level controller, the
large landing impact can actually be reduced by adjusting
landing locations, which is often ignored in the legged
robotic community. The subconscious motion for humans
when pushed forward during jumping is moving two legs
forward to reduce the influence of the unexpected disturbance
on landing. Inspired by this, a heuristic landing planner based
on real-time momentum feedback is proposed in this paper.
Once the robot leaves the ground, it updates the desired
landing locations for feet at high rates using the computed
linear and angular momentum as the heuristic feedback.

This paper makes the following contributions:
1) A novel heuristic landing planner is proposed to im-

prove the landing stability via taking advantage of the
momentum feedback in the flight phase to minimize the
influence of uncertainties from tracking error or external
disturbance on landing.

2) A complete and versatile jumping framework for
bipedal robots is provided with implementation details
as shown in Figure 2. Combining the model-based
method with centroidal dynamics and the heuristic
approach, a more natural jumping behavior can be
achieved including squatting before the liftoff, body
active rotating to compensate for the unexpected angular
momentum, and lowering the body to buffer landing
impact.

3) Demonstration of the proposed framework on a minia-
ture bipedal robot that can achieve a variety of jumping
tasks, such as directional jump, twisting jump, step
jump, and somersaults.

II. SYSTEM OVERVIEW

A. BRUCE
To promote bipedal robotic research and improve the

accessibility to bipedal robot platforms with dynamic ca-
pabilities, the next-generation miniature Bipedal Robot Unit
with Compliance Enhanced (BRUCE) has been developed in
our previous work [23] using proprioceptive actuators. For
BRUCE, each leg has 5 degrees of freedom (DoF), which
includes a spherical hip joint, a knee joint and an ankle
joint. To lower the leg inertia, a cable-driven differential
pulley system and a linkage mechanism are applied to the
hip and ankle joints, respectively. Being a miniature bipedal
robot, BRUCE is designed to be approximately 1/3 of an
adult male’s height, which is around 660 mm. As a result,
link lengths of BRUCE and also other major mechanical
parameters are summarized in Table I.

To enable BRUCE to detect when the contact between
the foot and the ground is created or broken for state

Fig. 2. BRUCE jumping framework. Kino-dynamic motion planner
generates desired jumping trajectory based on user-selected task parameters
including jumping distance/height, twisting angle, contact sequences, etc.
Heuristic landing planner updates desired landing locations with real-time
momentum feedback in the air. The low-level whole-body controller feeds
desired joint commands to the actual robot with high-level commands.

TABLE I
BRUCE MECHANICAL PARAMETERS

Parameter Value [Unit] Parameter Value [Unit]
Body mass mb 1687 [g] Total mass m 5118 [g]
Hip mass mh 689 [g] Pelvis length lp 150 [mm]

Thigh mass mt 889.5 [g] Thigh length lt 175 [mm]
Calf mass mc 113 [g] Calf length lc 169.5 [mm]
Foot mass mf 24 [g] Foot length lf 24 [mm]

estimation purposes, a contact sensor is designed. Tactile
switches are embedded into the attached rubber underneath
each aluminum foot. To improve the detection performance,
one switch is located near the toe with another one near
the heel. In this way, contact detection is more robust and
sensors are fully protected from the outside environment.
Furthermore, all electronics are integrated into the body of
BRUCE for fully untethered control. An Intel NUC with Intel
Core i5 CPU is used as the onboard PC. The running time
is around 20 minutes with a 14.8 V 2200 mAh LiPo battery.

B. Software Architecture

To make BRUCE favorable to dynamic behaviors which
require fast response, the overall software framework is
developed in a multithreaded environment, which includes
a motor communication thread, a state estimation thread
combined with robot model computation, and a feedback
control thread as illustrated in Figure 2. The control thread
is using whole body controller described in Section V, which
takes the reference trajectories and robot state feedback and
computes desired joint torques at a rate of 500 Hz. The refer-
ence trajectories come from high-level planners described in
Sections III and IV. Data communication utilizes a custom
shared memory library, similar to the setup developed in
[21]. All programs are implemented in Python while some
parts, including kinematics, dynamics, and state estimation,
are precompiled using Numba [24] for acceleration.

