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Abstract—There has been increasing awareness of the diffi-
culties in reaching and extracting people from mass casualty
scenarios, such as those arising from natural disasters. While
platforms have been designed to consider reaching casualties
and even carrying them out of harm’s way, the challenge of
repositioning a casualty from its found configuration to one suit-
able for extraction has not been explicitly explored. Furthermore,
this planning problem needs to incorporate biomechanical safety
considerations for the casualty. Thus, we present a first solution
to biomechanically safe trajectory generation for repositioning
limbs of unconscious human casualties. We describe biomechan-
ical safety as mathematical constraints, mechanical descriptions
of the dynamics for the robot-human coupled system, and the
planning and trajectory optimization process that considers
this coupled and constrained system. We finally evaluate our
approach over several variations of the problem and demonstrate
it on a real robot and human subject. This work provides a
crucial part of search and rescue that can be used in conjunction
with past and present works involving robots and vision systems
designed for search and rescue.

I. INTRODUCTION

Getting rapid aid and rescue to casualties without putting
rescue teams in harm’s way is often very challenging or
impossible. Examples such as the 2023 earthquake in Turkey,
with over 43,000 deaths in Turkey and 5,500 in Syria [1],
present real situations where the scale of medical evacuation
is enormous and rapid extraction is critical. Search and rescue
robotics promise to offer rescue in scenarios where human
medical evacuation may be dangerous and where autonomy is
necessary.

A common scenario involves an unconscious casualty re-
quiring extraction. Mobile manipulation platforms such as the
Battlefield Extraction-Assist Robot (BEAR) are designed to
extract casualties from disaster and combat zones [2]–[4].
However, before they can carry them out, the first task is
to reposition the casualty from its found configuration into a
feasible configuration for extraction. Inevitably, casualties are
found in non-ideal configurations (i.e., poses, such as lying
face up, on their side, face down, etc.) that are unsuitable for
extraction. This is a current barrier to overcome for extraction
robots [5]. Technical challenges that need to be addressed, of
which any one is a deeper research topic, include:
1) Parsing visual information to estimate configuration, ap-

proximate mass, injuries on the body, vital signs, etc.;
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Fig. 1: A scenario of finding a casualty with a remote mobile robotic platform.
The human is in a non-ideal configuration. This paper provides a first solution
towards planning human reconfiguration motions in a biomechanically safe
and jointly robot-feasible manner.

2) Finding optimal grasp candidates on the body based on the
visual estimates of kinematics and mass;

3) Planning the high-level sequence of human body reconfig-
urations necessary to get from an initial configuration, e.g.,
crumpled, into an extractable configuration, e.g., supine;

4) Planning, optimizing, and executing an injury-free trajec-
tory to maneuver the human between each intermediate
configuration without causing injury.

Problem (1) is a currently active research area in the field
of combat medicine [6], [7] and fall detection [8], and (2)
can initially be hardcoded with candidate grasp poses on the
human body. However, (3) and (4) remain untouched in re-
search literature and relate to solving specifically a constrained
task-and-motion planning problem [9], well known to be a
computationally complex and nuanced problem requiring care
in implementation [10]. Thus, for this paper, we will address
this challenging problem of defining and solving the motion
planning and trajectory generation problem for safe human
repositioning under biomechanical and geometric constraints.

We specifically address the problem of manipulating a
passive human in an unanticipated configuration to a desired
configuration using a robot manipulator (Fig. 1). We consid-
ered both the role of the robot as well as the importance of
human safety when the human is incapacitated. Thus, the key
contributions of the paper are
1) formulation of a constrained trajectory optimization prob-

lem for the safe human repositioning problem including a
robot as the actuator,

2) propose novel musculoskeletal injury avoidance constraints
based on biomechanics safety metrics, and

3) demonstrate multiple trajectories in simulation and how
they achieve safety as well as provide a demonstration of
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transitioning the solution to a live scenario.

II. RELATED WORKS

The current state-of-the-art in physical human-robot inter-
action, where the robot is physically manipulating a human,
predominantly involves an active/participating human such as
in wearables or rehabilitation [11], [12]. In these domains,
the focus is much greater on lower-level controllers, such as
Impedance and Admittance control, which consider human
safety at the cost of scaling back positional accuracy; they
also consider the human-in-the-loop as an active member,
though for an unconscious person, they would instead be a
passive element (acting more as a constraint). To this end,
planning problems of contact between robots and sensitive
objects involves solving for constrained motion plans [10].

