
To appear in the Int’l. Conference on Intelligent Robots and Systems (IROS), 2023.

Optimal Cost-Preference Trade-off Planning with Multiple
Temporal Tasks

Peter Amorese and Morteza Lahijanian

Abstract— Autonomous robots are increasingly utilized in re-
alistic scenarios with multiple complex tasks. In these scenarios,
there may be a preferred way of completing all of the given
tasks, but it is often in conflict with optimal execution. Recent
work studies preference-based planning, however, they have yet
to extend the notion of preference to the behavior of the robot
with respect to each task. In this work, we introduce a novel
notion of preference that provides a generalized framework
to express preferences over individual tasks as well as their
relations. Then, we perform an optimal trade-off (Pareto)
analysis between behaviors that adhere to the user’s preference
and the ones that are resource optimal. We introduce an efficient
planning framework that generates Pareto-optimal plans given
user’s preference by extending A∗ search. Further, we show
a method of computing the entire Pareto front (the set of all
optimal trade-offs) via an adaptation of a multi-objective A∗

algorithm. We also present a problem-agnostic search heuristic
to enable scalability. We illustrate the power of the framework
on both mobile robots and manipulators. Our benchmarks
show the effectiveness of the heuristic with up to 2-orders of
magnitude speedup.

I. INTRODUCTION

Recent advancements have enabled robots to take on dom-
inant roles in our daily lives. Examples include self-driving
cars, home assistive robots, and cooperative manipulators
in factories. As they become more integrated into society,
there is an increasing demand for them to perform not only
multiple simultaneously-assigned complex tasks efficiently
(e.g., minimizing time and energy) but also to complete
them in a way that adheres to human preferences (e.g.,
some should be completed within a time window and others
in a particular order). These objectives, however, are often
competing; that is, by optimizing for efficiency, the execution
becomes less preferred. This results in a trade-off between
the objectives, and hence, the goal becomes to optimize for
this trade-off. Nevertheless, there are often many optimal
trade-offs, known as the Pareto front. Each point on the front
corresponds to a unique behavior; hence, to pick a favorable
behavior, it is usually desirable to know the whole front.
This poses several challenges from the planning perspective:
(i) the notion of preference is not trivial, (ii) generating the
whole Pareto front is computationally intensive, and (iii) the
planning space is immensely large due to the multiplicity
and complexity of tasks. This paper aims to address these
challenges by developing an efficient computational frame-

This work was supported in part by University of Colorado Boulder and
NASA COLDTech Program under grant #80NSSC21K1031.

Authors are with the department of Aerospace Engineering
Sciences at the University of Colorado Boulder, CO, USA
{firstname.lastname}@colorado.edu

work for planning for optimal trade-offs between cost and
preference for multiple complex tasks.

Consider a robotic manipulator working in a restaurant as
a cook. The robot receives several food orders. Firstly, the
robot should cook all dishes in a minimal time. Secondly, the
customers expect that the dishes are served according to the
sequence in which each customer placed the order. It is likely
that preparing and cooking ingredients simultaneously would
be very efficient, but may not respect the order in which
the customers should receive their dish. Thus, the robot
must determine the appropriate optimal trade-offs between
minimizing cooking time and adhering to the preferred order.

A popular approach to express complex tasks in robotics
is the use of temporal logics, namely Linear Temporal Logic
(LTL) [1] for its expressive power [2]. Planning with LTL
specifications has been widely explored for manipulation
applications [3]–[5], and mobile robotic applications [2], [6],
[7]. Traditionally, a major limitation of those methods is
the inability to scale to large, more realistic applications. In
addition, because these applications aim to provide formal
guarantees, they fail to reason about preferences or complex
soft-constraints when planning with multiple tasks.

Recent work has introduced several notions of preference
in planning applications [8]. A preference can generally
be described through quantitative (cost-based) or qualita-
tive (comparison-based) measures. Qualitative preferences
can be expressed through structures such as a Hierarchical
Task Networks [9]–[12], where the user is responsible for
qualitatively comparing specification formulae through a
binary relation. These methods struggle to be able to plan
using an incomplete binary relation, i.e., there exist at least
two outcomes that cannot be compared, while reasoning
about temporal objectives. Work [13] tackles planning with
incomplete preferences over temporal goals. The quality of
the outcome may be dependent on how extensive the user’s
given binary relation is. Since it is cumbersome for a user
to provide an exhaustive binary relation for many outcomes,
an alternative is to quantify the user’s preference.

Work [14] introduces a language to compare qualitative
preferences over temporal objectives where the user quali-
tatively annotates the level of preference for each formula.
Similarly, the quantitative preference planning problem can
be posed as a partial satisfaction [15], [16] or minimum
violation/maximum realizability [17]–[20] planning problem.
These approaches generally require the user to define costs
for certain temporal outcomes based on the tasks alone.
Many approaches look to Planning Domain Definition Lan-
guage (PDDL) [21] to specify quantitative preferences [22]–

1

ar
X

iv
:2

30
6.

13
22

2v
1

 [
cs

.R
O

]
 2

2
Ju

n
20

23

[24]. While these methods provide a framework for reasoning
over temporal preferences, they are limited to reasoning
about Boolean temporal behaviors, and are unable to reason
about the efficiency and performance of the robotic system.