Reliable state estimation is crucial to the good perfor-
mance of legged systems. In the state estimation thread,



a complementarity filter is applied. For body orientation
and angular velocity, IMU sensor (ISM330DHCX) readings
after proper filters are used. Once the body orientation is
determined, IMU accelerometer readings can be integrated
to get body velocity and further position. However, these two
quantities diverge easily due to sensor noise. Motor encoder
readings are introduced as a complement. In specific, the
state estimator makes use of the joint encoders for stance
leg kinematics to calculate the body position and velocity as
a reference. Although Kalman filter is widely used for legged
state estimation [25], [26], complementarity filter works
as well in practice with a much simpler implementation
[27]. Note that this simple approach still comes with some
practical issues, e.g., yaw drift, global position inaccuracy.

III. MOTION PLANNING WITH CENTROIDAL MOMENTUM

Bipedal robots have limited supporting regions to recover
themselves when landing due to their small footprint. This
requires the jumping trajectory must match well with the
robot. As a result, the model selection for the planning is
crucial. The principle of selection is to make it as simple
as possible while keeping versatility to some extent since
too complicated models like the full-body dynamics may
increase the computational cost significantly and even lead
to an intractable problem. In order to achieve a variety of
jumping motions, including twisting jumps and somersaults
where large body rotations may be required, the point-
mass model like the Spring-loaded Linear Inverted Pendulum
(SLIP) model is not considered here.

For comparison, the Single-Rigid-Body Model (SRBM)
is used at first. By lumping all the link inertia together to
get the fixed local inertia of the represented single rigid
body, BRUCE fails to accomplish a stable landing due to
the unexpected rotation of the body in the air. It turns out
that the unexpected angular momentum comes from the
thigh rotation when trying to lift off from the ground but
it is ignored inside the SRBM. To tackle this issue, we
accept centroidal dynamics [18] for motion planning. Since
centroidal dynamics consider the full-body mass and inertia
distribution, the optimized jumping motion can compensate
for the unexpected angular momentum from leg movements.

A. Decision Variables

For the full-body mass and inertia distribution, the joint
configuration must be considered. As a result, after including
the extra 6 DoFs from the floating body in the joint states,
the decision variables are determined for the planner with
centroidal momentum as

Γ = {q[k],v[k], r[k], ṙ[k], r̈[k],Fj [k],h[k],

for all time instances k} (1)

where q and v denote joint positions and velocities
including the floating base. For BRUCE with 10 active
joints, q ∈ R7+10, and v ∈ R6+10 where q included 7
variables for the floating-base since quaternion is chosen to
represent the orientation which requires 4 instead of 3 to
avoid the gimbal locking issue. r, ṙ, r̈ represent CoM states

including positions, velocities, and accelerations. Fj is the
contact forces for the jth contact point. Note that only point
contact is considered here. To avoid losing generality, any
type of contact can be represented with the point contact.
For example, the line contact or square face contact can be
divided into 2 or 4-point contacts on the edge. h describes
the angular components in the centroidal momentum as
defined in [18] which is the exact projection of all the link
momentum on the CoM coordinate.

Other works [13], [15] might consider additional decision
variables, such as the contact location, the unscheduled
contact sequence, and the time step dt. Here, they are fixed
for simplification.

B. Constraints

As a kino-dynamics planner, both dynamics and kinemat-
ics are considered. The motion of equations for the model
with centroidal momentum is written as:

mr̈[k] =
∑
j

Fj [k] +mg (2)

ḣ[k] =
∑
j

(cj [k]− rj [k])× Fj [k] (3)

h[k] = A(q[k])v[k] (4)

where cj denotes the pre-specified contact location for the
jth contact point. As shown in Equation (4), the centroidal
angular momentum is connected with the joint states with
the Centroidal Momentum Matrix (CMM) as defined in [18].
Although being nonlinear, the computation of CMM can be
achieved efficiently [28]. Due to the introduction of joint
states, the full-body kinematic must be added to ensure
kinematic consistency.

r[k] = fcom(q[k]) (5)
c[k] = fcontact(q[k]) (6)

where the function f(·) represents the corresponding forward
kinematics for the CoM positions and contact locations. To
ensure the consistency of the generated trajectory, integration
constraints are formulated as follows:

q[k]− q[k − 1] = v[k]dt (7)

h[k]− h[k − 1] = ḣ[k]dt (8)
r[k]− r[k − 1] = ṙ[k]dt (9)
ṙ[k]− ṙ[k − 1] = r̈[k]dt (10)

When the contact is active for the jth contact point, the
contact force is limited inside the friction cone to avoid
sliding, √

(Fj)2
x + (Fj)2

y ≤ µ(Fj)2
z, (Fj)z ≥ 0 (11)

Until here, all constraints describe the general motion of
the model with centroidal momentum. To meet the task-
specific requirements, decision variables are constrained in a
pre-defined boundary set Q as boundary conditions.

