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Abstract— Autonomous exploration is a crucial aspect
of robotics that has numerous applications. Most of the
existing methods greedily choose goals that maximize im-
mediate reward. This strategy is computationally efficient
but insufficient for overall exploration efficiency. In recent
years, some state-of-the-art methods are proposed, which
generate a global coverage path and significantly improve
overall exploration efficiency. However, global optimiza-
tion produces high computational overhead, leading to
low-frequency planner updates and inconsistent planning
motion. In this work, we propose a novel method to
support fast UAV exploration in large-scale and cluttered 3-
D environments. We introduce a computationally low-cost
viewpoints generation method using novel occlusion-free
spheres. Additionally, we combine greedy strategy with
global optimization, which considers both computational
and exploration efficiency. We benchmark our method
against state-of-the-art methods to showcase its superiority
in terms of exploration efficiency and computational time.
We conduct various real-world experiments to demonstrate
the excellent performance of our method in large-scale and
cluttered environments.

I. INTRODUCTION

Autonomous exploration, where robots explore un-
known environments and gather information indepen-
dently, has become increasingly popular in applications
such as mine exploration, industrial inspection, and
search and rescue operations. Robots can access areas
that are difficult for humans to reach, and reduce the
risks humans expose to in hazardous environments.

The task of autonomous exploration is to plan a path
to explore the entire unknown environment as quickly
as possible. Various exploration methods have been
proposed in recent years to tackle the task. Most of
these methods adopt a greedy strategy. [1]–[3] span
RRT [4] in the environment and select the node with
the highest information gain to visit. [5], [6] select
the frontier that minimizes the traversal cost or the
direction change of the UAV as the goal. The greedy-
based methods are computationally efficient but insuf-
ficient in terms of overall exploration efficiency, as
they ignore global optimality and generate back-and-
forth movements. Other methods, such as [7], adopt a
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Fig. 1. Performing exploration task in a large-scale environment
composed of both indoor and outdoor spaces. (a) and (b): Two different
views of the online-built point cloud map, and trajectory executed by
the UAV (light blue line), with images displaying the environment.
The points with the same color indicate the same position. (c): The
quadrotor platform used in the exploration.

global optimization strategy that finds a global tour to
visit unexplored regions. This strategy improves overall
exploration efficiency but results in high computational
time, leading to low planner update frequency and in-
consistent planning motion. Moreover, existing methods
generate viewpoints in a sampling way and evaluate
the reward of the viewpoint using a computationally
expensive ray-casting process, which further increases
the computational cost.

Motivated by these facts, we propose a novel method
that can support fast and efficient UAV exploration in
large-scale and cluttered 3-D environments. We intro-
duce two key contributions: 1) A novel concept of
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the occlusion-free sphere, which generates high-quality
viewpoints at a low computational cost. 2) Based on
the generated viewpoints, we introduce a novel strat-
egy that combines greedy with global optimization,
which finds an efficient global tour visiting high-gain
viewpoints, balancing overall exploration efficiency and
computational cost. Finally, we design a local planner
that generates safe and kinodynamically feasible trajec-
tories for the UAV to follow. We validate the proposed
method through extensive simulation and real-world
experiments, showing that it outperforms the state-of-
the-art baselines in terms of both exploration efficiency
and computational time.

To sum up, the contributions of this paper are listed
below:

1) We propose a novel concept of the occlusion-
free sphere to generate high-quality viewpoints,
which significantly saves computational time and
improves exploration efficiency.

2) Based on the generated viewpoints, we introduce
a novel strategy that combines greedy and global
optimization, which finds an efficient global tour
to visit high-gain unexplored regions, balancing
overall exploration efficiency and computational
cost.

3) Extensive simulation experiments demonstrate the
advantages of the proposed planner over the state-
of-the-art baselines, in terms of exploration effi-
ciency and computational time.

4) Implementation of the proposed planner on a fully
autonomous quadrotor platform. Various real-world
tests show the outstanding performance of the
proposed planner in large-scale and cluttered real-
world environments.

