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Abstract— Point Cloud Registration is a fundamental and
challenging problem in 3D computer vision. Recent works often
utilize the geometric structure information in point feature
embedding or outlier rejection for registration while neglecting
to consider explicitly isometry-preserving constraint (e.g., point
pair linked edge’s length preserving after transformation) in
training. We claim that the explicit isometry-preserving con-
straint is also important for improving feature representation
abilities in the feature training stage. To this end, we propose
a Graph Matching Optimization based Network (GMONet for
short), which utilizes the graph-matching optimizer to explicitly
exert the isometry preserving constraints in the point feature
training to improve the point feature representation. Specifi-
cally, we exploit a partial graph-matching optimizer to optimize
the super point (i.e., down-sampled key points) features and
a full graph-matching optimizer to optimize fine-level point
features in the overlap region. Meanwhile, we leverage the
inexact proximal point method and the mini-batch sampling
technique to accelerate these two graph-matching optimizers.
Given high discriminative point features in the evaluation stage,
we utilize the RANSAC approach to estimate the transformation
between the scanned pairs. The proposed method has been
evaluated on the 3DMatch/3DLoMatch benchmarks and the
KITTI benchmark. The experimental results show that our
method performs competitively compared to state-of-the-art
baselines.

I. INTRODUCTION

Point Cloud Registration is a fundamental problem in
numerous computer vision applications, such as 3D recon-
struction [1]–[3], localization [4]–[6], pose estimation [7],
[8], etc. Point cloud registration aims to estimate the rigid
transformation between two scans. However, the partial over-
lapping point cloud registration is still a challenging problem
due to viewpoint change or occlusion in real-world sensor
data.

Recent popular deep point cloud registration methods
focus on improving the registration pipeline’s two key stages
(i.e., point feature learning and outlier rejection). The outlier-
rejection-based methods [9]–[13] depend on the candidate
correspondences computed by the point features extracted
from the pre-train models (e.g., FCGF [14]). These candi-
date correspondences may lose the most wanted correspon-
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dences after the selection operation (e.g., KNN searching
in feature space) if the point feature lack some important
information. On the other hand, the feature-matching-based
methods [14]–[20] mainly emphasize learning more discrim-
inative point features. Some works have tried to enhance
the local features by adding translation-invariant [15], [17]
and rotation-invariant embeddings [19]–[21]. To capture the
geometric structure information, [17]–[19], [22] leverage the
Transformer [23] to extract geometric features. However,
these methods employ implicit geometric feature embed-
ding, which lacks explicit isometric preserving constraint
(i.e., edge-to-edge isometric mapping or spatial consistency)
during training. We advocate that the explicit isometric
preserving constraint is important for strengthening the point
feature’s ability to detect the overlap region. To this end, we
employ two graph-matching optimizers to enhance the two-
level points features in the training stage.

Inspired by [10], [11], [24], [25], we propose Graph
Matching Optimization based Network (GMONet for short)
to explicitly incorporate the graph matching constraint to
learn the ”rigid” geometric features. We utilize KPConv [16]
as our feature backbone network and deploy graph-matching
optimizers to enhance the isometry-preserving feature repre-
sentation in training. At the coarse level, we downsample the
points to super points (key points) and utilize the geometric
attention layer [19], [26] to generate super point features.
Then, we deploy a partial graph matching optimizer to help
the super points learn better to detect the overlap region.
After that, we use skip links and unary layers to recover
the fine-level points and features from super points features.
Next, we employ another graph-matching optimizer for the
points in the overlap region to help to refine point features
that can help find the ”rigid” correspondences. Since the cost
matrices of these two-level graph-matching optimizers are
built in a global scope, they can make the point feature to
learn long-distance spatial consistency. We advocate that if
the point features have learned enough geometric preserving
information, the solution of the graph-matching optimizer
could be consistent with the ground truth correspondences.

