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Abstract— Navigation of terrestrial robots is typically ad-
dressed either with localization and mapping (SLAM) followed
by classical planning on the dynamically created maps, or
by machine learning (ML), often through end-to-end training
with reinforcement learning (RL) or imitation learning (IL).
Recently, modular designs have achieved promising results, and
hybrid algorithms that combine ML with classical planning
have been proposed. Existing methods implement these combi-
nations with hand-crafted functions, which cannot fully exploit
the complementary nature of the policies and the complex
regularities between scene structure and planning performance.

Our work builds on the hypothesis that the strengths and
weaknesses of neural planners and classical planners follow
some regularities, which can be learned from training data,
in particular from interactions. This is grounded on the
assumption that, both, trained planners and the mapping
algorithms underlying classical planning are subject to failure
cases depending on the semantics of the scene and that this
dependence is learnable: for instance, certain areas, objects or
scene structures can be reconstructed easier than others. We
propose a hierarchical method composed of a high-level planner
dynamically switching between a classical and a neural planner.
We fully train all neural policies in simulation and evaluate
the method in both simulation and real experiments with
a LoCoBot robot, showing significant gains in performance,
in particular in the real environment. We also qualitatively
conjecture on the nature of data regularities exploited by the
high-level planner.

I. INTRODUCTION

Large-scale machine learning has had a significant impact on
robotics, and in particular on navigation of mobile robots,
where end-to-end training in simulated 3D environments
like Habitat [1] and AI-Thor [2] has been proposed as an
alternative to classical map and plan baselines. The potential
advantages of learning to plan with high-capacity deep neural
networks are the promise of complex decision functions,
able to cope with large amounts of noise, sensor failure
and unmodeled disturbances, and complex dependencies on
scene semantics, which are difficult to design with hand-
crafted algorithms. This complexity comes with a price,
the dependency on massive amounts of training data in the
form of 3D scene models loaded into simulators. While
the amount of data seen during training can be almost
unlimited (modern models are trained on typically 100M
— up to 7B environment steps [3]), the main factors of
variation are the number of scenes, which are limited due
to the required effort of scanning physical buildings. Current
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Fig. 1: In indoor navigation problems, we present an agent
which can resort to two different strategies, a trained neural
planner and a classical planner based on occupancy maps. An
additional high-level governor is trained to switch between
the two strategies based on learned regularities between
planning performance and scene semantics, for instance that
high chairs are not well reconstructed and lead to bad
performance of a classical map-and-plan solution. We train
in simulation and evaluate in, both, simulation and an office
building using a real robot.

datasets contain dozens or hundreds of scenes [4], [5], with
up to 1000 scenes for the latest HM3D dataset [6]. Lack
of sufficient diversity in scenes and the sim2real gap — the
difference between simulation and real environment — limit
the transfer of navigation performance to real environments.

For these reasons, classical map and plan baselines [7], [8]
are still competitive in many situations where the navigation
task itself does not depend on complex high-level visual
reasoning, and where maps can be estimated with sufficient
reliability. In this work we ask two scientific questions: (1)
are trained and classical planning strategies complementary
and excel in different situations, and (2) can these different
types of situations be clearly distinguished from visual
observations, making it possible to exploit these regularities?

We explore these questions in a series of experiments
and propose a new hybrid method combining classical and
neural planning. Compared to existing hybrid solutions in
the literature [9], [10], [11], our method is based on a
trained combination. A high-level planner, trained with RL,
dynamically switches between the two alternative planning
methods and learns to adapts to the situation at hand, as
shown in Fig. 2. To this end, it receives as input features
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extracted from first-person images, which may be useful to
exploit correlations between scene semantics and planning
performance. We also experiment with a variant which takes
the high-level decision on, both, the first person input and
occupancy map. The exact regularities picked up by the high-
level planner may be complex, and we attempt to answer this
question in the experimental part of this paper. To further
motivate this approach beforehand, we mention possible
scenarios: 3D scene structures difficult to reconstruct and to
project into an occupancy map might be recognizable from
their first person depth input, or linked to their semantic
class and recognizable from the first person RGB input;
2D structures in the occupancy map harmful to classical
or neural planning could be detectable directly; the trained
low-level planner might be subject to biases picked up in
simulation from spurious correlations, and these biases might
be learnable by the high-level planner, switching over to
classical planner when needed.