II. RELATED WORKS

Autonomous exploration has been an active area of
research in recent years, and a variety of methods have
been proposed to tackle the problem. Sampling-based
exploration [1]–[3], [8] is one of the classic approaches.
The approach spans a Rapidly-exploring Random Tree
(RRT) [4] in free space. It evaluates the information gain
of the nodes in RRT by the coverage of the unknown
region, weighted with the traversal cost to reach it from
the current position. The coverage is counted by the
number of unknown voxels that fall in the sensor field
of view (FoV) and are not occluded by occupied voxels
(e.g., by ray-casting). The node with the highest gain is
selected as the goal and a traversable path to the node
is derived from the RRT. This scheme is first introduced
by the Next-Best-View Planner (NBVP) [1], and further
improved by GBP [2] and MBP [3]. In GBP [2], a
topological global map is constructed during the local
exploration process. When the local area is fully ex-
plored, or the vehicle encounters a dead end, the method
finds a path on the global map and redirects the vehicle

to unexplored areas. MBP [3] constructs RRT using
motion-primitives and produces smooth trajectories for
the vehicle to execute.

Another classic approach is frontier-based explo-
ration [5]–[7], [9]–[11]. In frontier-based exploration,
the vehicle navigates close to the frontier, defined as
the boundary between the free and unknown space, to
continue exploring the unknown space. This method is
first introduced by [5], in which the closest frontier is
selected as the next goal. To achieve high-speed flight,
[6] selects the frontier in sensor FoV and minimizes
the velocity change of the vehicle. [12] analyzes the
strengths and weaknesses of the sampling-based and
frontier-based approaches. It combines them together by
improving NBVP [1] for local exploration and using a
frontier-based approach for global exploration.

The above methods are greedy-based, which select
goals that maximize the immediate reward to visit at
each planning iteration. This strategy is computationally
efficient but insufficient in terms of overall exploration
efficiency, as it produces back-and-forth planning mo-
tions. Fast UAV Exploration planner (FUEL) [7] con-
siders the global optimality. It begins by clustering the
frontier cells using a region-growing algorithm and per-
forming Principal Component Analysis (PCA) to split
large frontier clusters into smaller ones along the first
principal axis. Viewpoints are then sampled around the
frontier clusters within a cylindrical coordinate system
and evaluated by frontier coverage using ray-casting.
The viewpoints with the highest frontier coverage are
selected. After that, the method finds a global tour that
minimizes the global traversal cost, starting from the
current vehicle position and passing through all selected
viewpoints. It formulates the problem as a variant of
the Traveling Salesman Problem (TSP). To solve the
problem, the algorithm first searches for collision-free
paths between each pair of viewpoints and between each
viewpoint and the current vehicle position using the A*
algorithm on the voxel grid map. Then, the algorithm
evaluates the connection cost based on the length of
the collision-free path and composes a nv × nv cost
matrix Mtsp. Finally, the problem can be solved using
available TSP algorithms [13]. This method outperforms
the greedy-based methods in terms of overall exploration
efficiency, but performing global optimization in the
entire environment incurs high computational overhead,
especially in large-scale environments.

In the proposed method, we improve the scheme of
FUEL [7] further by generating high-quality viewpoints
using occlusion-free spheres, and combining greedy
and global optimization strategies. We benchmark our
method against the state-of-the-art baselines: FUEL [7],
GBP [2] and NBVP [1]
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Fig. 2. Overview of the proposed system framework

III. PROPOSED PLANNER

The overview of the proposed system framework
is shown in Fig. 2, including: 1) Frontier detection
and viewpoints generation using occlusion-free sphere
(Sec. III-A and Sec. III-B); 2) Global exploration tour
planning (Sec. III-C); 3) Local trajectory generation.
(Sec. III-D);

A. Occlusion-Free Sphere
An occlusion-free sphere is defined by its center pc ∈

R3, which lies on the target frontier, and the radius:

r = ||pc − po||2 (1)

where po ∈ R3 is the nearest neighbor obstacle point
(NN point). In this way, the interior of the sphere is
free from occupied grids. Since sphere is convex, any
line segment that connects points within the sphere
(including its surface) and the frontier is occlusion-free,
as shown in Fig. 3. By employing a viewpoint sampling
strategy on the sphere’s surface, we can obtain high-
quality viewpoints without resorting to computationally
expensive ray casting techniques.