We apply two techniques to accelerate these two graph-
matching optimizers. To solve the partial graph matching op-
timization, we transform it into an ε-convex optimal transport
problem by using the proximal point method [27]–[29] and
utilize the inexact proximal point method [30] to improve
efficiency while keeping convergence. On the other hand,
for the full graph matching optimizer in the overlap region,
we apply the mini-batch optimal transport [31] strategy to
accelerate the computing speed.

Our main contributions can be summarized as follows:
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• We deploy two graph-matching optimizers to improve
the point feature about learning isometry-preserving
feature representation.

• We exploit the inexact proximal point method to ac-
celerate the partial graph matching optimizer while
guaranteeing convergence.

• We use the mini-batch technique to accelerate the graph-
matching optimizer for the point feature learning in the
overlap regions.

II. RELATED WORK

A. Traditional Methods

ICP [32] is a classical local registration method that
iteratively computes the point correspondences and optimizes
the least-square problem of transformation. The drawback of
ICP is that it needs a good initialization to prevent the locally
optimal estimation. To optimize globally, GO-ICP [33] uti-
lizes branch-and-bound optimization. However, this method
is sensitive to outliers. By introducing a robust estimator
(e.g., Geman-McClure), FGR [34] improves the robustness
against the outliers. Also, Teaser [6] leverages another robust
estimator (i.e., Truncated Least Squares (TLS)) and max
clique to filter the inlier correspondences.

B. Feature-Matching-Based Methods

The famous 3DMatch [35] first extracts multi-view local
patch and their voxel grid of Truncated Distance Function
(TDF) values, then learns 3D feature descriptors in a metric
learning way. PPFNet [36] uses Point Pair Features to encode
local patches as inputs of the PointNet network and learns
the point features by N-tuple loss. FCGF [14] designs a fully-
convolutional network for computing geometric features in
a single pass, which achieves a faster accurate feature
extraction speed. The unsupervised PPF-FoldNet [37] and
CapsuleNet [38] exploit an encoder-decoder network to learn
local feature descriptors based on point cloud reconstruc-
tion. D3feat [15] and Predator [17] utilize a KPConv [16]
module to learn translation-invariant point features. Based
on Predator, CoFiNet [18] uses Sinkhorn’s algorithm [39] to
solve the optimal transport problem to get an optimal solution
based on the initial correspondence proposal. Furthermore,
GeoTransformer [19] proposes to add edge distance and local
triplet angle into the self-attention layer to learn rotation-
invariant embeddings. The RGM [40] utilizes a graph feature
extractor network to compute the soft correspondence matrix
and convert it to a hard correspondence matrix by using a
LAP solver. However, the LAP solver based on the Hungar-
ian algorithm [41] prevents it from applying to large-scale
point cloud problems.

C. Graph Matching Methods

Since the graph matching problem [24], [42] can model
point-wise, pair-wise, and even more, higher order [43]
similarities between point sets, more and more researchers
[44]–[50] consider this method in image matching or network
alignment problems. The classical solver for graph matching
is Frank-Wolfe’s algorithm [51] under the Convex-Concave

Relaxation [52]. The other way is to add an entropic reg-
ularized item to the objective function to convert it to an
ε-convex problem which can be easily solved by the project
gradient descent [27], [28]. In order to use graph matching
(or optimal transport) in large-scale problems, researchers
propose the mini-batch OT (Optimal Transport) [53], mini-
batch UOT (Unbalanced Optimal Transport) [54], and mini-
batch POT (Partial Optimal Transport) [31] methods to
improve efficiency while guaranteeing accuracy.