Γ ∈ Q (12)



In the jumping optimization, besides physical boundaries
on numerical values of decision variables, users can define
the desired jumping parameters in the boundary condition,
for example,

r[1] = r0, r[N ] = r0 (13)
(r[k])z ≤ hnom when in stance (14)
hnom ≤ (r[k])z ≤ hmax when in flight (15)
ṙ[ki] = vlo ki is the time the robot lifts off (16)

where r0 denotes the COM positions when the robot is
standing still, hnom is the nominal height when the robot
is on the ground, hmax is the maximum COM height, and
vlo denotes the liftoff velocity so that users can change
its value to reach different jumping height. Similarly, if a
twisting jump is desired, constraints on the body orientation
and angular momentum can be added to limit the twisting
angle and velocity.

C. Complete Formulation

The complete problem can be formulated as a nonlinear
programming (NLP) as follows:

min
Γ

N∑
k=1

(
‖q[k]− qnom[k]‖2Qq

+ ‖v[k]‖2Qv
+ ‖r̈[k]‖2

+
∥∥∥ḣ[k]

∥∥∥2

Qh

+
∑
j

‖Fj [k]‖2Qf

)
dt (17)

s.t., for each knot point k = 1, . . . , N and
for each contact point j = 1, . . . ,M

(2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12) (17a)

In the cost function, ‖·‖2Q is the abbreviation for the
quadratic cost with the weight matrix asQ ≥ 0. The terminal
cost is ignored. Instead, the final state is put as an additional
hard constraint in Constraint (12). And new running cost
terms on joint positions and velocities are introduced. The
difference between an initial guess qnom and optimized joint
positions is considered since it does not make any physical
meaning to penalize purely large joint positions. qnom can
be defined as a fixed nominal position which can be the
safest configuration for the robot or a whole trajectory along
the time span from users’ educated guesses or other simple
planners.

IV. HEURISTIC LANDING

Besides the unexpected angular momentum generated
from leg movements, another source of uncertainty comes
from the tracking error. The low-level controller may not
be able to track the optimized jumping trajectory perfectly
in practice. Although in [7] and [17], model predictive
control (MPC) is combined with the whole-body controller
to improve the tracking performance and disturbance re-
jection, the stable margin is still small for bipedal robots.
To tackle this problem, a landing planner is proposed here.
The intuition behind this is that the robot is capable of

adjusting its foot freely once the robot leaves the ground.
If a human tries to jump in-situ but is pushed forward in the
air, the subconscious reaction is to move both legs forward
to catch the landing impact. Similarly, the robot can update
the landing locations even if the state of the robot is not
exactly the same as planned when leaving the ground or
being disturbed in the air.

The ideal approach to update the landing locations may
be model-based optimization techniques. However, the flight
phase may be often too short to apply models considering
momentums like the SRBM and centroidal dynamics. Find-
ing the optimal solution to complex models in a real-time
manner still remains an open question. Meanwhile, the point-
mass models are too abstract to capture the requirements
of computing the optimal landing locations. Inspired by the
Raibert heuristic for hopping [1] and the capture point [29],
the momentum of the robot in the air is used as the heuristic
to update the landing locations. For example, if the robot is
leaving the ground with a non-zero angular momentum along
the y direction, the foot must be moved forward/backward
in the air. The landing locations can be updated based on
momentum feedback as follows:

px = pxnom +W x
l l

x +W x
k k

y (18)
py = pynom +W y

l l
y +W y

k k
x (19)

where px and py denote the updated foot x and y positions
while the z position still follows the optimized trajectory in
the air, pxnom and pynom are the nominal positions which can
be set by users or obtained from the optimized trajectory,
lx and ly are the linear momentum feedback along x and y
directions while kx and ky denote the angular momentum
feedback, and W is the heuristic gain.

Additionally, inspired by the human behavior to increase
the y clearance between two legs when being pushed side-
ways so as to have a larger supporting region for recovery
when landing, an additional term can be added to py to adjust
the y distance between two legs.