We claim the following contributions:
• a hybrid method switching between complementary

navigation strategies based on a high-level planner
trained with reinforcement learning on dense reward
(geodesic distance to the goal).

• Large-scale training in 3D photorealistic simulation
using complex first person RGB-D input.

• Transfer from simulation to a real environment and
extensive experiments with a LoCoBot mobile robot.

II. RELATED WORK

Navigation with mapping and planing — is the core capa-
bility of service robots since their introduction [12]. Classic
navigation stacks often assume access to a pre-scanned map
of the environment [12], [7], [8] and are composed of three
main modules: mapping and localization using visual or
Lidar SLAM [13], [14], global planning with, for example,
A* [15] or Fast Marching Method (FMM) [16], and low-
level local path planning to reach intermediate waypoints
[17], [18]. The classical planner used in this work does not
have access to the environment map where it is deployed.
It uses depth images and odometry to incrementally build a
2D egocentric occupancy map and localize the agent on it,
while planning is done using FMM.
End-to-End navigation — directly trains an agent to pre-
dict actions from observed input, either with reinforcement
learning (RL) or imitation learning (IL). Given the partial
observable nature of the problem, the agent keeps latent
memory, typically through a recurrent neural network. Ad-
ditional structured neural memory has been proposed, e.g.
neural metric maps [19], [20], semantic maps [21], neural
topological maps [22], [23], [24], [25] or implicit representa-
tions [26], [27]. Recently, it has also been proposed to replace
recurrence by Transformers [28] with self-attention over the
history of observations [29], [30], [31], [32].
Modular and hybrid navigation — Modular approaches
decompose planning hierarchically. While the option frame-
work [33] provides a generic solution in the context of
planning with RL, specific solutions have been proposed

for navigation. Typically, waypoints are proposed by a high-
level (HL) planner, and then followed by a low-level (LL)
planner. In one line of work, the HL planner is a trained
model, which triggers actions by the LL planner, which
is either also trained [34] or classically based on shortest
path calculations on a map [21], [35] or optimal control
[36]. In the complementary line of work, the HL planner
is based on classical optimization based algorithms, e.g.
Probabilistic Roadmaps [11] or shortest-path calculations in
a high-level graph [37]. Both of these solutions defer point-
to-point navigation to a LL planner trained with RL.

Hybrid methods combine classical planning with learned
planning. Some of the modular approaches mentioned above
can be considered to be hybrid, but there exist hybrid
approaches in the literature which combine different planners
more tightly and in a less modular way. In [10] and similarly
in [9], a planner trained with RL generates trajectories,
which are used to generate a cost-map used by a classical
planner. In [38], a neural planner generates UAV trajectories
which are then used by a model-predictive control as support
for optimization. Neural-A* learns a model predicting a
cost-map for planning with a differentiable version of A*,
backpropagating a supervised loss through it [39]. Similarly,
Cognitive Mapping and Planning [40] learns a mapping
function by backpropagating through a differentiable planner,
in the form of Value Iteration Networks [41]. In [25], a
graph-network is imbued with inductive bias for planning
with the Bellman-Ford algorithm. In [42] both planners are
neural, but one is blind.

All these existing solutions combine planners with dif-
ferent but handcrafted designs. In contrast, our method dy-
namically switches between types of planners with a trained
model. Similar to our approach, in [43] a HL planner is
trained on a schematic simulation to switch between a classic
model-based planner and a learned planner for dynamic
obstacle avoidance. However, this work considers a simple
2D set-up where all planners have access to the full map of
the environment, perfect 360◦ Lidar scans and exact obstacle
positions, while our methods only access noisy first-person
images in a realistic 3D simulator and a real robot. Also,
the HL planner in [43] tackles the considerably simpler task
of selecting one of two options tailored to two different
situations: efficiently navigate to a goal or avoid dynamic
obstacles. In contrast, our HL planner has to learn to exploit
subtle correlations between scene structure and semantics
and planning performance to combine LL algorithms that are
designed for the same task with comparable performance.