This work aims to provide a new perspective on
preference-based planning that allows the user to quantify
a preference with respect to behavior of an actual robotic
system with respect to each given task. For example, the
user can express their preference over the cumulative cost of
completing each task in relation to the other tasks. Hence, in
our framework, we reason about two planning objectives: (i)
a user-defined preference objective, and (ii) a cost objective
that models the efficiency of the system. Under this novel
preference formulation, an optimal trade-off analysis can
be performed to illustrate the robot’s behavior for varying
levels of preference objective adherence. We first introduce
an adaptation of the A∗ search algorithm to efficiently
synthesize a single optimal plan given a constraint on one
objective, depending on how flexible the user’s preference is.
To compute the full Pareto front, we leverage an adaptation
of a recent bi-objective A∗ algorithm BOA∗ (Bi-Objective
A∗) [25], based off of the multi-objective A∗ search algo-
rithm NAMOA∗ (New Approach to Multi-Objective A∗)
[26].

The contributions of this paper are as follows. Firstly, we
introduce a novel generalized notion of preference over the
cost of satisfying each individual task. Second, we define
a problem-agnostic heuristic to speed up the computation
time considerably. Third, we adapt the BOA∗ algorithm
for computation of Pareto optimal solutions. Lastly, we
demonstrate our novelties by using case studies on both
mobile robots and manipulators, as well as the effectiveness
of the heuristic using benchmarks with results of up to 2-
orders of magnitude speedup.

II. PROBLEM FORMULATION

A. Robot Model

We consider an abstracted model for a robot given as a
transition system. Such abstractions are commonly used and
constructed in formal approaches to both mobile robots [2],
[7], [27] and robotic manipulators [3], [28].

Definition 1 (WTS). A Weighted Transition System (WTS)
is a tuple T = (S, s0, A, δT , c, AP, L) where

• S is a finite set of states,
• s0 ∈ S is an initial state,
• A is a finite set of actions,
• δT : S ×A 7→ S is a transition function,
• c : S × A 7→ R≥0 is a cost function that assigns a

non-negative weight to every state-action pair,
• AP is a set of atomic propositions that is related to the

robot task, and
• L : S 7→ 2AP is a labeling function that maps each

state to a subset of propositions in AP that are true at
that state.

A plan π = π0π1 · · ·πm−1 is a sequence of actions, where
m ≥ 1 and πk ∈ A for all 0 ≤ k ≤ m − 1. A trajectory

x0,0

x0,1

x0,2

x1,0

x1,1

{plant}

x1,2

{rock}

x2,0

{dirt}

x2,1

x2,2

{charge}

east

west

northsouth

Fig. 1: Weighted Transition System from Example 1. The
red arrows illustrate a satisfying plan for Example 2.

τ = τ0τ1 · · · τm is a finite sequence of states on WTS T ,
where τk ∈ S for all 0 ≤ k ≤ m. A plan is called valid if it
produces a trajectory τπ = τπ0 · · · τπm such that τπ0 = s0 and
τπk+1 = δT (τ

π
k , πk) for all 0 ≤ k ≤ m− 1. The observation

of τπ is a trace σπ = σπ
0 · · ·σπ

m where σπ
k = L(τπk) ⊆ AP

for all 0 ≤ k ≤ m. Lastly, the total cost of trajectory τπ ,
denoted by C(τ), is the sum of all the state-action costs
along τπ , i.e.,

C(τ) =

m−1∑
k=0

c(τπk , πk). (1)

Example 1. Consider a 2D mobile robot in a grid environ-
ment tasked with collecting resources as shown in Fig. 1.
Each state is a 2D coordinate (x, y), denoted by xx,y , where
the initial state s0 = x0,0. There are 4 cardinal direction
actions A = {North, South,East,West}. Function δT
encodes transitions between neighboring cells based on the
actions. Each transition is weighted by a cost objective c.
The labeling function L marks the location of the resources,
where L(x2,0) = {dirt}, L(x1,1) = {plant}, L(x1,2) =
{rock}, L(x2,2) = {charge}, and L(x) = ∅ otherwise.

B. Task Specification

We are interested in a setting where the robot is given
multiple tasks, each being a temporally extended goal that
the robot must reach in finite time. To specify such tasks, we
use Co-Safe Linear Temporal Logic (scLTL) [29], which is
a fragment of LTL [30] that can be satisfied in finite time.

Definition 2 (scLTL Syntax [29]). A syntactically Co-Safe
Linear Temporal Logic (scLTL) formula over AP is recur-
sively defined as

φ = o | ¬o | φ ∧ φ | φ ∨ φ | Xφ | φUφ

where o ∈ AP , ¬ (negation), ∧ (conjunction), and ∨
(disjunction) are Boolean operators, and X (next) and U
(until) are temporal operators.

The commonly-used temporal operator “eventually” (F) can
be defined as Fφ ≡ trueUφ. The semantics of scLTL are
defined over infinite traces, but only a finite prefix of a trace
is needed to satisfy a scLTL formula [29]. We denote the
prefix of a trace σ up to time step k by σ[k] = σ0 . . . σk.

The robot is given N > 1 tasks φ1, . . . , φN . Ideally, we
want the robot to achieve all the tasks, but it may be possible
that some of the tasks are conflicting or unachievable in
an environment. For ease of presentation, we assume the

2

robot can complete all N tasks, but we emphasize that
our framework can be adapted for scenarios that tasks are
not fully achievable using notions of partial satisfaction
introduced in [31]–[34]. We remark the required changes for
this adaption throughout the paper.

Definition 3 (Satisfying Plan). Given a set of scLTL formu-
lae Φ = {φ1, . . . , φN}, plan π satisfies Φ, denoted by π |=
Φ, if it produces a valid trajectory τπ , whose observation
trace σπ satisfies all formulae in Φ, i.e., σπ |= ∧Ni=1φi Then,
we say τπ satisfies Φ denoted by τπ |= Φ.