∆y = Wc|ly| (20)

Lastly, it is easy for the direct heuristic planner to find
a landing location out of the leg’s reachable region. To
avoid this, the heuristic landing planner is designed with a
saturation function as follows:

pxdes =

{
px if |px| ≤ pxmax

pxmaxsgn(px) if |px| > pxmax

(21)

pydes =

{
py + (−1)i∆y if |p̂y| ≤ pymax

pymaxsgn(py + (−1)i∆y) if |p̂y| > pymax

(22)

where p̂y = py + (−1)i∆y, pxmax and pymax denote the
maximum x and y position that the leg can reach, and i = 0
for the left leg while i = 1 for the right leg. With this landing
planner, the robot can handle both the tracking error when
lifting off and the disturbance in the air. More stable landing
and push recovery in the air can be found in Section VI.



V. JUMPING CONTROLLER

For the low-level control, the goal is to improve the
tracking performance along the optimized jumping trajec-
tory. Although the QP-based whole-body controller is able
to provide compliant behaviors and strong robustness, it
heavily depends on the high quality of the dynamic model
which is often difficult to obtain in practice. Additionally,
jumping is a highly dynamic motion that requires significant
acceleration and control of the fast leg movement is typically
hard. However, inverse kinematics approaches only require
the robot kinematic model which is much easier to make
accurate. Joint-level PD control can benefit humanoid control
due to its modeling error compensation and high updating
frequency [30], [31]. Based on that, a combined low-level
jump controller for each joint is utilized to improve the
tracking performance as follows:

τdes = τff +Kp

(
qd − q

)
+Kd

(
q̇d − q̇

)
, (23)

where Kp/Kd is the P/D feedback gain for each joint. In
Equation (23), the last two terms serve as the joint-level
feedback terms where qd and q̇d are desired joint position
and velocity that can be obtained by solving the leg inverse
kinematics. The first term is treated as the feedforward term
from the operational-space controller. In jumping control,
the feedforward term is computed separately for different
phases. When the robot is in the air without contact, the
robot is following the ballistic trajectory under gravity. The
PD feedback terms in Equation (23) are enough to control the
foot position as commanded by the heuristic landing planner
in Section IV. τff is set as 0 in the air accordingly.

For the liftoff and landing phase where the ground contact
is active for the robot, a weighted hierarchical whole-body
controller is formulated as a quadratic programming (QP) as
follows:

min
q̈,fj

Nt∑
i=1

∥∥∥Jiq̈ + J̇iq̇ − ẍdes
i

∥∥∥2

Wi

+

Nc∑
j=1

‖fj‖2Wf
+ ‖q̈‖2Wq̈

(24)

s.t. Hbq̈ +Cbq̇ +Gb −
Nc∑
j=1

J>cj ,bfj = 0, (24a)

fj ∈ Cj , j = 1, · · · , Nc, (24b)

where Ji is the ith task Jacobian and Nt is the number of
tasks. As we can see, the ith operational task is set as a QP
cost with priority implicitly being enforced with weight Wi.
In addition to the task costs, regularization costs are added
to the decision variables q̈ and fj with small weights Wq̈

and Wf respectively to ensure the overall QP cost is strictly
positive definite even when the task Jacobians contain singu-
larities, which avoids potential numerical issues. In Problem
(24), only the floating-base components of the full-body
dynamics are used. After solving the optimal accelerations
and forces, the joint torques can be retrieved using the joint

components of the dynamics as follows:

τff = Hj q̈
∗ +Cj q̇ +Gj −

Nc∑
j=1

J>cj ,jf
∗
j (25)

In this manner, variables for τ can be removed from the
decision variables to accelerate the QP solving. But we
always assume enough torque that the actuator can provide,
i.e., no torque limits. In order to track the optimized jumping
trajectory, multiple tasks are prioritized in the following
sequence, e.g., the 1st task means the highest priority with
the largest task weight W1).

A. Task 1 - Stance Leg
In general, to ensure the stance leg is nonmoving, besides

Constraint (24b) ensures each contact force is bounded and
lies within the local friction cone Cj which is approximated
by a square pyramid for linearity, the contact acceleration
is also fixed to zero as a hard constraint with the equation
Jcj q̈ + J̇cj q̇ = 0. However, it was treated as the first
task, i.e., a soft constraint with sufficiently large task weight
and ẍdes

1 = 0. This can speed up the QP and give better
numerical stability [30].

B. Task 2 - Linear Momentum
In particular, the linear momentum task consists of both

feedforward and feedback terms, which are specified in the
form of

ẍdes
2 = aref

2 +Kp

(
pref2 − p2

)
+Kd

(
vref2 − v2

)
(26)

where aref
2 , vref2 , pref2 are the linear acceleration, ve-

locity, and position from the optimized jumping trajectory
in Section III, and Kp/Kd is the proportional/derivative
(P/D) feedback gain matrix. The linear components of the
centroidal momentum matrix (CMM) are used as the task
Jacobian.