III. METHOD

A. Problem Formulation

Given two unordered point clouds P = {pi ∈R3|i = 1...N}
and Q = {qi ∈ R3|i = 1...M}, where N and M are the
different numbers of points (suppose M > N), the goal of the
point cloud registration is to recover the rigid transformation
T consisting of R ∈ SO(3) and t ∈ R3 that aligns P to
Q. We focus on the partial overlap point cloud registration
problem [17]. In this case, after applying the ground-truth
transformation T, the overlap ratio of aligned P and Q is
above a certain threshold τ:

|{pi|pi ∈ P∧‖T(pi)−NN(T(pi),Q)‖2 ≤ v}|/|P|> τ, (1)

where |.| is the set cardinality, ‖.‖2 is the Euclidean norm,
NN is the nearest-neighbor operator, and v is a radius that
depends on the point density. The overlap ratio τ is typically
greater than 30% in 3DMatch [35] and greater than 10% for
low-overlap 3DLoMatch [17].

B. Method overview

The structure of our framework is illustrated in Fig.1. We
choose KPConv [16] as our feature backbone. Firstly, one
point feature encoder consisting of three subsampling layers
is used to downsample the given point cloud pairs to the
sparse super points (i.e., P̂ ∈ RN′×3 and Q̂ ∈ RM′×3) and to
extract associated features. Then we utilize the geometric
attention layer (see section III-C) to give the super points
embedding (i.e., FP̂ ∈RN′×b and FQ̂ ∈RM′×b) and compute
linear projected overlapping scores (i.e., OP̂ and OQ̂). After
that, we deploy a partial graph matching optimization to
enhance the super points’ ability to detect overlap regions
(see section III-D). Next, we use a decoder that consists of
three upsampling layers to decode the fine-level points, their
corresponding features (i.e., FP ∈ RN×32 and FQ ∈ RN×32),
and overlapping scores (i.e., OP and OQ). Lastly, we take the
mini-batch sampling to get several subsets from the overlap
region and use full graph matching in each subset to refine
the feature for global scaling matching (see section III-F).

C. Point Feature Encoder

Firstly, we downsample the raw point clouds to super
points P̂ ∈ RN′×3 and Q̂ ∈ RM′×3 and generate associated
features FP̂ ∈RN′×b and FQ̂ ∈ RM′×b. For super point embed-
ding, we utilize the geometric attention layer [19], [26]. It
encodes the local geometric structure embedding consisting
of pair-wise distance (i.e., edge) and local triplet-wise angle
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Fig. 1. Overview of our proposed GMONet. First, the point clouds P and Q are fed to the down-sampling encoder and geometric attention layers to
obtain the super points (P̂,Q̂), their features (FP̂,FQ̂), and overlapping scores (OP̂, OQ̂). Then, we apply the partial graph matching optimizations on super
points to improve the overlap region detecting ability. Next, we use three upsampling layers to recover the fine-level points, their features (FP,FQ), and
overlapping scores (OP, OQ). Lastly, a mini-batch graph matching optimizer is applied on the fine-level points in the overlap region to enhance the features’
abilities for global ”rigid” matching.

in self-attention. It also uses cross-attention to do inter-point-
cloud information exchange for overlap detection.

Local geometric structure embedding: For two points pi

and p j in P̂, the point-wise distance is δi j = ‖pi− p j‖2. To
embed the angle, we select the k nearest neighbors κi for
pi. For each p̄x ∈ κi, the triplet-wise angle is computed as
ρx

i, j =∠(∆x,i,∆ j,i), where ∆ j,i := p j−pi. We define geomet-
ric structure embedding as the combination of point-wise
distance embedding and triplet-wise angle embedding:

ri, j = rD
i, jW

D +maxx(rA
i, j,xWA), (2)

where rD
i, j and rA

i, j,x are computed with a sinusoidal function
on δi j/σd and ρx

i, j/σa. σd and σa are parameters to control
the sensitivity to variations of distance and angle. WD,WA ∈
Rb×b are two linear projection layers. For points in Q̂, the
embeddings are computed in the same way.