III. LEARNING TO CHOOSE PLANNERS

We address the PointGoal task where an agent receives
a visual observation ot ∈ R4×H×W (an RGB-D image)
and a Euclidean goal compass vector Gt at each time
step t and must take actions at in a discrete action space
Λ = {MOVE FORWARD 25cm, TURN LEFT 10◦, TURN RIGHT

10◦ and STOP}. The STOP action terminates the episode
successfully if the agent is within 0.2m of the goal, or
unsuccessfully if not.
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Fig. 2: We distribute navigation decisions over two different planners: a trained low-level planner πn takes RGB-D first-person
input, and a classical planner πc takes a metric occupancy map Mt as input. A high-level planner πh exploits regularities
between scene elements and planning performance and learns to take a binary decision between these two planners, based
only on first person inputs. The hidden state of the recurrent policy πn is updated even when the classical planner is used.

As shown in Fig. 2, our method takes decisions at each
time t on whether to choose an action predicted by a
neural planner πn or a classical planner πc. We will first
introduce each low-level planner and then the high-level
governor πh. In what follows, superscripts .n, .c and .h do not
take numerical values but rather denote choices between the
neural, classical, or high-level planner, respectively. Network
architectures of all trainable functions will be provided in
section III-D.

A. The neural planner

The neural planner πn is trained in simulation to directly
predict navigation actions ant ∈ Λ from visual input ot. It
sequentially builds a representation ht from the sequence
{ot′}t′<t of visual first-person observations, and then pre-
dicts a distribution over actions,

ht = fn(ht−1, v(ot),a
n
t−1), (1)

p(ant ) = πn(ht, Gt), (2)

where fn is the update function of a recurrent GRU network,
with gates omitted from the notation for convenience; v is a
visual encoder, i.e. a trained ResNet extracting features from
observations.

We train this planner end-to-end with PPO [44] with the
reward definition from [45],

rt = K · Isuccess −∆Geo
t − λ, (3)

where K=2.5, ∆Geo
t is the gain in geodesic distance to the

goal, and slack cost λ=0.01 encourages efficiency.

B. The classical planner

Numerous algorithms and implementations exist for planning
based on dynamically estimated maps. We use the map and
plan baseline approach proposed in [40], which maintains
an egocentric metric occupancy map Mt ∈ [0, 1]N×M ,
called “Egomap”, over time by first inversely projecting the
depth channel of the visual observation ot (using intrinsics

of the calibrated camera) and then pooling the resulting
point cloud to the ground, resulting in a local bird’s-eye-
view map for this observation. Consecutive maps are aligned
with odometry and integrated with max pooling, as in [21].
Planning is performed on this map using FMM [16].

The action space of a planner based on shortest path cal-
culations is inherently tied to the underlying representation
it uses for planning, which in our case is the resolution of
the metric map Mt: a navigation action is a part of a path
in the graph structure of the map Mt, i.e. the choice of
an edge between two nodes. However, to align the action
spaces of the two complementary navigation strategies, we
chose to translate these predictions into actions taken from
the discrete alphabet Λ of the downstream navigation task.
This not only facilitates the design of the high-level planner,
but also allows to run both low-level planners simultaneously
and maintain their respective states, as will be discussed in
the next section. This translation is done with a well-known,
publicly available, map and plan baseline1.