Remark 1. In the case that there exist tasks that are
not achievable, instead of satisfying plan, the notion of
partially-satisfying plan can be adopted from [31], which
also quantifies distance to satisfaction for each task.

Example 2. Following from Example 1, consider formulae:
φ1 = F charge, φ2 = F (plant ∧ F rock), and
φ3 = ¬plantUdirt. Translated to English, the formulae state
that the robot must: (φ1) eventually charge, (φ2) eventually
collect plant, then collect rock in that order, and (φ3) do
not collect plant until dirt has been collected. An example
of a satisfying plan is π = East East West North North West.

C. Preferences

In this work, we are interested in plans that not only satisfy
the tasks, but are also optimal with respect to two objectives:
total cost in (1) and user preferences over the cumulative
action-cost of satisfying individual tasks.

These objectives are possibly competing, i.e., by optimiz-
ing one, the other becomes sub-optimal. To formulate this
problem, we first formalize the notions of individual cost
and user preference.

Given task set Φ and a plan π, we are interested in the cost
of trajectory τπ relative to each task φi ∈ Φ. Let Ki ≥ 0 be
the length of the smallest prefix of σπ that satisfies φi, i.e.,
σπ[Ki] |= φi and σπ[Ki − 1] ̸|= φi. Then, with an abuse of
notation, we define the cost of τπ with respect to φi to be

C(τπ, φi) =

Ki∑
k=0

c(τk, πk). (2)

Remark 2. For partial-satisfying plan, the cost of C(τπ, φi)
in (2) can instead be derived from the notion of distance to
satisfaction for each task as in [31].

We can now present a general notion of how users can
articulate their preferences over any trajectory by utilizing a
single ordered set of individual task costs.

Definition 4 (Preference Cost Set). The preference cost set
(PCS) of task set Φ = {φ1, . . . , φn} by a trajectory τ is a
vector of costs C(τ,Φ) = (c1, . . . , cN), where ci = C(τ, φi)
if τ |= φi, otherwise, ci = C(τ).

The user defines their preference by constructing a function
that assigns a non-negative value to C(τ,Φ). The lower the
value of the function is, the more preferred τ is.

Definition 5 (Preference Function). Given a task set Φ and
a valid trajectory τ , a preference function is a mapping µ :
RN

≥0 7→ R≥0 that assigns a preference value to PCS C(τ,Φ)
according to how well it adheres to the user preference while
satisfying two criteria:

1) µ is monotonically increasing along every
valid trajectory, i.e., µ(C(τ0 . . . τm,Φ)) ≤
µ(C(τ0 . . . τmτm+1,Φ)) ∀ m ≥ 0, and

2) given two trajectories τ1 and τ2, µ(C(τ1,Φ)) <
µ(C(τ2,Φ)) iff C(τ1,Φ) is preferred over C(τ2,Φ).

This method of expressing preference is general to many
applications of a user’s preference. Since the user defines a
function rather than values over PCS, it provides a flexible
framework to capture many types of realistic preferences.
For example, by simply combining each task cost (or the
difference between task costs), a preference function can
capture preferences such as a desired order of satisfaction
among tasks, prioritizing the efficiency of select tasks using
priority-weights, etc.

Remark 3. By deriving PCS from partial-satisfaction costs,
preferences such as incentives for certain tasks to remain
below a violation threshold, prioritizing full-satisfaction of
select tasks, etc. can be expressed.

Example 3. Imagine the user would like to quantify how
“out-of-order” the tasks are satisfied compared to the desired
order of satisfaction, for example, the order of appearance
in Example 2 (φ1 should be satisfied first, etc). Consider a
given input PCS C = (c1, ...cN), for example C = (20, 5, 10).
Let the “ideal” PCS C∗ = (c∗1, ...c

∗
N) be equal to the sorted

version of C, e.g., C∗ = (5, 10, 20). A positive element di in
the resultant vector D = C − C∗ = (15,−5,−10) indicates
that φi was delayed (out of order) by di units of cost. In this
case, φ1 was delayed by 15 units. Thus, a preference function
µ can be defined as the sum of all positive elements of D;
in this case µ(C) = 15.

D. Cost and Preference Objectives

We aim to find a plan that satisfies Φ and is optimal for
both the total cost of the trajectory and the user preference.
The problem is formally stated as follows.

Problem 1. Given a robot modeled as a WTS, a set of scLTL
formulae Φ = {φ1, φ2, . . . φN}, and a preference function
µ, compute a plan π for the robot such that the resulting
trajectory τπ

• minimizes total cost C(τπ),
• minimizes preference function µ(C(τπ,Φ)), and
• and satisfies all the tasks, i.e., π |= Φ.

Remark 4. If Φ is not fully achievable, the third objective
in Problem 1 only requires that π partially satisfy Φ.

Note that a plan that globally optimizes the cost and
preference objectives may not exist because these objectives
are often competing. Thus, we seek to compute all the
Pareto-optimal plans that optimize the trade-off between cost

3

and preference. Further, note that Problem 1 is particularly
challenging because the size of the search space grows
exponentially with more complex formulae. Both single
plan synthesis as well as the Pareto front computation may
become intractable when solving large problems without a
guiding heuristic.

III. APPROACH

We now present our approach to solving Problem 1.
We begin by reducing Problem 1 to graph-search. Then,
we augment A∗, a shortest-path graph search algorithm,
to calculate a cost-optimal plan that adheres to a user-
defined preference cost constraint. To deal with the natural
intractability of Problem 1, we introduce a problem-agnostic
heuristic that greatly improves the runtime of the algorithm.