Self-attention and Cross-attention: Given the super points’
features and geometric structure embedding, we define the
following geometric-aware self-attention:

ai, j = so f tmax

([
(xiWq)(x jWk+ri, jWg)>√

b

]
i, j

)
, (3)

zi = ∑
|P̂|
j=1 ai, j(x jWv) (4)

where W q,W k,W v,W g,∈ Rb×b are linear projections of
queries, keys, values, and geometric structure embeddings.
Given the self-attention feature ZP̂ and ZQ̂, the cross-

attention layer is define as:

ai, j = so f tmax

[ (zP̂
i Wq)(zQ̂

j Wk)>
√

b

]
i, j

 , (5)

zP̂
i = ∑

|Q̂|
j=1 ai, j(zQ̂

j Wv). (6)

where W q,W k,W v ∈ Rb×b are linear projections of queries,
keys, values.

By three interleaved attention layers of the configuration
’self/cross/self’, we get latent super point features FP̂ ∈RN′×b

and FQ̂ ∈ RM′×b. To avoid symbol abuse, the initial input and
final output features of the attention layers are all noted as
FP̂ ∈ RN′×b and FQ̂ ∈ RM′×b.

D. Partial Graph Matching Optimizer

To enhance the super points’ abilities to capture isometry-
preserving transformation properties, we deploy a Partial
Graph Matching Optimizer (PGMO for short) to optimize
the super point features. We utilize the super points (i.e., P̂
and Q̂) and their features (i.e., FP̂ and FQ̂) to compute the
affinity matrices:

[CP̂]i j = ‖f
P̂
i − fP̂

j ‖2 +op̂i op̂ j α‖p̂i− p̂ j‖2,

[CQ̂]i j = ‖f
Q̂
i − fQ̂

j ‖2 +oq̂i oq̂ j α‖q̂i− q̂ j‖2,

[CP̂Q̂]i j = ‖f
P̂
i − fQ̂

j ‖2,

(7)

where op̂i and oq̂ j are overlapping scores of super points
p̂i and q̂ j, and α is the hyper-parameter that controls the



geometric similarity. Then we can solve the partial matching
optimization to obtain the matching matrix:

min
Γ∈Π(p,q)

N

∑
i=1

M

∑
j=1

CP̂Q̂
i j Γi j +

1
2

N

∑
i,k=1

M

∑
j,l=1

(
CP̂

ik−CQ̂
jl

)2
Γi jΓkl

= min
Γ∈Π(p,q)

〈CP̂Q̂,Γ〉+ 〈L(CP̂,CQ̂,Γ),Γ〉,
(8)

where 〈.〉 is inner product, L(CP̂,CQ̂,Γ) =
[
L j j′

]
∈ RN×M ,

each L j j′ = ∑i,i′L
(

CP̂
i j,C

Q̂
i′ j′

)
Γii′ , and L (a,b) = 1

2 (a−b)2.
The admissible couplings Π(p,q) are defined as {Γ ∈
RN×M
+ |Γ1N ≤ 1M, Γ>1M ≤ 1N ,1NΓ1M = s}. The empirical

distributions (p,q) ∈ ΣN ×ΣM , ΣN is a histogram of N bins
with

{
p ∈ RN

+,∑i pi = 1
}

. We utilize the uniform distribution
to initialize (p,q). The partial transport mass s is computed
from the super points’ anchored patch [19] pairs whose
overlap ratio is higher than 10%.

Inspired by [27], by using mirror descent and Bregman
projection (i.e., both the gradient and the projection are
computed in the KL metric) and setting the learning rate to
1
ε

, we can transform problem (8) to a new ε-convex entropic
regularized optimal transport problem:

Γ
n+1 = arg min

Γ∈Π(p,q)
〈C̄n− εlogΓ

n,Γ〉+ εH(Γ), (9)

where C̄n = L(CP̂,CQ̂,Γn)+CP̂Q̂ and the entropy H(Γ) =
−∑

N
i, j=1 Γi, j(log(Γi, j) − 1). According to Proposition 5

in [55], problem (9) is a partial transport problem with
inequality constraints, which needs to use the Dykstra’s
algorithm [56] to solve it. To accelerate the computing speed,
motivated by the inexact proximal point algorithm (IPOT)
in [30], the inner number of Dykstra’s iterations L is set to
1.

