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Abstract— For a class of biped robots with impulsive dynam-
ics and a non-empty set of passive gaits (unactuated, periodic
motions of the biped model), we present a method for computing
continuous families of locally optimal gaits with respect to
a class of commonly used energetic cost functions (e.g., the
integral of torque-squared). We compute these families using
only the passive gaits of the biped, which are globally optimal
gaits with respect to these cost functions. Our approach fills in
an important gap in the literature when computing a library
of locally optimal gaits, which often do not make use of these
globally optimal solutions as seed values. We demonstrate our
approach on a well-studied two-link biped model.

I. INTRODUCTION

The field of bipedal locomotion has made substantial gains
in the past few decades with an eye (and leg) towards
future commercialization. At the core of these gains are gait
generation algorithms that provide higher-level planners and
controllers with reference trajectories for moving the robot
from one location to the next. While the goal is often to gen-
erate gaits that are energetically optimal in order to prolong
onboard battery life, most approaches in the literature only
provide local, typically point-wise, information of a biped’s
set of optimal gaits. To the best of our knowledge, there are
very few works that attempt to understand global properties
of families of energetically optimal gaits.

In this paper, we explore an outstanding problem in
bipedal locomotion: what is the relationship between passive
dynamic walking (PW, gaits that are capable of walking with
zero actuation under the influence of gravity) and the set of
actuated, energetically optimal, walking gaits in a biped’s
trajectory space (the set of all motions satisfying the biped’s
hybrid equations of motion)? Our approach is unique in
that our results capture the connectivity properties of the set
of energetically optimal gaits and demonstrates an explicit
connection between PW and actuated gaits that are locally
optimal in a biped’s trajectory space (see Figure 1).

In particular, we demonstrate how to transform a para-
metric, equality-constrained optimization problem into an
implicit function that defines a manifold of energetically
optimal gaits (stationairy points of the parametric optimiza-
tion problem) for bipeds modeled as impulsive dynamical
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Fig. 1: A demonstration of our approach on (a) a two-link biped robot with
an actuator at the hip using (b) a passive (i.e., unactuated) dynamic walking
motion of the biped model to compute continuous sets of energetically
optimal actuated gaits, including (c) gaits that walk on level ground. (d)
Using a single passive gait as a seed value from a family of unactuated
gaits (green curve), we are able to generate a curve of gaits with the same
walking speed across a range of slopes (black curve in gray plane) and then
switch to generating a curve of gaits that walk on level-ground across a range
of walking speeds (black curve in yellow plane). (e) Examples of locally
optimal actuation profiles generated for a fixed speed and range of slopes
in between gaits depicted in (b) and (c). The example gaits are highlighted
in (d) using a green to yellow color gradient between the seed value and
level-ground walking gait. The model is scaled with time measured in units
of t0, torque in units of u0, and speed in units of v0 (see Table I).
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systems with instantaneous impacts and parameterized open-
loop control inputs. The use of an implicit function to define
a manifold of optimal gaits motivates our use of numerical
continuation methods to trace a subset of these gaits across
1D slices on the manifold. These slices are user-defined and
can be used to generate curves of gaits across a range of
operating points such as slopes and walking speeds (see
Figure 1).

The goal of our work is to demonstrate how to systemat-
ically generate families of optimal gaits and to analyze the
effect of seeding these families with PW gaits, which for
many common metrics of energetic efficiency are globally
optimal solutions. Our contributions are

1) the conversion of a parametric optimization problem
into an implicit function whose solution set can be
traced using numerical continuation methods,

2) an approach for generating a continuous family of
energetically optimal gaits with respect to state, input
parameters, and step duration, and

3) the use of passive dynamic walking gaits as seed values
to generate optimally actuated walking gaits.

A common task in bipedal gait generation is to build a
library of optimal gaits over a range of operating points,
such as slopes and average walking velocities in a biped’s
trajectory space with respect to a parameterized input forcing
function [1], [2], [3], [4].

This work constructs a library of gaits that builds upon
the methods and ideas in [4], [5], which treat the gait
generation problem as tracing implicitly defined curves of
periodic motions. These curves can be traced using numerical
continuation methods [6], which are a class of algorithms for
computing solutions of a system of parameterized equations.