C. The high-level planner

The high-level planner πh takes a binary decision dt ∈ {0, 1}
on the choice of planners, such that the final navigation
action at is given as

at = dta
n
t + (1−dt)a

c
t . (4)

The planner is implemented as a recurrent policy, which
maintains a hidden state rt with a GRU, denoted as fh, and
which takes as input features extracted from the first person
input ot,

rt = fh(rt−1, v
′(ot), dt−1), (5)

p(dt) = πh(rt, Gt). (6)

The feature extractor v′ has the same architecture as v in
Eq. (1) and it is fine-tuned from the trained version of v.

1https://github.com/s-gupta/map-plan-baseline

https://github.com/s-gupta/map-plan-baseline


The high-level planner is trained with PPO end-to-end,
jointly with the encoder v′, with a reward used for the
neural low-level planner in Eq. (3). We train with vectorized
environments and maintain 12 agents per batch. The neural
planner πn is operated in parallel to the classical one
πc, and its hidden state ht is updated with Eq. (1), even
if it has not been chosen by the high-level planner, by
providing it with the action taken by πc. This allows the
neural planner to maintain a spatial internal representation
during navigation consistent with what it experienced during
training, regardless of its actual use in the hybrid setting. Two
key design choices were necessary to make this possible:
the alignment of the action spaces of the two planners (see
Section III-B), and the possibility of updating the internal
state h with an action different from the one predicted by
the agent πn itself. The latter is enabled through sampling
actions stochastically from the predicted discrete distribution
p(ant ) during training; this leads the agent to update its
internal (spatial) representation of the scene not based on its
previously predicted action, but on the effectively performed
previous action at−1 input to the policy in Eq. (1).

We add two remarks here. First, during training, we sample
from the predicted distribution p(ant ), which is different from
the distribution of frequent action choices by the competing
classical planner πc — we chose to ignore this difference.
Second, as in large part of the literature, we train with-
out actuation noise, i.e. the previous action at−1 provides
the exact odometry information during training. Previous
work [46] shows that doing so improves performance in real-
world experiments. At testing the learned policy is directly
transferred to the noisy setting.

D. Network architectures

The visual encoders v and v′ are ResNet18 [47] architectures.
The recurrent policies are composed of GRUs fn and fh

with 2 layers and hidden states of size 512. Previous actions
ant−1 and goal compass vector Gt are encoded with learned
embeddings of size 32.

IV. EXPERIMENTAL RESULTS

Experimental setup — all training was performed in sim-
ulation only with the Habitat simulator [1] and scenes from
the Gibson dataset [4], which contains 3.6M episodes over
72 different scenes for training, and 994 navigation episodes
over 14 scenes for validation. We test the system in both
simulation, with additional noise, and a real physical robot,
in particular a LoCoBot robot [48] [ ] equipped with an
Intel RealSense D435i RGB-D camera and a single-ray Lidar
of type RPLIDAR A2M8.

The agent receives an RGB-D observation of size
160×120 pixels at each step, which in simulation matches
the extrinsic and intrinsic parameters (position, the field
of view and aspect ratio) of the onboard camera on the
LoCoBot. It also gets a goal compass vector in the form of
the Euclidean distance and direction, provided as privileged
information in the simulator, and by the robot’s position es-
timation system in experiments with the real physical robot.

11
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Fig. 3: Training pipeline and data splits: training the
hybrid planner πh requires a custom data split, as training
needs to be performed on data which have not been seen
during training of the low-level neural planner πn. →θ indi-
cates training network parameters with SGD training; →A
indicates architecture optimization (manual, through “grad
student descent”). We accepted some overlap in optimizing
hyper-parameters, see the text. However, evaluation was
performed only on scenes unseen during training and hyper-
parameter optimization.