A. Product Graph Construction

From a scLTL formula φi, a Deterministic Finite Automa-
ton (DFA) Ai can be constructed that accepts precisely the
same set of traces that satisfy φi [29].

Definition 6 (DFA). A Deterministic Finite Automaton
(DFA) is a tuple A = (Q, q0,Σ, δA, F) where: Q is a set of
states, q0 ∈ Q is an initial state, Σ ⊂ 2AP is the alphabet,
δA : S × Σ 7→ S is a transition function, and F is a set of
accepting (final) states.

Trace σ ∈ (2AP)∗ induces a run γ = q0 . . . qm, where
qk+1 = δA(qk, σk) ∈ Q, on DFA Ai. Run γ is accepting if
qm ∈ F . Then trace σ is accepted by Ai and hence satisfies
φi, i.e., σ |= φi.

A property of scLTL is accepting states qf ∈ F can
be made absorbing, i.e, δA(qf , σ) = qf ∀σ ∈ 2AP . The
construction of DFA is worst-case doubly-exponential in the
size of the task [29].

Remark 5. In the partial satisfaction setting, a DFA for φi

is augmented with extra transitions and transition weights,
which represent allowable violations to task φi and the
“violation costs,” respectively [31]. The obtained structure
is a Weighted DFA (WDFA).

Since we are interested in capturing progress towards
each task simultaneously for a given trajectory on WTS
T , a product automaton P can be defined, where each
state combines the physical attributes from T with temporal
attributes from all φi ∈ Φ.

Definition 7 (Product Automaton). Given a WTS T and
DFAs A1,A2, . . .AN , a Product Automaton P = T ⊗A1⊗
...⊗AN is a tuple P = (P, p0, A,Σ, δP , CP , acc), where

• P = S ×Q1 × ...×QN is a set of states,
• p0 = (s0, q1,0, q2,0, ..., qN,0) is the initial state,
• A is the same set of actions as in T ,
• Σ = 2AP is the alphabet,
• δP : P ×A 7→ P is a transition function where for any

two states p = (s, q1, ..., qN) and p′ = (s′, q′1, ..., q
′
N),

the transition p′ = δP (p, a) exists if s′ = δT (s, a) and
q′i = δA(qi,L(s′)) for all 1 ≤ i ≤ N ,

• CP : P × A × {Φ} 7→ RN
≥0 is a function that weights

each transition with a transition-PCS, and
• acc : P 7→ 2Φ is an acceptance function that

identifies which tasks are satisfied in each state, i.e.
acc((s, q1, ..., qN)) = {φi | qi ∈ Fi ∀1 ≤ i ≤ N}.

A plan π generates a trajectory on P , denoted by ρ =
ρ0 . . . ρm where ρ0 = p0, pk ∈ P ∀0 ≤ k ≤ m, and
ρk+1 = δP (ρk, πk). To define CP , we first define the
transition-cost for each task as cP : P × A × Φ 7→ RN

≥0

where, given a state p = (s, q0, q1, ..., qn) and action a,
cP (p, a, φi) = c(s, a). Since state p ∈ P captures all of
the relevant task history of any trajectory that reaches p, the
construction of a PCS C(ρ,Φ) can be alternatively expressed
using the element-wise sum of individual transition-PCS’s.
Given state-action pair (p, a), CP constructs a transition-PCS
defined as a tuple CP (p, a) = (c̃P,1, . . . , c̃P,N), where

c̃P,i =

{
cP (p, a, φi) if φi ̸∈ acc(p)

0 otherwise
(3)

It follows form Def. 4, C(ρ,Φ) =
∑m

k=0 CP (ρk, ak,Φ).

Remark 6. In the partial satisfaction setting, the product
automaton is constructed from WDFAs instead of DFAs.
Additionally, the transition cost for each task cP (p, a, φi)
is equal to the transition cost in the respective WDFA Ai.

In traditional product construction, state p =
(s, q0, . . . , qn) is labeled accepting only if qi ∈ Fi for
all 1 ≤ i ≤ n, which means all the tasks are satisfied
at p. However, in our framework, as seen in (3), finer
acceptance granularity is needed to correctly capture the
PCS of a trajectory. Hence, we use an indicator function
acc(p) that returns the subset of tasks that are satisfied at
state p. A satisfying trajectory ρacc on P is one that emits
acc(pacc) = Φ.

With this construction, determining the cost-optimal plan
is reduced to graph search. Specifically, we desire a satisfying
trajectory ρacc that minimizes (1). The cost-optimal satisfy-
ing plan π∗ can be determined using δP for the shortest path
ρ∗ between node p0 and pacc where acc(pacc) = Φ. Note that
since δP allows for multiple transitions between the same
two states p′ = δP (p, a) and p′ = δP (p, a

′) under different
actions a ̸= a′, we choose the action with the smallest edge
weight, i.e., action a∗ is selected if cP (p, a∗) ≤ cP (p, a).

B. Constrained Symbolic Search

For the case that the user does not want to perform the
entire trade-off analysis, but rather they are interested in a
single satisfying plan that adheres to a preference cost bound
µmax, we provide a single-objective constrained synthesis
algorithm that returns a cost-optimal plan π∗ such that
µ(C(τπ∗

,Φ)) ≤ µmax, given a product automaton P . The
pseudocode for constrained synthesis is presented in Alg. 1.