A unique contribution of this work when compared to [4]
is the ability to directly trace optimal gaits for dissipative
systems without having to first transform the model into an
energetically conservative system. Additionally, the results
of [5] do not explicitly deal with how to generate optimal
gaits. This paper defines such a map for use in the algorithms
outlined in [5].

The standard approach for finding optimal gaits is to use a
gradient-based optimization solver (e.g., Matlab’s fmincon,
SNOPT, or IPOPT) to find stationary points of the corre-
sponding optimization problem. Many works in this area
focus on the problem formulation in an effort to encode a
specific task [7], [8] or demonstrate fast and reliable con-
vergence to an optimal gait [9], [10]. In certain cases, some
frameworks have demonstrated that the generated gaits can
be transferred to an experimental robot biped (e.g., [8], [9]).
However, the energetic efficiency of these gaits still lags
behind what many of the robot’s biological counterparts can
achieve [11]. This alone motivates the continued research in
robotic bipedal gait generation.

While biped robots generally cannot walk as efficiently
as, for example, a person, there exists machines that are
capable of extremely efficient locomotion [12]. The inspi-
ration behind these designs stem from work in the passive
dynamic walking literature [13], [14], [15], where simple

models have been shown to walk down shallow inclines with
no actuation. More recently, methods for computing PW gaits
for more complicated 2D and 3D biped models have been
proposed [5], [16].

This leads to an interesting gap in the research, where there
is a disconnect between PW and the optimal gaits that many
existing frameworks produce. This motivates us to pose a
variant of the optimal gait generation problem that captures
aspects of the challenges presented in past works [17] and
contributes results to include the use of passive gaits to
generate a continuum of optimal gaits.

In the remainder of this paper, we describe our biped
modeling and cost function assumptions in Sections II–III.
In Sections IV–V, we present the approach and apply it to
a two-link biped model. We end with a discussion of our
results and conclude in Section VI.

II. THE BIPED MODEL

We model a step of an n-degree-of-freedom biped with
configuration q ∈ Q, state x = (q, q̇) ∈ X = TQ ⊂ R2n, and
step duration τ ∈ R as an impulsive dynamical system. The
resulting trajectories x(t) ∈ X for 0 ≤ t ≤ τ capture the
continuous motion of the biped pivoting about its stance
foot and the collision of the swing foot with the ground as
an instantaneous, plastic impact event at a discrete point in
time.

There is no double support phase in our model. During
a foot-ground collision event, the stance foot prior to the
event immediately breaks contact with the ground as the
corresponding swing foot makes contact with the ground.
This leads to a discontinuous jump in the velocities of the
biped at the time of impact [14], [8], [9], [10], [18].

A. The Impulsive Dynamics

An impulsive dynamical system consists of contin-
uous motion that satisfies ẋ(t) = f(x(t),u(t)), where
ẋ(t) = (q̇(t), q̈(t)) ∈ TX is the time derivative of the state
x(t) ∈ X at time t, f : X ×Rm → TX is a vector field
on X , and u(t) = [u1(t), . . . ,ui(t), . . . ,um(t)]T ∈ Rm is
the control input at time t. We define an individual input
ui(t) ∈ R (1 ≤ i ≤ m) in terms of ki ∈ N basis functions and
coefficients such that ui(t) =

∑ki
j=1 ai,jBi,j(t), where, for

a fixed i, Bi,j(t) ∈ R and ai,j ∈ R are the ki basis functions
and coefficients, respectively, of ui(t) applied during the
biped’s continuous motion.

An example input for a biped with a single actuator
(neglecting the subscript i) is a (half range) Fourier series
with frequencies wj = 2πj/τ and k coefficients

u(t) = a1
2 +

(k−1)/2∑
j=1

a2j cos(ωjt)+a2j+1 sin(ωjt) .

The use of Fourier series to generate reference inputs has
been used in the literature [19]. We implement the controller
with k = 3 for our example biped.