C. Task 3 - Torso Orientation
Controlling the torso orientation is essential for the angular

momentum compensation during jumping. The task acceler-
ation for all three angles are described as:

ẍdes
3 = αref

3 +KpLog
(
R>3 R

ref
3

)
+Kd

(
ωref

3 − ω3

)
(27)

where αref
3 , ωref

3 , Rref
3 are the desired angular accelera-

tion, velocity, orientation, and the logarithm operator Log :
SO(3)→ R3 converts a rotation matrix to its corresponding
axis–angle representation. In practice, αref

3 is set to 0 since
it is hard to define angular acceleration while ωref

3 and Rref
3

can be obtained from the optimized trajectory.

D. Task 4 - Angular Momentum
With active orientation control in Task 3, the angular

momentum task is of low priority yet to regularize the
rotation of the body. As a result, the angular momentum
task is to damp out excessive angular momentum:

ẍdes
4 = −Kdk (28)

The angular components of the CMM are used as the task
Jacobian.



VI. RESULTS

In this section, various jumping tasks of simulation and
hardware experiments for BRUCE are conducted to verify
the capability of the proposed dynamic jumping framework.
The open-source simulator Gazebo [32] with the ODE
physics engine is used as the simulation environment. All
the trajectories of the following jumping tasks are generated
using the jumping planner with centroidal momentum in
Section III. With warm start techniques, the solving time
varies from around 10 sec to 5 mins depending on the
complexity of the task using the SNOPT solver [33] in Drake
[34]. To update landing locations in the air, the foot trajectory
along x and y directions are updated with the interpolation
of the desired foot locations from the landing planner in
Section IV while it is still following the optimized trajectory
along the z direction. The low-level jumping controller tracks
the modified trajectory with the off-the-shelf QP solver
OSQP [35] which can achieve a 500 Hz updating frequency,
sufficient for real-time feedback control. All of the following
experiments can be seen in the accompanied video.

A. Basic Jumping

To verify the capability of the jumping motion planner,
the trajectories for different basic jumping tasks including in-
situ jump, directional jump, and twisting jump are generated
offline. For these tasks, only minor changes are required for
the Constraint (12) in Problem (17), e.g., the twisting angle,
desired COM final positions, etc. As shown in Figures 2
and 3, BRUCE is able to accomplish a natural jumping and
land stably. The active rotation of BRUCE’s body during the
liftoff phase can be noticed. Since the centroidal dynamics
consider leg inertia which is dependent on joint configura-
tion, the planner optimizes the body rotation to compensate
for the angular momentum generated from leg movements.
Actually, this is exactly what human does when jumping. In
order to jump higher, humans would lean their body forwards
when squatting and then suddenly rotate the body backward
to lift off. With the proposed framework, BRUCE is able
to achieve a more natural in-situ jumping motion which
involves squatting before the liftoff and lowering the body
to relieve the impact after landing.

Meanwhile, the QP-based whole-body controller (24) is
able to track the COM position and velocity very well in
practice with a large linear momentum task weight as shown
in Figure 3. However, due to the small task weight on the
torso orientation tracking, even with the optimized body
rotation for angular momentum compensation, the angular
momentum along the y direction is still not negligible leading
to decreasing pitch angle of the body in the air. With the
proposed landing planner in the air, the robot is still able
to land safely with adjusted landing locations. Note that the
body pitch angle is first increasing although with a decreasing
trend. This is because the landing planner commands both
legs to move forwards. In the ideal case, the body orientation
can be kept still. However, the inertia of the body is not big
enough compared to the leg inertia for BRUCE. As a result,
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Fig. 3. In-situ jumping trajectory for BRUCE. Shaded regions represent
the flight phase.

Squat Liftoff Flight Landing

Fig. 4. Screeshots of BRUCE step jumping onto a 5cm step. Motion
sequence starts from squatting, then lifting off, to the flight phase, ends
with a stable landing.

the body will rotate instead of purely moving legs due to the
conservation of angular momentum.

The directional jump and the twisting jump are also
conducted in both the simulation environment and the actual
robot hardware as shown in the accompanied video. To report
here, the maximum jumping height (COM z position change)
is around 15 cm (22.7% of its total height). The maximum
jumping distance and twisting angle are around 10 cm and
30 deg. The main limitation here is that the desired landing
locations cannot be reached with respect to the global frame
due to the accompanied body rotation described previously.