Alg. 1 takes in a product automaton P , an admissi-
ble heuristic function h, a preference function µ, and a
preference-cost constraint µmax. We introduce a method of

4

Algorithm 1: A∗ Constrained Synthesis
Input: P = (P, p0, A,Σ, δP , cP , acc), h, µ, µmax

Output: π∗

1 Create a new node x0 and add it to set O
2 (state(x0), g(x0), C(x0), f(x0))←

(p0, 0, zeros(N), 0)
3 Set gmin to 0 for p0 and ∞ for all other states
4 parent(x0)← NULL
5 while O is not empty do
6 Select and remove x from O such that

f(x) ≤ f(x′)∀x′ ∈ O
7 if acc(state(x)) = Φ and g+ ≤ gmin(state(x))

then
8 return extractP lan(x)
9 for a ∈ actions(state(x)) do

10 g+ ← g(x) + cost(p, a)
11 C+ ← C(x) + CP (p, a)
12 if µ(C+) > µmax then
13 continue
14 else if g+ < gmin(δP (p, a)) then
15 gmin(δP (p, a))← g+

16 Create a new node y and add it to O
17 (state(y), g(y), C(y), f(y))←

(δP (p, a), g
+, C+, g+ + h(δP (p, a))

18 parent(y)← x
19 return failure

generating a very efficient admissible heuristic h in Sec. III-
D.1. The output of Alg. 1 is a cost optimal plan π∗ that
adheres to the preference-cost constraint.

Similar to BOA∗ [25], Alg. 1 searches over “nodes”,
where each node captures a unique path to a given state p. We
keep track of four properties of every node x: (i) state(x),
the corresponding product automaton state p, (ii) g(x), the
total cost or “g-score” of x, (iii) C(x), the PCS of the path
leading to x, and (iv) f(x) = g(x) + h(x), the heuristic “f-
score” of x, which gives an under-estimate of the minimum
cost-to-goal using the heuristic function h (described in Sec.
III-D.1. Since µ is assumed to be monotonically-increasing
along a trajectory, the preference cost of any partial-trajectory
from p0 to state(x) is guaranteed to lower bound any
trajectory through x. To guarantee that π∗ is optimal, we
store the minimum cost encountered by any trajectory that
reaches p, denoted gmin(p). Additionally, to extract π∗, we
store each node’s parent inside parent(x).

Initially, a new node x0 is created and added to the open
set O with state(x0) = p0, quantities set to zero, and a
NULL parent (Lines 1-4). In each iteration, a node x is
selected from the open set O with the lowest f-score (Line 6).
If the product state state(x) satisfies all tasks and attains the
smallest g-score of any path to x, a solution is found, and the
path can be extracted by recursively looking-up parent(p)
(Lines 7-8). Otherwise, for each action enabling a transition
on P from state state(x), it computes the tentative cost
(represented by cost(p, a) = c(s, a)) and tentative PCS by

adding the transition-PCS (Lines 9-11). If the preference-
cost of the tentative trajectory exceeds the constraint, the
tentative path is not allowed and can be disregarded (Line
12). Otherwise, the tentative path is a valid search candidate.
If the tentative path yields a lower cost, the lower cost is
marked using gmin (Lines 14-15). Then, algorithm creates
a new node y representing the tentative path, assigns the
tentative quantities, and marks the parent node x (Lines 16-
18). If the open set is ever empty, a plan that satisfies all
task and adheres to the preference constraint does not exist,
thus returning failure (Line 19).

Alg. 1 is guaranteed to return a cost-optimal plan π∗ that
satisfies the preference-cost constraint µ(C(τπ∗

)) ≤ µmax if
the heuristic function h(p) is admissible (see Sec. III-D.1).

C. Pareto Front Computation

We are often interested in the Parent front, i.e., the set of
all optimal trade-off solutions. To efficiently compute such
trade-offs between cost and preference-cost, we formulate
our problem as a multi-objective graph search problem, and
leverage BOA∗ [25] to compute the Pareto front.

To use BOA∗, we first formulate our trade-off analysis
synthesis problem as a simple bi-objective heuristic graph
search problem where Objective 1 is cost and Objective 2 is
preference-cost. A search problem can be defined using the
tuple (P,E, c, p0, pacc,h) where P is the set of states, E ⊆
P × P is a set of state transitions captured by the operator
neighbor, c : E 7→ R2

≥0 is a cost-double edge weight
function for two competing objectives, and h : P 7→ R2

≥0

is a heuristic function (different from h above). Similar to
Alg. 1, Each node (x) in the search queue can be represented
by the state p, cost-vector g = (g1, g2), and f -cost-double
f = (f1, f2). Adapting to our problem, g1 is the cost (denoted
g(x) in Alg. 1), and g2 = µ(C(x)). For the purposes of this
paper, we present a heuristic for only the cost objective, thus
leaving f1 = f(x) (defined in Alg. 1) and f2 = g2.

Tuple (P,E, c, p0, pacc,h) is used as an input to BOA∗ to
compute all Pareto-optimal solutions with varying preference
adherence. Using an admissible heuristic function, BOA∗ is
guaranteed to find all optimal solutions if they exist.

D. A∗ Symbolic Search

Recall that for large formulas (complex task specifica-
tions), the size of each DFA Ai might become very large,
making the size of P overwhelmingly large. Hence, it is
necessary to use a non-exhaustive search algorithm to find ρ∗.
The first step towards increasing the computational efficiency
is to represent P implicitly. This can done by embedding P
into the search algorithm and using the neighbors operator.
All nodes recursively encountered using neighbors can be
saved, and the others are ignored.