The biped’s continuous motion ends at a collision event.
A collision occurs whenever the time-state pair (t,x(t)) is



an element of a guard set S ⊂ R× X . Given that collisions
in our model occur at an instantaneous point in time, a jump
map ∆ : X → X takes a pre-impact state x(t−) prior to a
collision at time t to a post-impact state x(t+) immediately
after the collision such that x(t+) = ∆(x(t−)), where t−

and t+ represent the left- and right-sided limits of x(t),
respectively.

Definition 1. For 0 ≤ t ≤ τ , the impulsive dynamics of a
biped robot is the tuple Σ = (X ,f,∆,S)

Σ :
{

ẋ(t) = f(x(t),u(t)) (t,x(t−)) /∈ S,

x(t+) = ∆(x(t−)) (t,x(t−)) ∈ S,
(1)

where f , ∆, S, etc., are as defined earlier in this section.

When the biped is modeled as a mechanical system, we
can derive f and ∆ from the Euler-Lagrange equations (e.g.,
Appendix A of [5]).

Remark 1. The definition of the guard set S as a subset of
an extended time-state space R×X unifies the autonomous
[17], [18] and nonautonomous [5] impulsive dynamical
system modeling found in the bipedal walking literature.

For trajectories satisfying Σ, the resulting step-to-step map
φτ

a(x0) ∈ X gives the state of the robot at the end of a step

φτ
a(x0) = x(τ) = ∆

(
x0 +

∫ τ

0
f(x(t),u(t))dt

)
,

where we parameterize trajectories with a post-impact state
x0 ∈ X , a step duration τ , and a control parameter vector
a ∈ Rk (k =

∑m
i=1 ki) of coefficients of u(t).

Definition 2. A point c = (x0, τ,a) in a biped’s trajectory
space S = X ×R×Rk defines the evolution of a step of a
biped starting from post-impact state x0 at time t = 0 and
ending at post-impact state φτ

a(x0) at t = τ under inputs u(t)
defined by a control parameter vector a. If c represents an
unactuated trajectory, then we must have a = 0 for u(t) = 0
during a step.

B. Modeling Assumptions

In order to generate a continuous set of optimal gaits, we
require trajectories to be twice differentiable with respect to
points (x0, τ,a) in the trajectory space S of Definition 2.

Assumption 1. We assume
A1 for a given guard set S = {(t,x(t)) : φ(t,x(t)) = 0},

where φ : R× X → R defines the switching surface, a
trajectory x(t) intersects the surface φ−1(0) transver-
sally at a foot-ground collision event,

A2 the functions u(t) ∈ Rm, f(x,u) ∈ TX , and ∆(x) ∈ X
are twice continuously differentiable with respect to
time t ∈R, state x ∈ X , and controls parameters a ∈Rk

at all points in S, and
A3 the biped has bilateral symmetry (i.e., the robot’s “left”

and “right” sides are mirror images of each other).

Assumption A1 ensures that trajectories do not trigger
multiple foot-ground collisions in an infinitesimally small

amount of time. Assumption A2 ensures that solutions to Σ
of Equation 1 exist, are unique, have finite left- and right-
sided limits for all points on the interval of time considered,
are discontinuous only at switching time t = τ , and have a
continuous dependence on and are differentiable with respect
to the parameters of the system, x0, τ , and a [20]. Finally,
Assumptions A3 focuses our study to half-strides of bipeds
with symmetric gaits.

III. OPTIMALITY IN THE TRAJECTORY SPACE

A common task in bipedal gait generation is to find a set
of optimal periodic gaits over a range of operating points.

A. Periodic Trajectories and Operating Points of Interest

Definition 3. A point c = (x0, τ,a) in the trajectory space
S is a gait of the biped if it is a root of the periodicity map
P : S → R2n such that P (c) = φτ

a(x0)−flip(x0) = 0, where
flip maps x0 to its “mirrored” state (i.e., the biped at the
same position, but with the legs flipped).

Definition 4. The set P −1(0) is the set of all gaits, where
the notation P −1(0) is the set {c ∈ S : P (c) = 0}. The set
Ppw = {(x0, τ,a) ∈ P −1(0) : a = 0} is the set of all passive
gaits.

Definition 5. A gait c ∈ P −1(0) satisfies a vector of user-
defined operating points p ∈ Ro (o ≤ k + 1) if it is the
root of a twice-differentiable map Φp : S → Ro such that
Φp(c) = pact(c)−p, where pact(c) ∈Ro is a vector of values
derived from gait c that we want equal to the operating point.