Biomechanical metrics to define safety have largely resided
in physiotherapy applications and have not been formally
transferred to safe robotic manipulation. A close example of
our problem is an assistive upper extremity device designed
to help minimize muscle fatigue for repetitive tasks by pro-
viding the user with gravity compensation provided by passive
springs [13]. Their problem statement minimizes the simulated
joint reaction forces while the user moves through a range
of motion. Others in the space similarly utilize optimization
problem formulations to minimize energy expenditure, often
referred to as metabolic cost [14]–[16]. These devices are
aligned with the human anatomy to ensure torque inputs
provide motion assistance instead of joint loading. For our
problem formulation, we will instead need to address this
alignment explicitly given our use of a manipulator.

For devices that involve human interaction, researchers
utilize large software packages (Simbody1, OpenSim2, CoBi-
Dyn3 etc.) that enable the user to gather muscle and joint
reaction forces. A collection of these devices and examples of
their simulation can be found in [17]. These software packages
are also excellent for diagnostic muscle-driven human motion
planning with injury [18]. These biomechanics simulation
solutions are computationally heavy and can be tricky to
converge; thus, motion planning, where forces and torques
may need to be re-evaluated thousands of times, would benefit
from a reduced-order biomechanics model.

Ultimately, solving the problem of manipulating an uncon-
scious person presents a unique scenario that has not been
addressed in prior work. The biggest challenge is that humans
cannot actively ensure that their joints are in safe config-
urations. Thus safety entirely resides on the robot planner
and controller to find biomechanically safe motion plans in
a reasonable amount of time.

III. METHODS

A. Problem formulation

Solving robot motions that move an incapacitated person
through biomechanically feasible and safe configurations is a

1https://simtk.org/projects/simbody
2https://simtk-confluence.stanford.edu:8443/display/OpenSim
3https://www.cfd-research.com/products/cobi-dyn/

constrained optimization problem. Let θ ∈ Rm be the joint
angles of a human limb, with θ0,θT the start and goal joint
configuration, respectively, and T denotes a time horizon. Let
q ∈ Rn be the joint angles of a robot manipulator with n
degrees of freedom. Then the problem is defined as

minimizeθ0:T
J(θ0:T )

s.t. θ0:T ∈ Θfree ∩Θreach

q0:T ∈ Qfree ∩Qreach

MH(θ0:T ) = 0, MR(q0:T ) = 0

Cg(θ0:T , q0:T ) = 0

fH < fsafe

(1)

where J is the objective to be minimized, Θfree,Θreach are the
free and reachable human configuration spaces, respectively,
Qfree, Qreach are the free and reachable robot joint spaces,
respectively, MH(·),MR(·) are the human and robot motion
constraints, respectively, Cg(·) is the grasp constraint, and
fH , fsafe are the human-joint reaction forces and maximum
allowable force values respectively. Note that the reachable
human configuration space ensures the human body is moved
within its range of motions, and the human motion constraints
include constraints that avoid injuring the human body from
heavy forces and/or torques being applied from the robot. We
assume the robot base pose is fixed in space during motion.

While the problem formulation in (1) is general for ma-
nipulating the entire or any subset of the human body, we
focus on moving articulating limbs, and we assume we know
a candidate grasp pose (identified apriori for each limb). In this
scenario, we will choose an objective to move the grasp pose
as minimally as possible as long as it satisfies the constraints
of the problem, i.e.,

J(θ0:T ) =

T∑
i=1

cp∥p(θi)− p(θi−1)∥2

+ coAngle(o(θi)(o(θi−1))
−1) (2)

where p(θ) and o(θ) are the positions and axis-angle orienta-
tions of the grasp pose in 3D space over the trajectory, and they
can be recovered from the forward kinematics of the robot.
Angle(·) transforms an axis-angle orientation into an angle
difference. cp and co are the coefficients for the position and
orientation variation, respectively. While other objectives may
be chosen, this tends to reduce excessive human movement.

B. Robot Motion Constraint

The robot motion constraint, MR(q0:T ), is derived from
the equations of motion for a serial robotic manipulator under
load. This motion constraint is described as

MR(qi) = DR(qi)q̈i + CR(qi, q̇i) +GR(qi)

+ JR(qi)
⊤wR

i − τR
i , (3)

where DR(·) is the inertia matrix, CR(·) is the Coriolis term,
GR(·) is the gravitational force, JR(·) is the robot Jacobian,
wR

i is the generated robot wrench force, and τi are the robot



joint torques. In path planning, we assume quasi-static, which
reduces our equations of motion to:

MR(qi) = GR(qi) + JR(qi)
⊤wR

i − τR
i (4)

In this work, we assume that the robot is much stiffer than
humans and has a low-level positional controller running at
slow speeds. The robot’s differential inertia thus does not apply
load on the joints, and we avoid solving robot torques.