In the robot experiments this is done using the default ROS
implementation of the Adaptive Monte-Carlo Localization
algorithm [13], which is based on RTAB-Map, a 2D metric
representation [14] generated from Lidar input. The Lidar is
only used to localize the robot, while sensing, mapping and
planning are based solely on RGB-D camera input.
Simulator settings — we removed the possibility of the
robot to slide across the walls (sliding OFF). This makes
the PointGoal navigation task more challenging for both
low-level planners, and previous work [46] finds this setting
crucial for real-world deployment. We configure the Habitat
simulator and adjusted it to the properties of the physical
robot (LoCoBot) and its sensors: FOV of 56° camera, frame
size of 160×120 and a compatible camera position. For the
experiments which involved evaluation in simulation, i.e.
Tables I, II and III, we used a second simulator configuration
which is compatible with the prior work [49], [50]. It
includes a FOV of 79° and camera frames of size 256×256.
Data splits and training pipeline — as usually done in the
relevant literature, we report results on the validation set of
the Gibson dataset, as the test set is not available. However,
to obtain optimal performance, this requires additional splits
for validating the different models (hyperparameter optimiza-
tion). In our case, differently from the classical settings, we
require additional splits due to the fact that the high-level
planner is trained on output of the neural low-level planner.
Therefore, the high-level planner πh needs to be trained on
data different from training πn, in order to avoid a potential
bias of πh trained on an overconfident πn overfitting on its
training environment and leading to skewed decisions. We
therefore introduced an additional dataset split called Gibson-
custom which consists of 1036 episodes over 14 unused
scenes selected from the full Gibson dataset.

Figure 3 illustrates the training pipeline. The neural low-
level planner πn is trained on the Gibson training set.
The high-level planner is trained on the custom split, and
the Gibson validation set is used to report results. The



Agent Input Train-N Test-N Succ. SPL
Neural RGB-D ✗ ✗ 90.94 77.14
Neural RGB-D ✗ Redwood+ 87.87 74.21
Neural RGB-D Redwood+ Redwood+ 89.24 75.92
Classical Egomap N/A ✗ 87.93 79.69
Classical Egomap N/A Redwood 78.67 72.17

TABLE I: Performance of different low-level planners in
simulation (Gibson-val), where N is the noise model. The
table shows how the difference between Redwood and Red-
wood+ impacts the neural planner.

Agent Success SPL
Classical only (πc) 78.67 72.17
Neural only (πn) 89.24 75.92
Random HL-decisions 88.88±1.4 73.78±1.1

Hybrid (Ours) 90.64 75.62

TABLE II: Performance of the hybrid method in simula-
tion, tested with Redwood+ Noise.

hyper-parameters (network architectures A) of the low-level
planner πn have been optimized on Gibson-custom. In other
words, we accepted a small possibility of training πh on
overconfident decisions based on validation overfit, but we
judged this risk to be small. To work around the requirement
of one more data split to optimize the hyper-parameters of
the high-level planner, we optimized them using a proxy
task, namely exploration. More precisely, we use the network
architecture of the high-level planner in [35]. This planner
provides high-level decisions of different nature, waypoint
coordinates followed by a low-level planner, and we adapted
its later layers to take binary decisions instead. These deci-
sions did not interfere with the soundness of the evaluation
protocol: all evaluation was performed only on scenes unseen
during training or hyper-parameter optimization.

A. Quantitative Results

Performance of the low-level planners — we evaluated
the two low-level planners in simulation and report results
in Table I in terms of Success and Success weighted by
(normalized inverse) Path Length (SPL) [51]. We explored
different noise types on the depth observation, which is used,
both, as input to the neural planner and to generate the
Egomap for the classical planner. Redwood noise [52] is
often used in evaluation of navigation, and we also explored a
variant which we call “Redwood+” in Table I. It is motivated
by the observation that in the standard Habitat implemen-
tation of the depth noise model, a depth D above a given
threshold T was set to zero2, i.e. if(D>T)D=0, which is
the inverse behavior of the noiseless setting, which truncates
depth, ie. if(D>T)D=T. We argue that this extremely strong
discrepancy does not fall into the category of noise but rather
to a change in the nature of the sensor (it corresponds to
the behavior of certain depth sensors like Kinect), degrades
transfer and does not allow a sound evaluation; we therefore

2https://github.com/facebookresearch/habitat-sim/blob/
d3d150c62f7d47c4350dd64d798017b2f47e66a9/habitat_sim/
sensors/noise_models/redwood_depth_noise_model.py#L73

— Input to πh — Success SPL
1st person Egomap∗

RGB-D ✗ 90.64 75.62
RGB-D ✓ 90.85 75.78

✗ ✓ 89.03 74.87

TABLE III: Impact of the privileged map information on
the high-level planner: simulation with Noise on Gibson-val.