A common pair of operating points are the biped’s average
walking speed and the incline of the walking surface [1],
[2], [3], [4]. The resulting constraint would be Φp(c) =
[γ(c) − γdes,vavg(c) − vdes]T = 0, where γ : S → R and
vavg : S → R are a gait’s slope and average walking speed,
respectively, and γdes and vdes are the operating points such
that p = [γdes,vdes]T.

Remark 2. Some readers may be surprised to see slope γ as
a function of c, which implies that slope depends on the step
duration τ . In related work on PW, γ is typically considered
to be an independent variable and τ is determined by the
time of foot strike. Here, however, we switch the roles of
the dependent and independent variables, where collision
happens after a predefined time τ , not at a predefined
state, and slope γ(c) is a dependent variable obtained
from the robot’s configuration at time τ . While this is not
a representation of physical over-ground walking, the two
views result in the same motion, as soon as the constraint in
Φp(c) is introduced.

B. Cost Functions of Interest

In the space of trajectories S, we want gaits that are
optimal with respect to a twice-differentiable cost function
J : S → R across a continuous range of user-defined oper-
ating points p. As there are several metrics for measuring
the energetic efficiency of a gait, we let the cost function be
user-defined under the following assumption.



Assumption 2. For a given twice-differentiable cost function
J : S → R, we assume passive gaits are global minima of J .
That is for all passive gaits cpw ∈ Ppw, J(cpw) ≤ J(c) for
all c ∈ S .

The most common energetic cost functions in legged
locomotion (e.g, integral of squared torque [18], [7], [10]
and positive work [8]) trivially satisfy this criterion as these
cost functions are non-negative and are zero whenever the
torques are zero.

IV. NUMERICAL CONTINUATION OF OPTIMAL GAITS

We now present our primary contributions, where given
the tuple (Σ,P,Ppw,Φp,J) of Definitions 1–5 and Assump-
tions 1–2 and a non-empty set Ppw of passive gaits, we find
solutions to the following optimization problem

OP(p) : minimize
c

J(c)

subject to P (c) = 0,

Φp(c) = 0

using numerical continuation methods.

A. Optimal Trajectories as Roots of a Map

Given the optimization problem OP(p), a point c ∈ S is an
optimal gait if c satisfies the first-order optimality conditions
(FOC) [21]

P (c) = 0, Φp(c) = 0
∂J
∂c (c)T +

[
∂P
∂c (c)T ,

∂Φp

∂c (c)T
]

λ = 0,
(2)

where λ ∈ R2n+o is a vector of Lagrange multipliers.
This leads to the set of optimal gaits of OP(p) as also be-

ing the roots of the map POP(p) : S ×R2n+o →R4n+k+o+1,
where

POP(p)(c,λ) =

 P (c)
Φp(c)

∂J
∂c (c)T +

[
∂P
∂c (c)T ,

∂Φp

∂c (c)T
]

λ

 .

Definition 6. Let M : Rb → Ra (a ≤ b) be a continuously
differentiable map and the point c∗ ∈ M−1(0) a root of the
map. If ∂M

∂c (c∗) has maximal rank, i.e., rank
(

∂M
∂c (c∗)

)
= a,

then c∗ is a regular point of M−1(0) (and a singular
point otherwise). Regular points of M have the following
properties [22]:

1) the tangent space of M−1(0) at c∗, Tc∗M−1(0), is
equal to the null space of ∂M

∂c (c∗), and
2) there exists a neighborhood of regular points containing

c∗ that form a differentiable manifold in M−1(0) of
dimension b−a.

Stated differently, if c∗ is a regular point of M , then we
are guaranteed the existence of a (b−a)-dimensional solution
family (specifically, a differentiable manifold) of roots of M
in a neighborhood of c∗. For the regular points of POP(p),
we have the following result.

Proposition 1. If the pair (c∗,λ∗) is a regular point of
POP(p) and a solution of OP(p) for fixed p, then it is an
isolated point in P −1

OP(p)(0).