Simply implicitly representing P might improve the
average-case total runtime and memory consumption; how-
ever, we can leverage the efficiency of the A∗ search al-
gorithm to improve search speed and reduce the number
of iterations needed to find the optimal plan. A∗ requires
an admissible heuristic, i.e., an underestimate of the cost

5

p1
p2 tacos

cheese

p3

p4

grocer

pizza

I
F

(a) cost = 68, µ = 29,

I
F

(b) cost = 70, µ = 28

I
F

(c) cost = 72, µ = 24

I
F

(d) cost = 74, µ = 23

I
F

(e) cost = 84, µ = 11

I
F

(f) cost = 98, µ = 0
70 75 80 85 90 95

Cost

0

5

10

15

20

25

30

Su
m

-D
el

ay
 P

re
fe

re
nc

e
Co

st

(g) Pareto Front

Fig. 2: Case Study 1 - Varying levels of order-of-satisfaction preference adhesion are shown for a mobile robot where (a)
is the most cost-efficient plan, and (f) satisfies the tasks in the desired order. (g) is the Pareto front.

from a given node p to the nearest pacc, to speed up the
search while maintaining the optimality guarantee. Many
applications of A∗ make use of external problem-specific
information as a heuristic, such as Cartesian distance to goal
on a map. To develop an approach that remains problem-
agnostic, we use a novel method of pre-computing heuristic
values using small-scale decentralized synthesis techniques.
This approach makes no further assumptions on Problem 1,
and provides significant runtime improvement (see bench-
mark results in Sec. IV).

1) Decentralized Max-Min Heuristic Computation: To
calculate the max-min heuristic value for a given node p,
the minimum cost to satisfying each individual remaining
task φj ∈ Φ \ acc(p) must be computed. Using the single
product P̄j = T ⊗Aj , the minimum cost-to-goal for a given
node p̄j ∈ P̄ j , denoted dj(p̄j) can be computed in a decen-
tralized manner for all p̄j ∈ P̄ j . The minimum cost-to-go is
computed using Dijkstra’s algorithm expanding backwards
from all accepting states p̄jacc, where āccj(p̄jacc) = φj to all
p̄j ∈ P̄ j yielding the minimum cost to any accepting state
dj(p̄j).

Given a node p = (s, q1, ..., qN) and a set of remaining
formula indices I = {1 ≤ j ≤ N | φj ∈ Φ \ acc(p)}, the
max-min heuristic h : P 7→ R≥0 can be expressed as

h(p) = max
j∈I

(dj(p̄j)) where p̄j = (s, qj). (4)

Lemma 1 (Admissible Heuristic). The Max-Min heuristic
h(p) is admissible, i.e., h is an under-estimate of the mini-
mum cost-to-go.

Proof. Let ρ denote an arbitrary trajectory ρ = ρ0, . . . ρm
with cost C(ρ) such that ρ0 = p, acc(ρm) = Φ and
acc(ρm−1) ̸= Φ. Assume there exists a ρ∗ such that

C(ρ∗) < h(p). Therefore, at least one remaining formula
φj ∈ Φ\acc(p) has a minimum cost-to-go estimate dj(p̄j) >
C(ρ∗). By the transition function in Def. 7, the minimum
cost between any two states in P̄j must lower-bound the
cost between equivalent states on P , hence a contradiction.

Our experiments and benchmarks show that using this
heuristic significantly improves the computation time.

IV. EXPERIMENTS

In this section, we demonstrate our novel preference
formulation on realistic problems: a mobile robot and a
manipulator. Additionally, since we aim to show the utility
of our planning framework for more realistic/complex prob-
lems, we include benchmarks of both single-plan synthesis
as well as Pareto front computation with and without the
problem-agnostic heuristic described in Sec. III-D.1.

1) Case Study 1: Order-of-Satisfaction Mobile-Robot:
Extending from Example 1, we demonstrate the varying
levels of preference adhesion using a 2D grid environment
food-delivery robot simulation. For this case study, the
environment is a 20×20 grid-world equipped with cardinal-
direction actions (N , S, E, W), each with a cost of 1 unit.
We give the robot five scLTL tasks: φ1 = ¬pizzaUcheese
(do not pick up pizza until cheese factory is visited), φ2 =
Fgrocer ∧ F (p2) (deliver groceries to person 2), φ3 =
F (tacos∧Fp3∧Fp4) (deliver tacos to person 3 and person
4), φ4 = F (pizza ∧ Fp1) (deliver pizza to person 1), and
φ5 = F (cheese ∧ Ftacos ∧ Fgrocer ∧ Fpizza) (deliver
cheese to all food establishments). The layout of each loca-
tion is shown in Fig. 2a. The preference function formulation
in Example 3 (preference over the order of satisfaction) is
used. Fig. 2a shows the plan when only cost is optimized.

6

p1
p2 tacos

cheese

p3

p4

grocer

pizza

I
F

(a) cost = 50, µ = 77,

I
F

(b) cost = 60, µ = 30

I
F

(c) cost = 64, µ = 15
50.0 52.5 55.0 57.5 60.0 62.5

Cost

20

30

40

50

60

70

80

Su
m

-D
el

ay
 P

re
fe

re
nc

e
Co

st

(d) Pareto Front

Fig. 3: Case Study 2 - Varying levels of preference adherence are shown for a mobile robot in a partial satisfaction scenario
where (a) is the most cost-efficient plan and (c) minimizes the weighted-sum preference function over violation costs.

(a) Cost-Optimal Plan (b) Preference-Optimal Plan

Fig. 4: Case Study 3 - A cost-optimal manipulation plan is compared against the preference-optimal plan.