E. Point Feature Decoder

Given the super point features, we need to recover the
original resolution point features. We leverage the NN
upsampling and skip connections from the downsampling
layers to form the decoder. We firstly concatenate the super
point features F P̂|F Q̂, and the overlap scores OP̂|OQ̂, then
go through upsampling decoder to get the fine-level ones:
FP|FQ and OP|OQ.

F. Mini-batch Full Graph Matching Optimizer

To enhance the fine-level points’ abilities to capture
isometry-preserving transformation properties in the overlap-
ping regions, we exploit a Full Graph Matching Optimizer
Optimizer (FGMO for short) to optimize the point features:

min
Γ∈Π̂(p,q)

Jgm(Γ) = min
Γ
‖CP−ΓCQ

Γ
>‖F +Tr(CPQ>

Γ), (10)

where CP and CQ are two affinity matrices of two graphs
generated from points coordinates and features. CPQ is
the inter-graph affinity matrix or cost matrix. Π̂(p,q) is
defined as {Γ ∈ RN×M

+ |Γ≥ 0, Γ1N ≤ 1M, Γ>1M ≤ 1N}. The

definitions of CP, CQ, and CPQ are as follows:

[CP]i j = ‖f
P
i − fP

j ‖2 +α‖pi−p j‖2,

[CQ]i j = ‖f
Q
i − fQ

j ‖2 +α‖qi−q j‖2,

[CPQ]i j = ‖f
P
i − fQ

j ‖2,

(11)

where α is a hyper-parameter that controls the geometric
similarity.

Considering the large scale of fine level point cloud, we
choose a reduced path following algorithm to efficiently
solve the problem (10). Furthermore, we take the mini-batch
method [31], [54] to accelerate solving the problem (10) in
the overlap region:

Definition 1: (Mini-batch Graph Matching) For subset
size, 1≤m≤min(M,N) and subsets number K≥ 1, pm

1 ,...,pm
K

and qm
1 ,...,qm

K are subsets that are sampled from the overlap
region of point clouds P and Q, respectively. The mini-batch
transport plan is:

Γ
m,K,s =

1
K

K

∑
i=1

Γ(pm
i ,q

m
i ),

Γ(pm
i ,q

m
i ) = arg min

Γ∈Π(pm
i ,qm

i )
‖Cpm

i −ΓCqm
i Γ
>‖F +Tr(Cpm

i qm
i
>

Γ),

(12)

where (pm
i ,qm

i ) are two empirical distributions computed
from two subsets pm

i and qm
i .

We uniformly sample K subsets from the fine-level overlap
region, and each subset contains m points. The average of K
mini-batch solutions would give an approximation of ground
truth correspondences.

G. Loss Function

Coarse-level Overlap-aware Circle loss: Inspired by
[19], the overlap ratio of patches anchored on the super
points can weight the positive matching in loss to avoid
the issue that the circle loss weights the positive samples
equally. Given a pair of aligned coarse-level super points P̂
and Q̂. A pair of super points is positive if their anchor patch
shares at least a 10% overlap ratio and negative if there is
no overlap. All other pairs are dropped. For a super point
p̂i, which at least has one positive patch in Q̂, we define the
super points in Q̂ within radius rp̂ as ξp(p̂i) and the super
points outside a larger radius rn as ξn(p̂i). Inspired by [18],
[19], we sampled np points from P̂p̂, and the circle loss can
be defined as follows:

LP̂
coc =

1
np

np

∑
i=1

log

1+ ∑
j∈ξp(p̂i)

eλ
j

i γ(d j
i −∆p)+ ∑

k∈ξn(p̂i)

eγ(∆n−dk
i )

 ,
(13)

where d j
i = ‖f p̂i−fq̂ j‖2, γ is a hyper-parameters and λ

j
i is the

overlap ratio of patches anchored on super point p̂i and q̂ j.
Two empirical margins are defined as ∆p := 0.1 and ∆n :=
1.4. The reverse loss L

Q̂
coc is also defined in the same way

and the final circle loss is Lcoc =
1
2 (L

P̂
coc +L

Q̂
coc).