Proof. The tangent space T(c∗,λ∗)P
−1
OP(p)(0) represents all

of the feasible directions we can move in without violating
the FOC (Equation 2). At a regular point, the tangent space
equals the null space. The null space is empty because the
Jacobian of POP(p) is square and has maximal rank. Hence,
(c∗,λ∗) is an isolated point in P −1

OP(p)(0).

In the context of optimization, the gait c∗ is a strict local
extremizer of OP(p) at a fixed value of p. This is a desirable
property when numerically searching for a single locally
optimal gait. However, this is not a desirable feature for
numerical continuation as the regular points for a map with
fixed p do not form a continuous family of gaits.

B. Passive Gaits as Seed Values

We now generate a curve of optimal points in S ×R2n+o

with the properties that the curve 1) starts from a passive gait
cpw ∈ Ppw, and, if a path exists, 2) intersects a gait c such
that pact(c) = pdes, where pdes is a desired operating point
and pact(c) are the actual values for the gait. We accomplish
this by letting the operating point p be a function of a 1D pa-
rameter ϵ ∈ R such that p := p(ϵ) = (1− ϵ)pdes + ϵpact(cpw).
After plugging p(ϵ) into POP(p) and simplifying, we arrive
at a global-homotopy-inspired map Mϵ [6]

Mϵ(c,λ) = POP(pdes)(c,λ)− ϵPOP(pdes)(cpw,λpw), (3)

where ϵ ∈ R is the homotopy parameter, and λ ∈ R2n+o and
λpw ∈ R2n+o are Lagrange multipliers. The regular points
of the map implicitly define a curve with the properties
mentioned earlier. For ϵ = 1, a passive gait is a root of Mϵ

and serves as our seed value. At ϵ = 0, a root of Mϵ must be a
gait that satisfies the operating point pdes. Furthermore, every
point (cϵ,λϵ) ∈ M−1

ϵ (0) on the curve is a periodic motion
that is optimal with respect to its operating point p(ϵ).

Given the map Mϵ of Equation (3), we can apply the
algorithms in [5] to trace curves of optimal gaits. We provide
a Mathematica implementation [23], which implements the
pseudo-arclength continuation of [5] with some modifica-
tions. Specifically, tangent vectors to the curve are computed
internally because all points of the map are regular points,
and we have incorporated an adaptive step-size scheme when
tracing a curve in M−1

ϵ (0) (see [6] for details).

V. TRACING CONTINUOUS FAMILIES OF OPTIMAL GAITS
OF THE COMPASS GAIT WALKER

We demonstrate our approach using the compass-gait
walker [14]. The biped (Figure 1) consists of two legs of
length ℓ0 and point masses mℓ on the legs and mH at the
hip. The external forces are gravity g = [0, −g0]T ∈ R2 and
an actuator u(t) ∈ Rm at the hip (m = 1). The slope γ is
defined relative to level ground and for positive velocities
divides the biped’s gaits into four types: 1) uphill brachiation
(γ ≤ −180◦), 2) downhill brachiation (−180◦ < γ ≤ −90◦),



physical parameters scaling parameters

quantity value units quantity value

ℓ0 1 m m0 2mℓ + mH

b 5 m t0
√

ℓ0/g0

mH 10 kg v0 ℓ0/t0

mℓ 1 kg u0 m0ℓ2
0/t2

0
g0 9.81 N J0 u2

0t0

TABLE I: The model parameters of the compass-gait walker.

3) downhill walking (−90◦ < γ < 0◦), and 4) uphill walking
(0◦ ≤ γ < 90◦). We show example motions in the next
section.

We can describe the motion using a set of min-
imal coordinates, where the initial state of the robot
x0 = [q1, q2, q̇1, q̇2]T ∈ X ⊂ R2n for an n = 2-degree-of-
freedom system given that one foot is always in contact
with the ground (Section II). It is straightforward to map the
minimal coordinates to the coordinates depicted in Figure 1.
Additionally, the model is nondimensionalized with physical
and scaling parameters listed in Table I.

For the biped model, the task is to generate a library
of gaits that can walk on various slopes γ and average
walking speeds vavg along the slope. The gaits must min-
imize the integral of the squared torques used during a
step J =

∫ τ
0 u(t)Tu(t)dt. The library must also have gaits

that walk on level ground with a desired operating point
of γdes = 0, so that we can further explore the relationship
between energetically efficient level-ground walking and
passive dynamic walking gaits.