B. Step Jumping

By combining the basic jumping motions, BRUCE is also
capable of jumping onto a 5cm step and jumping downwards



as shown in the accompanied video with the proposed
jumping framework. Note that the step height is chosen to be
conservative in this experiment. In Figure 4, BRUCE leans
the body forward when squatting and then extends the leg
while rotating backward to lift off. As a result, a large portion
of the angular momentum generated from the leg movement
is compensated while the heuristic landing planner adjusts
the landing location in the flight phase to balance out the
remaining nonzero angular momentum. When landing, the
robot tends to lower the body first to buffer the impact.
And eventually, it recovers to the nominal configuration and
prepares for the next jump on the step.

C. Push Recovery

To verify the robustness of the landing planner proposed
in Section IV, a push recovery test is conducted. In the
simulation, BRUCE is commanded to jump in-situ and a
constant 70 N pushing force with a duration of 0.01 s is
respectively applied to the torso of the robot along x and y
directions after 0.03 s in the air. Note that the flight phase
is only around 0.2 s. Due to the choice of momentum as the
heuristic, the landing planner is able to compute the desired
landing positions very fast and leave enough time for the
low-level controller to move its legs.

The simulation results are shown in Figure 5. When the
robot is pushed along the +x direction, COM x velocity
changes immediately and the angular momentum along the
y direction increases since the force is applied on the torso
leading to a body rotation. As a result, Equation (21) com-
mands a forwarding landing position. Similarly, in Figure
5(b), COM y velocity and the angular momentum along
x direction change accordingly when pushed. Since the y-
clearance term in Equation (20) is applied to the two legs
with a different sign, Equation (22) moves the left foot along
+y direction significantly while the right foot is not changed
too much. As a result, the distance between the two legs is
becoming larger to increase the capability of the robot to
stay balanced when landing along the y direction. However,
in both cases, although the foot is already in the commanded
position with respect to the body frame, the tracking of the
foot position with respect to the global frame is not perfect
since the rotation of BRUCE’s body is inevitable when
commanding to move legs in the air due to the comparable
inertia of the body and legs.

D. Somersault

To further explore the dynamic capability of BRUCE
and the potential of the proposed jumping framework, a
somersault is achieved in the simulation using the proposed
approach. Due to the quaternion representation of the orien-
tation in Problem (17), the planner is able to deal with the
task that requires the body of BRUCE to rotate 360 deg. In
Figure 1, BRUCE executes a somersault to jump off of a 35
cm platform. The actual actuator of BRUCE is not powerful
enough to support the somersault in-situ. After relaxing the
torque limits in the simulation, BRUCE is able to perform a
somersault in-situ as shown in Figure 6.

Fig. 5. Simulation results of push recovery. The shaded region represents
the 0.01s duration of the push while the graph only shows the trajectory of
the flight phase. (a) Push along +x direction. (b) Push along +y direction.

Fig. 6. Somersault of BRUCE in-situ with relaxed torque limits.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, a complete dynamic jumping framework
for bipedal robots with a novel heuristic landing planner
is presented. Specifically, the high-level jumping planner
with centroidal momentum is solving a NLP offline to get
the local-optimal jumping trajectory, which is a series of
motions similar to human jumping including squatting before
liftoff, body lowering after landing, and body rotating to
compensate for the angular momentum. To deal with the
tracking error when lifting off and possible disturbances
in the air for safer landing, the heuristic landing planner
updates the landing positions in a real-time manner during
the flight phase based on the momentum feedback. To the
best of our knowledge, this is the first approach to take
advantage of the flight phase to reduce the impact of the
jump landing which is implemented in the actual robot.
The low-level whole-body controller is finding the required
joint torques to best accomplish the operational-space tasks



by solving a small-scale QP, which guarantees the global
optimality and ensures a 500 Hz updating frequency. With
this framework, a miniature bipedal robot, BRUCE is capable
of directional jumps, twisting jumps, jumps with push in the
air, and somersaults, which demonstrates the versatility and
robustness of the framework.

In the future, a better performance in the actual hardware
can expected if the robot, BRUCE can be upgraded with a
more optimized mass distribution. The more inertia lumped
into the body, the more benefits the proposed framework can
get to control the actual hardware. Due to the long solving
time of the jumping planner, an offline motion library like
[36] is under exploration as well for online dynamic behavior
execution.
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