Target 
Frontiers

Sampled 
Viewpoints

Obstacle

Occlusion
Free Sphere

NN Point
KNOWN FREE

UNKNOWN

Fig. 3. The definition of the occlusion-free sphere.

To expedite the sphere generation process, we adopt
an incremental KD-tree methodology as outlined in
[14], [15]. The time complexity of nearest neighbor
search (NNS) is O(log n), where n is the number
of nodes in the tree. Therefore, even in large-scale

Algorithm 1: Generate Viewpoints
1 Notation: Input frontier cells F; Viewpoints V;

Occlusion-free sphere priority queue sort by radius
S; Sphere center list C; The generated viewpoint vb;
The frontier cells covered by vb: Fv; The sphere
centers covered by vb: Sv

Input: F
Output: V

2 C = DownsampleFrontier(F);
3 for pc ∈ C do
4 si = GenerateNewSphere(pc) ;
5 S.PushBack(si);
6 end
7 while not S.empty do
8 sl = S.front();
9 S.pop();

10 vb,Fv,Sv = GenerateViewpoint(sl,F);
11 F.remove(Fv);
12 S.remove(Sv);
13 V.PushBack(vb);
14 end
15 return V

Fig. 4. Uniformly sample viewpoints on the sphere surface using a
spherical coordinate system. The green points are viewpoint candidates
in free space. The orange boxes are frontier cells in sphere.

environments, the sphere generation process remains
computationally efficient. We denote this process as
GenerateNewSphere(pc), which we shall utilize in
subsequent analyses.

B. Viewpoints Generation

After generating an occlusion-free sphere sl, the pro-
posed method uniformly samples a set of viewpoints on
the sphere surface using a spherical coordinate system,
as shown in Fig. 4. Compared to the viewpoint in the
sphere, the viewpoint on the sphere surface has a longer
viewing distance of the frontier cells inside the sphere,
providing more coverage. The yaw direction of the
sampled viewpoints is optimized to have the maximum
coverage of frontier cells, similar to [16]. We then
remove the viewpoints in unknown space and perform a
sensor FoV check to count the number of frontier cells
covered by each remaining viewpoint. Finally, we select
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Fig. 5. Illustration of viewpoints generation. Left: Uniformly downsample to generate sphere center candidates. Middle: Find the largest sphere
and generate a viewpoint. Remove the sphere centers covered by the viewpoint. Right: Perform the same sequence for remaining sphere center
candidates and generate a set of viewpoints

the viewpoint that has the highest coverage. This entire
process is referred to as GenerateViewpoint(sl,F),
which will also be utilized in subsequent analyses.

Alg. 1 present the workflow of the entire viewpoints
generation process. Initially, the algorithm searches
for frontier cells in the environment using an incre-
mental manner, similar to FUEL. Then, it uniformly
downsamples frontier cells to generate a set of sphere
center candidates C. This process is referred to as
DownsampleFrontier(F) (Line 2). Next, for each
sphere center pc in C, the corresponding occlusion-free
sphere si is generated using GenerateNewSphere(pc),
as described in section III.A. The generated sphere si
is then added to the priority queue S, which is sorted
by sphere radius. At each iteration, the largest sphere
sl is selected from the priority queue S. The algorithm
then generates the viewpoint having the highest coverage
vb using GenerateViewpoint(sl,F), as described in
Section III.B. The generated viewpoint vb covers a set
of frontier cells Fv as well as a set of sphere centers Sv .
These sets are then removed from F and S, respectively.
The iteration terminates when the sphere list S is empty.
Note that if the selected sphere sl is smaller than a
certain threshold, the proposed method generates the
viewpoint vb using a similar approach to FUEL. Specifi-
cally, it uniformly samples viewpoints within a spherical
coordinate system, with the minimum sampling radius
set to be the same as sl and the maximum radius set to
be three times the minimum. In this case, ray-casting
is employed to evaluate the frontier coverage of the
viewpoints. Note that as only a few frontier cells are
contained in the small sl, and the sampling radius is
small, the ray-casting process is not computationally
intensive. We refer to the above section as the front-
end of the algorithm. Fig. 5 provides an illustration of
the entire process.