Agent Success SPL SPLSucc

Classical only (πc) 33.33 27.19 81.57
Neural only (πn) 100.00 58.55 58.55
Hybrid (Ours) 100.00 72.50 72.50

TABLE IV: Performance of the hybrid method in the
real environment: A LoCoBot in a real classical European
office building, on 12 test episodes. SPLSucc indicates the
SPL metric only for the episodes which were succeeded.

replaced this zeroing version with the truncating variant. This
difference mostly has an impact on the neural planner, not
the classical one.

As we can see in Table I, the planners perform similarly in
the noiseless environment. However, the classical planner’s
performance drops significantly in the noisy environment,
due to a degraded quality of the Egomap on which planning
is performed. The impact of noise on the neural planner is
less pronounced.
Hybrid planning in simulation — Table II compares
performances of the low-level planners with the proposed hy-
brid planner. The hybrid planner outperforms both low-level
variants in the Success rate, and also outperforms the baseline
random high-level decisions. This version of the HL-planner
takes as input the first-person RGB-D observation and thus
exploits regularities between the currently observed scene
structure and low-level planning performance.

We also explored whether there exist correlations between
the 2D structure of the occupancy map and performance of
the two low-level planners and a high-level planner on this
input, additional to first-person input. As a proof of concept,
and to minimize the impact of noise and purely focus
on scene structure, we performed this experiment with a
noiseless Egomap∗ generated through privileged information
in the simulator. Results in Table III show that the impact of
the scene structure is minimal.
Experiments with a real robot — we carried out 12
episodes with the LoCoBot in a classical European office
building (see Figure 1) with multiple rooms and challenging
situations, like thick carpets and multiple big windows that
pose problems to the onboard depth sensors. We report re-
sults in Table IV shows that the hybrid solution outperforms
both individual standalone low-level planners significantly.

The low performance of the classical planner is explained
by the fact that the maps it produces are noisy. One particular
aspect we can single out is the choice of map integration over
time as in [21], which uses max pooling to combine the
bird’s-eye-view estimate of the latest observation with the
current global bird’s-eye-view map. This choice is simple

https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L73
https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L73
https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L73


Fig. 4: Rollouts of four episodes in different environments: the robot starts at ■ and has to reach the goal position ■.
Top row: comparing trajectories taken by the trained neural planner, classical planner and our hybrid planner. Bottom row:
each step of the hybrid planner path in the top row is colored with the chosen low-level planner, neural or classical.

Fig. 5: Failure cases: Two examples where the hybrid
planner perform worse than the neural and classical planners.

to implement but not as robust as state-of-the art Lidar
based solutions like RTAB-Map, that feature a sophisticate
probabilistic model and loop closure. Our choice is motivated
by the objective to minimize the algorithmic sim2real gap of
the two representations: the current state-of-the-art mapping
solutions are difficult to integrate into a simulator like
Habitat. The goal of these experiences is not to achieve
state-of-the-art performance in planning, but to study the
possibility of learning regularities in planning performance.

Another reason of the low classical planner’s performance
is the lack of high-level reasoning in case of missing infor-
mation. The planning algorithm assumes that any unobserved
area in the map is navigable, it corrects these estimates when
a new observation becomes available and re-plans. This leads

to backtracking and long trajectories. In contrast, the neural
planner takes decisions not based on a 2D occupancy map
but on first person input, which provides better cues on dead
ends. It can also learn higher-level visual reasoning from
a large amount of environment interactions and can avoid
situations where backtracking would be needed otherwise.
To quantify this behavior, in Table IV we also provide an
additional metric, SPLSucc, which corresponds to the SPL
metric only for the successful episodes by the respective
planner. This metric is high for the classical planner, which
is efficient in cases where it does not get lost in local minima
and requires extensive backtracking, leading to exceeding the
maximum number of steps the task allows (=500).