Fig. 2f shows the resulting behavior when the user’s preferred
order is completely satisfied. Figs. 2b-2e show varying levels
of preference adherence. As the preference-cost increases,
the robot finds ways to simultaneously work on tasks to save
on cost. Fig. 2g shows the Pareto front.

2) Case Study 2: Partial Satisfaction Mobile-Robot: The
environment from Case Study 1 is used. We task the robots
with the same five formulae from Case Study 1, however
we substitute the last formula for φ5 = ¬cheeseUpizza ∧
¬cheeseUtacos (do not visit cheese factory until you visit
pizza and tacos). With this change, φ1 has a conflicts with
φ5. We adapt our algorithm as explained in Remarks 1-6 to
perform partial-satisfaction planning with preference.

We introduce substitution costs for φ1: 15 units to go to the
grocer instead of the cheese factory, φ3: 15 units to forego
delivering food to person 4, φ4: 12 units to pick up tacos
instead of pizza, and φ5 can entirely be skipped for 20 units.
For this case study, we employ a simple weighted-sum of all
the costs where the weight for φ5 is double the others. Fig.
3 shows all optimal trade-off plans with 3a being the most
cost-optimal and 3c being the most preference optimal. Note
that all plans incur a non-zero preference cost since there is
no feasible plan that can fully satisfy all tasks. However, as
seen in 3a and 3b, our planner is able to compute optimal
partially satisfying solutions such that the robot skips parts
of certain tasks (such as delivering food to person 4 and
visiting pizza) to save on cost. The Pareto front is shown in
3d.

3) Mobile-Robot Benchmarks: We benchmarked the two
planning algorithms with and without the heuristic on a 10×
10 grid-world with 5-state DFAs representing formulae of
the form F (sa ∧ F (sb) ∧ F (sc)) where sa, sb, and sc are
observations of three random cells. One hundred randomized
trials were performed. Table I shows the results.

TABLE I: Benchmark results for 10×10 Grid-Robot over 100 runs.

Single Plan Runtime (s) Pareto Front Runtime (s)
N w/o h w/ h w/o h w/ h
2 3.88× 10−2 7.50× 10−3 4.08× 10−2 9.00× 10−3

3 2.48× 10−1 2.87× 10−2 2.69× 10−1 5.26× 10−2

4 1.49× 100 1.05× 10−1 1.67× 100 3.10× 10−1

5 8.99× 100 4.75× 10−1 1.02× 101 1.98× 100

6 4.85× 101 1.98× 100 5.93× 101 1.13× 101

7 2.50× 102 7.50× 100 3.34× 102 6.26× 101

8 1.39× 103 3.65× 101 1.86× 103 3.48× 102

We observe three important points: (i) the runtime in-
creases exponentially with the number of formulae, (ii) the
proposed heuristic reduces computation time by at least one
order of magnitude on both algorithms and in some cases
by two orders of magnitude (shown in bold font) , and (iii)
as N increases the computational efficacy of the heuristic
becomes more dominant.

4) Manipulation Case Study: To show the generality of
the approach, we performed experiments on the Franka
Emika “Panda” 7-DOF robotic manipulator. We used our
algorithm as the high-level planner in the framework in-
troduced in [3]–[5]. The model captures 4 types of actions
A = {Grasp,Release, Transit, T ransport} with respec-
tive costs of 1, 1, 3, and 5 units.

In the scenario shown in Fig. 4, there is a blue block bb

and a pink block bp that need to be sanitized and binned.
The model for this system is complex with three objects and
seven locations, resulting in a transition system with over 6K
states. The blocks are initially arranged in an arch with bp on
top, bb in the left base, and a green block in the right base.
We assume bg is stationary for this demonstration. The robot
is tasked with sanitizing and binning bb, then sanitizing and
binning bp. However, the tasks capture that a block cannot

7

be on top unless there are two base blocks for support, i.e.,
φ1 = (¬bbtop) ∧ (bptop =⇒ bbleft)U(bbsan ∧ bbbin1). Formula
φ2 is similar to φ1 except bb is replaced with bp on the right-
hand-side of U . As shown in figure 4a, the cost optimal plan
computed using our framework sanitizes and bins the pink
block, then does the same for the blue block. In figure 4b,
the preference optimal plan must move the pink block off of
the top to sanitize and bin the blue block first before binning
the pink block. The videos of the robot executions for each
plan are provided in [35].

V. CONCLUSION

In this work, we consider optimal preference-cost trade-
off planning for robotic systems with multiple tasks. We
introduce a novel formulation for the user’s preference that
reasons over the cost of satisfying each individual task.
Further, we present algorithmic adaptations of the A∗ search
algorithm with a novel heuristic to efficiently synthesize
plans with a desired user preference, as well as Pareto front
analysis between cost and preference. Our method is general
with applications in both mobile robotics and manipulation.
Our benchmarks show our heuristic significantly reduces
computation time.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA: The MIT Press, 2008.

[2] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, pp. 211–236, May
2018.

[3] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in Int. Conf.
Robotics and Automation. IEEE, May 2015, pp. 346–352.

[4] ——, “Reactive synthesis for finite tasks under resource constraints,”
in Int. Conf. on Intelligent Robots and Systems (IROS). Vancouver,
BC, Canada: IEEE, Sep. 2017, pp. 5326–5332.