As described in III-A, the viewpoint generated by
our method has occlusion-free coverage of any frontier
cell within the sphere. Therefore, the computationally
expensive ray-casting process, which is commonly used
in existing methods to evaluate sensor coverage, is
no longer needed in our approach. This significantly
reduces the computational complexity.

A viewpoint located far away from the frontier can
cover more frontier cells but is more likely to be
occluded by obstacles. In our method, we generate large
occlusion-free spheres in open areas, with viewpoints
having longer viewing distances to the frontier, covering
more frontier cells. In contrast, small spheres and close
viewpoints are generated in cluttered spaces to avoid
occlusion. Note that both occlusion and short viewing
distance reduce the viewpoint coverage. Exiting methods
like FUEL require dense sampling in the radius dimen-
sion of the cylindrical coordinate system to generate
high-coverage viewpoints, resulting in a large number
of samples. Note that every sampled viewpoint requires
performing ray-casting to evaluate its coverage. This
significantly increases the computational time. On the
other hand, low-density sampling results in the failure of
high-coverage viewpoints generation, leading to reduced
exploration efficiency.

C. Global Tour Planning

We define the gain of a viewpoint v as

g(v) = r(s)e−λc(v,ξ) (2)

where r(s) is the radius of the corresponding occlusion-
free sphere. c(v, ξ) is the cost going to the viewpoint
v from the vehicle current configuration ξ. The cost is
evaluated using Euclidean distance between v and ξ. λ
is the tuning factor.
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Fig. 6. The visualization of the two simulation scenarios. (a): The
Building scenario. (b): The Forest scenario.

A large occlusion-free sphere around the frontier in-
dicates a relatively large volume can be covered without
occlusions, hence increasing the chance of discovering
more unknown regions. A low value of λ prioritizes
visits to these viewpoints. A high value of λ strongly
penalizes the distance cost going to the viewpoint. In
this case, the planner tends to select close viewpoints
and prioritize their visits.

The proposed method maintains a viewpoint priority
queue Q, with a fixed size of nq . As described in section
III.B, the proposed method generates a set of viewpoints
V with a total number of nv . For each viewpoint vi in
V, we compute the gain of vi defined by 2. Then we
greedily select the viewpoint with the highest gain and
push it into priority queue Q until the queue is full.

The global planning problem is to find an open-
loop tour starting from current vehicle position and
passing through viewpoints in Q. We define a nq × nq
cost matrix Mq describing the connection cost of each
two elements in Mq . The connection cost is evaluated
using the length of a collision-free path searched by
A* algorithm. Similar to FUEL, we formulate the prob-
lem as the Asymmetric Travelling Salesman Problem
(ATSP), a variant of TSP, and solve it using the available
algorithm [13]. This section is referred to as the back-
end of the exploration planner.

D. Local Trajectory Generation

Given a collision-free global path generated in
Sec. III-C, we utilize a modified version of our previ-
ous work, BubblePlanner [17], to achieve smooth and
energy-efficient local planning on LiDAR points. We
represent the trajectory using a piecewise polynomial.
The local planner first performs a batch sample algo-
rithm along the path and generates a spherical safe
flight corridor (SSFC). The corridor-constrained trajec-
tory optimization problem is then solved using a spatial-
temporal decomposition method [18], which considers
both smoothness and short trajectory execution time.
The maximum velocity vmax and maximum acceleration
amax are also constrained to ensure kinodynamic fea-
sibility. The local planner adopts a Receding Horizon
Planning framework, with the planning horizon set to
15m. Replanning is triggered when the trajectory col-

Fig. 7. The executed trajectories of all benchmarked methods in
Building scenario. Top: The trajectory of the proposed method (blue)
and FUEL [7] (red). Bottom: The trajectory of GBP [2] (green) and
NBVP [1] (pink).