In computing the library of gaits, we compute passive gaits
for the biped using the methods described in [5]. We then
choose a seed value and compute 25 points to the left and
to the right of the seed value for a total of 51 points on
the curve. The curve is computed using an “adaptive step
by asymptotic expansion” as presented in [6] with an initial
step size of h0 = ±0.02. The two pieces of a curve are
computed in parallel across two processors. For the figures
in this section, we did a second run of the data using a finer
mesh with a fixed step size. We redid the data with a finer
mesh in order to more accurately compute summary statistics
of the cost along a curve.

Overall, we use our algorithm to compute two curves:
a curve where gaits have the same velocity and a curve
where the gaits have the same slope. The coarse mesh for the
constant-velocity curve took 20 min to compute in parallel
while the constant-slope curve took 32 min. We used these
curves to guide us in determining the range of slopes and
velocities for the finer meshes, which collectively took 11 h
to compute across four processor cores.

Finally, all trajectories c = (x0, τ,a) and their cost are
computed in Mathematica using an explicit fourth-order
Runge-Kutta scheme with a fixed step size of τ/30 on a
Lenovo L380 Yoga with an Intel i7-8550U CPU. The use of
a fixed integration step size is not necessary. In principle, any
ODE solver can be used to solve the equations of motion. In
Mathematica 11.1+, the built-in ODE solver can take hours

to compute a single hybrid trajectory with an adaptive step
size. We switched to a fixed step size as a workaround. A
trajectory is divided into 30 time steps as we found it to be a
good trade-off between speed and accuracy when compared
to the trajectory computed with an adaptive step size.

A. An Example Constant-Velocity Slice of Optimal Gaits

Figures 2 show a constant-velocity slice of optimal
gaits for the compass-gait walker projected onto slope-step-
duration and slope-cost subspaces in Figures 2(a) and (b),
respectively. Every point on the curve represents an optimal
gait with an average walking speed of vavg = 0.7v0. The
only form of actuation is at the hip, which outputs a Fourier
series summed up to the first harmonic

u(t) = a1
2 +a2 cos

(
2π

t

τ

)
+a3 sin

(
2π

t

τ

)
. (4)

The number of control points is k = 3 with the control
parameter vector a = [a1,a2,a3]T.

For this slice, the operating point p as a function of ϵ is

p := p(ϵ) =
[

γ
vavg

]
=

[
(1− ϵ)γdes + ϵγ(cpw)

vavg(cpw),

]
(5)

where γdes = 0 and the functions γ(c) and vavg(c) compute
the gait’s actual slope and velocity, respectively.

The seed value used to trace the curve is labeled (1), which
is a passive gait of the biped. The seed has a slope of −24.9◦

and a step duration of 1.28t0. We initially computed 25
points to the left and right of the curve for a total of 51
gaits. The computed gaits from this initial data set have a
range of slopes from −190◦ to 15◦ and step durations from
0.37t0 to 2.35t0.

Figure 2 plots the resulting curve using a finer mesh
of 2209 points in total over a similar range of slopes. In
particular, Figure 2(a) plots the relationship between slope
and step duration, and Figure 2(b) plots the cost of each
gait along the curve. The four colors partitioning the curve
encode summary statistics of the first through fourth quartiles
of the cost function along the curve [see inset of Figure 2(b)].
For example, 25% of the gaits computed (the first quartile)
on the curve have a cost of at most J = 0.004J0. These
gaits are highlighted in green. The cost is relatively flat for
downhill gaits and increases quickly as the gaits start to walk
uphill. The actuator in these uphill regions has to compensate
for gravity as an opposing force to the direction of travel.
Example motions of points on the curve are depicted in
Figure 2(c)–(f), which show brachiating and walking gaits
that locomote up and downhill.

An interesting feature of this curve is that it intersects
another globally optimal gait labeled (2) in the plots. This
highlights a strength of our approach in that optimizing
with respect to step duration in addition to state and control
parameters enables us to find the best possible gait for a given
slope and velocity. It further supports past trends of finding
lower cost gaits when impact times are free parameters in
bipedal gait optimization problems [24].