Coarse-level Partial Graph Matching loss: We calculate
the intra-affinity and inter-affinity matrix for Eqn.(8) based
on the coarse-level super points and features. The solution



of the partial graph matching optimization (i.e., Eqn.(8)) can
be treated as soft matching scores. The supervision on the
matching score can be cast a binary classification, and we
define a cross-entropy loss:

LP̂
cpgm =

1
|P̂|

P̂

∑
i=1

m̄ p̂i log(m p̂i)+(1− m̄ p̂i)log(1−m p̂i), (14)

where ground truth m̄ p̄i is based on the overlap ratio of patch
pairs that m̄ p̂i is 1 if the overlap ratio is greater than 10%,
otherwise 0. The reverse loss L

Q̂
cpgm is also defined in the

same way, and the final loss is Lcpgm = 1
2 (L

P̂
cpgm +L

Q̂
cpgm).

Fine-Level mini-batch Graph Matching loss:
For every sample subset in the overlap region, the loss

supervising the predicted matching scores is defined as:

LP
mbm =

1
|P|

P

∑
i=1

m̄pi log(mpi)+(1− m̄pi)log(1−mpi), (15)

where m̄pi is ground truth and mpi is solution of Eqn.(10).
The reverse loss L

Q
mbm is also defined in the same way, and

the final loss is Lmbm = 1
2 (L

P
mbm +L

Q
mbm).

Fine-level overlap loss: To supervise the predicted overlap
score on fine-level points, we use a binary classification loss
for the overlap probability:

LP
o =

1
|P|

P

∑
i=1

ôpi log(opi)+(1− ôpi)log(1−opi), (16)

where ground truth label ôpi is defined as

ôpi =

{
1, ‖T(pi)−NN(T(pi),Q)‖2 < εo

0, otherwise
, (17)

with overlap threshold εo. The reverse loss L
Q
o is computed

in the same way and Lo = 1
2 (L

P
o +L

Q
o ). The final loss is

defined as

L= λc(Lcoc +Lcpgm)+λ f (Lmbm +Lo), (18)

where λc and λ f are the weights of the coarse-level and the
fine-level losses, respectively. Following [18], we set λc =
λ f = 1.

IV. EXPERIMENTS

A. Experimental Settings

Following [17], we evaluate the proposed GMONet on
indoor datasets 3DMatch [35] and 3DLoMatch [17] and
outdoor KITTI odometry [57] benchmark.

Implementation and training: The proposed GMONet
is implemented and tested with PyTorch [58] on Xeon(R)
Gold 6230 and one NVIDIA RTX TITAN GPU. The net-
work is trained 30 epochs on the 3DMatch/3DLoMatch
dataset and 150 epochs on the KITTI odometry bench-
mark, all with Adam optimizer. The learning rates for
3DMatch/3DLoMatch and KITTI are set to 1e-4 and 5e-2, re-
spectively. The batch size, weight decay, and momentum are
set as 1, 1e-6, and 0.98, respectively. 3DMatch and KITTI’s
matching radii are set to 5cm and 30cm, respectively. The
hyper-parameter α in III-D is set to 0.01.

TABLE I
QUANTITATIVE RESULTS ON THE 3DMATCH AND 3DLOMATCH

BENCHMARKS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, AND

THE SECOND BEST RESULTS ARE UNDERLINED.