The hybrid planner achieves the same 100% success rate
as the standalone neural planner, but with a better SPL
metric (72.50 instead of 58.55), which indicates that it is
more efficient. The neural planner indeed spends more time
exploring, which makes it more robust than the classical
planner in certain situations but can also be harmful in others.
The hybrid planner manages to combine both advantages by
dynamically switching between them.

B. Qualitative Results

Sample trajectories in simulation — Figure 4 shows four
episodes in different environments. The top row of pictures
compares the behaviour of the neural, classical and hybrid



Mt + ptRGB observation               Depth observation             GT map and current path             (occ. map, shown allocentric)
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Fig. 6: A rollout of an episode, showing inputs and representations. We overlay the current path over the ground-truth (GT)
map, color coding neural steps and classical steps. The robot starts at ■ and has to reach the goal position ■. For better
comparability, the Egomap Mt is shown here not as an Egomap but in an allocentric frame. The big black arrows indicate
parts of the map corresponding to the scene shown in Figure 1.

planners. The bottom row shows the decisions taken by
the hybrid planner in each episode. Our hybrid solution
combines the low-level planners to solve long-horizon nav-
igation tasks by exploring complex unknown environments,
maneuvering in narrow spaces and efficiently reaching the
goal. The hybrid planner starts episodes by using mainly the
neural planner, which has better exploration capabilities. The
neural planner is the preferred choice when the robot has to
pass through a narrow corridor, as in the 3rd example. The
classical planner is frequently employed towards the end of
the episodes, when the path to the goal is clearer, as in the
4th example.

While the proposed hybrid approach has on average better
navigation performance, this strategy can occasionally per-
form worse than the individual low-level planners. Figure 5
shows two typical failure cases: on the left, the hybrid
planner selects the neural planner to start the episode, but it
explores the wrong side of the scene, so the hybrid planner
has to take a long detour to reach the goal. On the right, a
more rare but dramatic failure case occurs when the hybrid
planner, driven mainly by the neural planner, gets lost and
starts to frenetically explore the environment. We conjecture
that this might be due to few actions executed by the classical
planner that put the neural planner in an unstable state.
Example robot rollout — Figure 6 shows an example
episode rollout for three time instants t = 17, 34, 99, includ-
ing the first person input ot (RGB and depth), the GT map
with the overlaid path and color coded high-level decisions,

as well as the occupancy Egomap Mt — which we display in
an allocentric way (and not as an egocentric map) for better
comparability with the GT map. During the episode, we can
notice that the HL planner relies more on the neural planner,
which is more capable of navigating through narrow spaces
encountered in this episode, except when the robot deviates
from the most promising direction (towards the door) and
the classical planner is chosen. Indeed, until t = 17, the
classical planner dominate the HL decisions, and guides the
robot towards the goal. After a segment where the neural
planner is chosen, at t = 34, the classical planner takes over
again to readjust the direction of the robot; then, until the
end of the episode, the HL planner switches again to the
neural one to traverse the final narrow passage.

V. CONCLUSION

We have presented a hybrid method for navigation in real
environments, which combines advantages of classical plan-
ning methods based on occupancy maps and shortest path
computations with the power of neural methods trained in
large-scale 3D photo-realistic simulations. We used RL to
train a neural HL planner to dynamically switch between the
two different LL planners and showed that they are comple-
mentary. Our experiments provide evidence for correlations
between the observed scene structure and the difference in
planning performance between the two LL planners, which
are exploited by the hybrid solution. We have evaluated
the proposed method in, both, simulation and a robot in



a real office building, showing that the learned regularities
transfer well. Future work will focus on learning the high-
level decision on real data in the form of offline trajectories
captured with a physical robot.
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