TABLE I
RUN TIME COMPARISON

Scene Methods average run time (s)

Proposed FUEL [7] GBP [2] NBVP [1]

Building 0.155 0.419 2.821 7.456
Forest 0.288 1.139 3.423 10.078

Forest (MID360) 0.313 1.467 5.438 19.622

lides with newly sensed obstacles or when the global
planner sends new targets.

IV. EXPERIMENTS

A. Benchmark Comparison

In this section, we present a comparative analysis
of the proposed method and three state-of-the-art ex-
ploration algorithms, namely FUEL [7], GBP [2], and
NBVP [1]. We assess the performance of these algo-
rithms using a point-realistic simulator [19] in two large-
scale scenarios, as depicted in Fig. 6. These scenarios
were constructed by scanning real-world environments
using LiDAR. We conducted four runs of all algorithms
in each scenario, each with different initial configura-
tions. It is important to note that all algorithms em-
ployed the same initial configurations in each run. We
constrained the maximum speed of the UAV to vmax =
2.5m/s for all methods. The exploration process’s time
limit was set to 1200 seconds (20 minutes). All tests
were conducted on an Intel Core i7-8700@3.2GHz CPU.

1) Building: We first conduct the exploration in a
scenario that contains a two-story building surrounding
a garden in the middle (Fig. 6(a)). Fig. 9 shows the
explored volume of all algorithms over time. The semi-
transparent region in color is formed by the upper-bound
and lower-bound of the four algorithm runs, while the



Fig. 8. The executed trajectories of all methods in Forest scenario:
The proposed (blue), FUEL [7] (red), GBP [2] (green) and NBVP [1]
(pink)

Fig. 9. The explored volume over time in Building scenario (top)
and Forest scenario (bottom)

solid line represents the mean of these four runs. The
proposed method showcases higher exploration rate than
all benchmarked methods throughout the entire explo-
ration process. Fig. 7 displays the executed trajectory of
all methods after exploration terminates. In this scenario,
the proposed method achieves complete exploration with
an average flight distance of 655.8m, while FUEL and
GBP achieve 876.7m and 1060.3m respectively. NBVP
is unable to achieve full exploration of the scene within
the time limit. Table I presents the overall computational
time. The proposed method demonstrates performance

Fig. 10. The explored volume over time in Forest (MID360) scenario

TABLE II
COMPUTATIONAL TIME OF COMPONENTS

Scenes Methods
Viewpoints generation Global optimization

(Front-end) (s) (Back-end) (s)

Frontier View. Total Cost. TSP Total

Building Proposed 0.046 0.019 0.065 0.048 0.009 0.057
FUEL [7] 0.069 0.078 0.147 0.210 0.036 0.246

Forest Proposed 0.129 0.036 0.165 0.046 0.013 0.059
FUEL [7] 0.208 0.172 0.380 0.621 0.115 0.736

2.5+ times faster than FUEL, 18+ times faster than GBP,
and 48+ times faster than NBVP.

2) Forest: The second test is conducted in a dense
forest scenario (Fig. 6(b)). As shown in Fig. 9, all meth-
ods take longer to fully explore the environment. This
is because the Forest scenario is twice as large, more
cluttered, and complex than Building. Nevertheless, the
proposed method demonstrates impressive performance.
In this scenario, the proposed method completes explo-
ration in an average of 579.8s with an average flight
distance of 804.1m, FUEL completes in an average of
1139.6s and 1098.4m respectively. GBP and NBVP are
unable to complete the exploration within the given time
limit. In terms of computational time, our algorithm
performs 4 times faster than FUEL, 11+ times faster
than GBP, and 35 times faster than NBVP.

Notably, GBP demonstrates a higher exploration rate
than FUEL in the early stage of the exploration process
by visiting high-gain unexplored regions in a greedy
manner. However, it falls short in the late exploration
stage due to the lack of global optimality. The pro-
posed method combines greedy strategy and global
optimization to explore a large volume in the early stage
of the exploration process and then efficiently cover
unexplored regions to achieve full exploration of the
environment.