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

RR (%)↑
FCGF [14] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [15] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
Predator [17] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
CoFiNet [18] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0

GeoTransformer [19] 91.4 91.3 91.4 90.8 90.4 72.3 72.0 71.7 72.3 71.3
GMONet 91.3 91.8 92.1 91.0 89.5 69.0 72.4 73.2 72.6 69.9

RTE (m)↓
FCGF [14] 0.066 - 0.066 - - - - 0.105 - -
D3Feat [15] 0.067 - - - - - - - -
Predator [17] 0.064 0.063 0.068 0.069 0.076 0.091 0.089 0.092 0.102 0.108
CoFiNet [18] 0.064 0.063 0.069 0.070 0.074 0.090 0.095 0.096 0.099 0.107

GeoTransformer [19] 0.070 0.069 0.071 0.070 0.072 0.097 0.099 0.099 0.101 0.101
GMONet 0.061 0.062 0.063 0.071 0.077 0.089 0.089 0.088 0.093 0.109

RRE (◦)↓
FCGF [14] 1.949 - 2.060 - - - - 3.820 - -
D3Feat [15] 2.161 - - - - - - - - -
Predator [17] 1.847 1.869 1.998 2.169 2.468 3.156 3.124 3.368 3.675 3.927
CoFiNet [18] 2.002 2.124 2.281 2.302 2.486 3.271 3.415 3.520 3.513 3.748

GeoTransformer [19] 2.021 2.041 2.072 2.019 2.134 3.238 3.383 3.267 3.298 3.472
GMONet 1.841 1.857 1.857 2.059 2.500 2.856 2.959 2.937 3.300 3.637

B. Indoor dataset: 3DMatch and 3DLoMatch

Dataset. 3DMatch [35] contains 62 scenes, divided into
46, 8, and 8 for training, validating, and testing, respectively.
The overlap ratio of scanned pairs in 3DMatch is greater than
30%, while 10%-30% in 3DLoMatch.

Metrics. Following [35], we report performance with three
metrics: (1) rigid Registration Recall (RR), the fraction of
point cloud pairs whose correspondence RMSE below 0.2m.
(2) Relative Rotation Error (RRE), the geodesic distance
between estimated and ground truth rotation matrices. (3)
Relative Translation Error (RTE), the Euclidean distance
between the estimated and ground truth translation. RRE and
RTE are calculated on the successfully matching scan pairs.

Interest point sampling. In the evaluation stage, we mul-
tiply the matching scores (normalized inner-product matrix
from point features) and overlapping scores as the inlier
confidence probabilities of points. Then a random sampling
based on the confidence probability is applied to obtain the
candidate point correspondences.

Results. We compare GMONet to recent feature-
matching-based methods (FCGF [14], D3Feat [15], Predator
[17], CoFiNet [18], GeoTransformer [19]). We adopt the
same sampling strategy as GMONet to evaluate baseline
GeoTransformer [19] for a fair comparison.

Tab.I shows that GMONet achieves the best registration
recall to 92.1% on 3DMatch and 73.2% on 3DLoMatch with
a sampling of 1000 points. Our method achieves relatively
lower RTE and RRE on both 3DMatch and 3DLoMatch
benchmarks. This reveals that, by adding two graph-matching
optimizers in the learning stage, the point features indeed
learn the isometry-preserving features and help select the
”rigid” candidate corresponding point more precisely.

Ablation studies. In the ablation studies, we take KPConv
[16] as the backbone plus geometric attention layer, coarse-
level overlap-aware circle loss, and fine-level overlap loss
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Fig. 2. Visualization of the effective role of coarse-level partial graph matching constraint and fine-level graph matching constraint.

TABLE II
ABLATION OF THE NETWORK ARCHITECTURE ON

3DMATCH/3DLOMATCH BENCHMARK. TESTED WITH SAMPLES=1000.

3DMatch 3DLoMatch
FGMO PGMO RR (%) RRE (◦) RTE (cm) RR (%) RRE (◦) RTE (cm)

90.02 2.014 0.065 68.2 3.070 0.092√
91.40 1.875 0.063 71.2 2.860 0.090√
90.60 1.946 0.063 68.8 3.062 0.089√ √
92.10 1.857 0.063 73.2 2.937 0.088

TABLE III
QUANTITATIVE RESULTS ON THE KITTI ODOMETRY BENCHMARK. THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD, AND THE SECOND-BEST

RESULTS ARE UNDERLINED.