[5] K. Muvvala, P. Amorese, and M. Lahijanian, “Let’s collaborate:
Regret-based reactive synthesis for robotic manipulation,” in IEEE
Conference on Robotics and Automation. IEEE, May 2022. [Online].
Available: https://arxiv.org/abs/2203.06861

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” Robotics, IEEE Trans-
actions on, vol. 25, no. 6, pp. 1370–1381, 2009.

[7] M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. Andersson,
“Automatic deployment of autonomous cars in a robotic urban-like
environment (RULE),” in Int. Conf. on Robotics and Automation.
Kobe, Japan: IEEE, 2009, pp. 2055–2060.

[8] A. Jorge, S. A. McIlraith et al., “Planning with preferences,” AI
Magazine, vol. 29, no. 4, pp. 25–25, 2008.

[9] S. Sohrabi and S. A. McIlraith, “On planning with preferences in htn,”
in Proc. of the 12th Int’l Workshop on Non-Monotonic Reasoning
(NMR). sn, 2008, pp. 241–248.

[10] S. Sohrabi, J. A. Baier, and S. A. McIlraith, “Htn planning with pref-
erences,” in Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[11] S. Sohrabi and S. A. McIlraith, “Preference-based web service com-
position: A middle ground between execution and search,” in Interna-
tional Semantic Web Conference. Springer, 2010, pp. 713–729.

[12] I. Georgievski and M. Aiello, “An overview of hierarchical task
network planning,” arXiv preprint arXiv:1403.7426, 2014.

[13] A. N. Kulkarni and J. Fu, “Opportunistic qualitative planning in
stochastic systems with preferences over temporal logic objectives,”
arXiv preprint arXiv:2203.13803, 2022.

[14] M. Bienvenu, C. Fritz, and S. A. McIlraith, “Planning with qualitative
temporal preferences.” KR, vol. 6, pp. 134–144, 2006.

[15] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,
“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction,” in Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[16] H. Rahmani and J. M. O’Kane, “Optimal temporal logic planning
with cascading soft constraints,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 2524–2531.

[17] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scltl motion planning for mobility-on-demand,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 1481–1488.

[18] D. Kamale, E. Karyofylli, and C.-I. Vasile, “Automata-based optimal
planning with relaxed specifications,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 6525–6530.

[19] J. Benton, A. Coles, and A. Coles, “Temporal planning with prefer-
ences and time-dependent continuous costs,” in Twenty-Second Inter-
national Conference on Automated Planning and Scheduling, 2012.

[20] N. Mehdipour, C.-I. Vasile, and C. Belta, “Specifying user preferences
using weighted signal temporal logic,” IEEE Control Systems Letters,
vol. 5, no. 6, pp. 2006–2011, 2020.

[21] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram,
M. Veloso, D. Weld, D. W. SRI, A. Barrett, D. Christianson et al.,
“Pddl— the planning domain definition language,” Technical Report,
Tech. Rep., 1998.

[22] J. A. Baier, F. Bacchus, and S. A. McIlraith, “A heuristic search
approach to planning with temporally extended preferences,” Artificial
Intelligence, vol. 173, no. 5-6, pp. 593–618, 2009.

[23] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos,
“Deterministic planning in the fifth international planning competition:
Pddl3 and experimental evaluation of the planners,” Artificial Intelli-
gence, vol. 173, no. 5-6, pp. 619–668, 2009.

[24] V. Seimetz, R. Eifler, and J. Hoffmann, “Learning temporal plan
preferences from examples: An empirical study.” in IJCAI, 2021, pp.
4160–4166.

[25] C. H. Ulloa, W. Yeoh, J. A. Baier, H. Zhang, L. Suazo, and S. Koenig,
“A simple and fast bi-objective search algorithm,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
vol. 30, 2020, pp. 143–151.

[26] L. Mandow and J. L. P. De La Cruz, “Multiobjective a* search with
consistent heuristics,” Journal of the ACM (JACM), vol. 57, no. 5, pp.
1–25, 2008.

[27] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s Waldo?
sensor-based temporal logic motion planning,” in Int. Conf. on
Robotics and Automation. Rome, Italy: IEEE, 2007, pp. 3116–3121.

[28] K. He, M. Lahijanian, E. Kavraki, Lydia, and Y. Vardi, Moshe, “Au-
tomated abstraction of manipulation domains for cost-based reactive
synthesis,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
285–292, Apr. 2019.

[29] O. Kupferman and M. Y. Vardi, “Model checking of
safety properties,” Formal Methods in System Design,
vol. 19, no. 3, pp. 291–314, 2001. [Online]. Available:
https://link.springer.com/article/10.1023/A:1011254632723

[30] C. Baier and J.-P. Katoen, Principles of model checking, 2008.
[31] M. Lahijanian, S. Almagor, D. Fried, L. E. Kavraki, and M. Y. Vardi,

“This time the robot settles for a cost: A quantitative approach to
temporal logic planning with partial satisfaction,” in The Twenty-Ninth
AAAI Conference (AAAI-15), AAAI. Austin, TX: AAAI, Jan. 2015,
pp. 3664–3671.

[32] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, “Iterative temporal planning in uncertain
environments with partial satisfaction guarantees,” IEEE Transactions
on Robotics, vol. 32, no. 3, pp. 538–599, May 2016.

[33] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in Proceedings
of the 16th international conference on Hybrid systems: computation
and control, 2013, pp. 1–10.

[34] K. Kim and G. Fainekos, “Minimal specification revision for weighted
transition systems,” in 2013 IEEE International Conference on
Robotics and Automation. IEEE, 2013, pp. 4068–4074.

[35] P. Amorese, 2023, online. [Online]. Available:
https://tinyurl.com/2whd4pw3

8