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2: (a) A constant-velocity slice of optimal gaits projected onto a slope-
step-duration subspace; the seed value is labeled with a (1). (b) The optimal
cost as a function of slope along the curve in the constant-velocity slice;
the first through fourth quartiles define the color coding of this plot (see
inset legend). (c)–(f) Example gait motions of labeled points in the plots.

B. Growing the Library of Gaits Along Different Slices

We can grow the library of optimal gaits along other slices
of interest using our current set of passive and constant-
velocity slice of gaits. For example, the constant-velocity
curve of gaits has an actuated gait c∗ that we can use to
generate a curve of level-ground walking gaits with the input
of Equation (4) and operating point

p(ϵ) =
[

γ
vavg

]
=

[
γ(c∗)

(1− ϵ)vdes + ϵvavg(c∗)

]
, (6)

where we use the same notation as in Equation (5) and set
vdes = 3v0.

The gait c∗ = (x0, τ,a) used to trace the curve is labeled
(0) and is taken from the constant-velocity curve of Figure 2.
The gait is actuated (a ̸= 0), has a slope of 0◦, velocity of
0.7v0, and a step duration of 0.64t0. As in the previous
section, we computed a total of 51 points on the curve with
an adaptive step-size. The computed gaits from this data set
have a range of velocities from 0.16v0 to 2.1v0 and step
durations from 0.24t0 to 2.2t0.

Figure 3 plots the resulting curve using a finer mesh of
3001 points over a similar range of speeds and step durations.
Figure 2(a) plots the relationship between walking speed and
step duration and Figure 3(b) plots the cost of each gait along
the curve.

VI. DISCUSSION AND CONCLUSION

The goal of our work was to connect passive motions of
legged systems to families of energetically optimal actuated
gaits. The key idea behind our proposed approach was to
construct a map whose roots are solutions to a family of op-
timization problems that are parameterized by a continuous
range of operating points. We traced the resulting zero set
of this map using numerical continuation methods. For the
example of a two-link biped, we demonstrated the generation
of two such curves of optimal gaits: one consisting of gaits
with the same constant walking speed parameterized by
slope, and the other consisting of gaits that all walk on level
ground parameterized by speed.

The explicit use of passive gaits as starting points has
the advantage that it results in a continuous set of optimal
gaits that are derived from seed values that are optimally
exploiting the natural mechanical dynamics and that are
globally optimal for many energetic cost functions, including
the most commonly used ones: positive mechanical work and
integral of torque-squared. The continuity property of our
approach is an important contribution towards a more global
understanding of where connected sets of optimal gaits exist
in a legged systems’ trajectory space

For future work, we want to further explore questions
that are of interest in the optimization and bipedal robotics
communities. For example, in addition to Fourier series,
Bézier and B-Splines curves are also a popular choice for
actuation signals in the literature that are written in terms of
basis functions. Given that a passive gait does not change
its trajectory or cost when embedded in these different
parameter spaces, how does the cost landscape change for the



(a) (b)

Fig. 3: (a) A constant-slope slice of optimal gaits projected onto a slope-step-duration subspace; the level-ground gait from the constant-velocity slice of
gaits of Figure 2 is labeled with a (0). (b) The optimal cost as a function of slope along the curve in the constant-velocity slice; the first through fourth
quartiles define the color coding of this plot (see inset legend).

connected sets of gaits with respect to the actuation strategy
and the number of control points used?

There is also a need to compare our approach to state-of-
the-art methods and to better understand when continuation
methods are a better choice over standard optimization-based
methods. This includes extending our approach to handle
inequality constraints as in [5]. We leave these avenues of
study to future work.

Finally, the ability to continuously connect passive mo-
tions that are solely based on the natural mechanical dy-
namics of a system to energetically optimal actuated gaits
that can be observed on level ground has the potential to
become a valuable tool in the study of the gait itself. For
example, we can use it to study qualitative trends as gaits
change continuously, it can guide our understanding of what
fundamental properties make an optimal gait optimal, and
it can help us answer the question of why certain motion
patterns emerge in the gaits of humans and animals.
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