Method RTE (cm)↓ RRE (◦)↓ RR (%)↑
3DFeat-Net [59] 25.9 0.25 96.0

FCGF [14] 9.5 0.30 96.6
D3Feat [15] 7.2 0.30 99.8
Predator [17] 6.8 0.27 99.8
CoFiNet [18] 8.2 0.41 99.8

GeoTransformer [19] 7.4 0.27 99.8
GMONet 6.8 0.27 99.8

as the baseline. Then we add two levels of graph matching
optimizer to conduct extensive experiments to ablate how
these two constraints improve the feature representation. The
default number of sampling points is set to 1000. Tab.II
illustrates that by adding partial graph matching constraint
on the coarse-level super points, the registration recall in-
creases 0.58 percent points (pp) on 3DMatch and 0.6 pp
on 3DLoMatch. The mini-batch graph matching constraint
on fine-level points improves by 1.38 pp on 3DMatch and
3.0 pp on 3DLoMatch, respectively. These two constraints
improve 2.08 pp and 5.0 pp on 3DMatch and 3DLoMatch,
respectively.

As visualized test case in Fig.2, without explicit isometric
preserving constraints, based on the point features, RANSAC
estimation would prefer such correspondences, e.g., edges
near the vertexes of the deep blue triangle, that gives the
max number of ”looks likely” correspondences (see the left
column) in the overlap region. However, by explicitly adding
two isometric preserving constraints, the point feature would
recognize the critical correspondences (e.g., correspondences
near the three vertexes of the red triangle in the middle
column) even though the candidate corresponding points are
far from each other in the euclidean space. Moreover, the
graph matching optimization on coarse-level points further
improves the registration’s precision (see points in the purple
circle in middle and right columns). This illustrates that the

TABLE IV
RUNTIME OF EACH COMPONENT AVERAGED OVER 1623 FRAGMENT

PAIRS OF 3DMATCH IN MILLI-SECONDS.

Method data loader encoder attention layer decoder PGMO FGMO

Predator [17] 191 9 70 1 % %

GeoTransformer [19] - - 60 1 % %
GMONet - - 60 - 150 90

two levels of graph matching optimizers help strengthen the
points’ abilities to maintain isometry-preserving in feature
space.

Computational Complexity. The running time of the two
optimizers is listed in Tab.IV. Since we deploy two proposed
optimizers only in the training stage and turn them off when
inference, the run time is not a burden. The running time
of the Partial Graph Matching Optimizer depends on the
number of down-sampled super points, while Mini-batch
Full Graph Matching Optimizer depends on the size of each
sampled subset. Our default sampling number for each subset
is set to 128.

C. Outdoor dataset: KITTI Odometry
Dataset. KITTI Odometry benchmark [57] consists of 11

sequences of point clouds scanned by LiDAR. We follow
[17], [19] to use sequences 0-5 for training, 6-7 for valida-
tion, and 8-10 for testing.

Metrics. Following [17], we evaluate GMONet with three
metrics: (1) rigid Registration Recall (RR), the fraction of
successful registration pairs (i.e., RRE< 5◦ and RTE<2m).
The definitions of Relative Rotation Error (RRE) and Rel-
ative Translation Error (RTE) are the same as used in the
3DMatch benchmark.

Results. In the Tab.III, we compared GMONet with sev-
eral state-of-the-art RANSAC-based methods: 3DFeat-Net
[59], FCGF [14], D3Feat [15], Predator [17], CoFiNet [18],
and GeoTransformer [19]. The quantitative results show that
our method can handle outdoor scene registration and achieve
competitive performance.

V. CONCLUSION

We proposed a novel framework integrating rigid
isometry-preserving constraints in the point feature learn-
ing stage. Specifically, we used the partial graph matching
constraint at the coarse level and the mini-batch full graph
matching constraint at the fine level. Experimental results
show that our method has competitive performance for point
cloud registration tasks. In the future, we would like to verify
our method on 2D-2D and 2D-3D tasks.
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