To further benchmark our methods with FUEL in
detail, we compare the computational time of each
component of both methods. The statistics are presented
in Table. II. The results show that our method runs 2+
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Fig. 11. (a): Real-world experiment conducted in a forest. (b) and (c):
Two different views of the online-built point cloud map and executed
trajectory of the UAV. The green box is the bounding box of the area
to be explored. Areas out of the bounding box were also observed due
to the long LiDAR measuring range.

times faster on average than FUEL in the front-end and
5-10 times faster in the back-end.

3) Forest (MID360): To demonstrate the versatility
of our method across various types of LiDARs, we
conducted simulation tests in the dense forest scenario
using a 360-degree FoV LiDAR: Livox MID360. Results
are presented in Fig. 10 and Table. I, from which similar
conclusions could be drawn.

B. Real-world Experiments

Various real-world experiments are conducted to fur-
ther validate our method. We build a LiDAR-based
quadrotor platform. The platform is equipped with an
Intel NUC onboard computer with CPU i7-10710U,
Pixhawk flight controller, and LiDAR (Livox AVIA or
Livox MID360). For localization and mapping, we rely
on LiDAR and the built-in IMU of the flight controller to
run [20], a modified version of FAST-LIO2 [15], provid-
ing high accuracy and high frequency state estimation.
The time offset and extrinsic between LiDAR and IMU
are calibrated by [21]. For trajectory following, we use
an on-manifold model predictive controller [22].

Width: ~70mHeight: ~5.5m

Fig. 12. The overview of the online-built point cloud map and
executed trajectory of the UAV. The orange box is the bounding box
of the area to be explored. In the middle of the scene is a closed
building, leading to no feasible path.

Fig. 13. The explored volume over time in Scenario 1 (left) and
Scenario 2 (right).

First, we use the UAV to explore a large-scale and
cluttered environment containing both indoor and out-
door spaces (Scenario 1). The size of the area to be
explored is [75 × 70 × 5.5]m3. In this scene, we equip
the UAV with Livox MID360 LiDAR. In a representative
run, the UAV completes the exploration in 155.8s, with
a flight distance of 268.4m. The online-built point cloud
map and the executed trajectory are displayed in Fig. 1
and Fig. 12. The explored volume over time is shown in
Fig. 13. In this test, the UAV starts out at an open space.
Then it explore in a hallway and proceed to outdoor
space. The UAV had almost completed the exploration
of the hallway after approximately 70 seconds, resulting
in the flattening of the curve slope in Fig. 13. At around
85 seconds, the UAV entered the outdoor space and
covered a significant amount of unknown area, resulting
in a steep increase in the curve slope. Finally, at ap-
proximately 160 seconds, the exploration of the outdoor
space was completed, concluding the entire exploration
process. As observed in the results presented in Fig. 12,
the proposed method produced few revisit or back-and-
forth planning motion throughout the entire exploration
process.

Second, we use the UAV to explore a cluttered forest
scene with a size of [64 × 30 × 3.2]m3 (Scenario 2).
In this test the UAV is equipped with Livox AVIA
LiDAR, which has a [70.4◦ × 77.2◦] cone-shape FoV.



The UAV takes 92s to complete the exploration with a
flight distance of 159.2m. The point cloud and trajectory
are displayed in Fig. 11 and statistics result is shown in
Fig. 13.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel method to support
efficient autonomous exploration in large-scale and clut-
tered 3-D environments. In the front-end, we introduced
the novel concept of an occlusion-free sphere to generate
high-quality viewpoints at low computational cost. In
the back-end, our method adopts a novel strategy that
combines greedy with global optimization. The pro-
posed method demonstrated a significant improvement
in exploration efficiency and computational time sav-
ings. Extensive simulation and real-world experiments
showcased the outstanding performance of our method
in large-scale, cluttered, and complex environments. In
the future, the method can be extended to support the
exploration of a larger scene by implementing it on
multiple UAVs.
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