C. Grasping Constraint

The grasping constraint, Cg(·), transfers the applied forces
and torques from the robot to the human. This transfer can be
simply described as a wrench balance:

Cg(θi,qi) = wR
i − wH

i (5)

where wH
i is the wrench force applied on the human at the

grasp point. Note that wR
i and wH

i are defined in the same
coordinate frame for the sake of simplicity in equations.

The above balance can be achieved by enforcing the geo-
metric constraint that the end-effector grasp pose of the robot
must be equal to the grasp location on the human throughout
the entire trajectory, which can be described as

Cg(θi, qi) = FKH
rb(θi)− FKR

rb(qi). (6)

Here FK{H,R}
rb (·) := {x, y, z, α, β, γ} describes the forward

kinematics of the human and the robot known apriori based
on geometric analysis, and the subscript rb is the robot base
frame which is chosen as a common frame of reference.

D. Human Safety Constraints

Most biomechanics problems involve using complex and
time-consuming models to solve for muscle and joint
force/torques. These models are unsuitable for search and
rescue tasks that are computationally and time-constrained.
Instead, we begin with a simplified constraint equation for
human dynamics,

MH(θ0:T ) = DH(θi)θ̈i + CH(θi, θ̇i) +GH(θi)

+ JH(θi)
⊤wH

i − τH
i (7)

where DH(·) is the human body’s inertia, CH(·) is the Cen-
trifugal/Coriolis term, GH(·) is the limb gravitational forces,
JH(·) is the human Jacobian, wH

i is the robot wrench force
acting at the grasp pose, and τH

i are the human joint torques.
In search and rescue, we note the following assumptions:

(1) the unconscious humans cannot produce active force or
torques at their joints (τH = 0). Joint reaction forces fH

will be calculated in the following section; (2) the reaction
forces at the joints will be calculated considering a quasi-static
case where neither the body nor robot is moving so quickly
as to introduce inertial loads. These assumptions reduce our
equation to the gravity forces of the human and the wrench
force (θ̈ = 0 and θ̇ = 0). The augmented equation appears as

MH(θ0:T ) = GH(θi) + JH(θi)
⊤wH

i (8)

Fig. 2: A static model for a 2D Arm is shown on the left as an example of
how the reaction forces are applied in the 3D model. The FBD of the final
link is highlighted with its internal joint reaction forces of [rx, ry ] shown
in red. The wrench force is [fx, fy , tz ]. This example is used to exemplify
the insufficiency of kinematics to absolve the force safety constraints. Our 3D
human geometric model is shown on the right.

1) Human Joint Force Modeling: To solve for human joint
forces, Eq. (8) will be used to derive the forces and torques per-
pendicular to a motion: (f sys

rb )
⊤u = 0 and (msys/point

rb )⊤u = 0.
f sys
rb are the forces applied to the system, a singular or set

of rigid bodies, and u is a placeholder for the unit vector
representing a direction orthogonal to the direction of motion.
All u should be linearly independent but are not required to
be orthogonal to each other. The moment equation follows
similarly with msys/point

rb representing the moments of the
system about a selected point. For each system, these equations
can produce up to 6 linearly independent equations.

To clearly motivate the need for dynamic information be-
yond kinematic motion planning, we demonstrate our problem
with an arm model. Then through this example, we show the
necessity to appropriately execute force safety constraints on
our problem. Fig. 2 shows the 3D model rendered in a robotic
simulator and a 2D model of how forces and torques were
applied to the rigid body system solved with the generalized
equations above.

The full system of equations contains more unknown vari-
ables than linearly independent equations. A total of 12
equations can be formed while 13 variables must be solved
for: the shoulder joint reaction forces [rx1, ry1, rz1], the elbow
joint reaction forces and torques [rx2, ry2, rz2, tx2] and the
wrench force [fx, fy, fz, tx, ty, tz]. To solve this underdeter-
mined system, one technique would be to define another opti-
mization problem with an objective of minimizing joint forces.
Although valid as a solution, solving one optimization problem
inside another optimization problem is time-consuming. As an
alternative, we propose adding an extra model constraint to
define an additional linearly independent equation. Therefore,
the number of equations matches that of unknown variables,
and the system of equations becomes uniquely solvable.

The constraint we will be using is to limit the distribution
of the reaction forces parallel to the gravity at the two joints.
A rudimentary choice would be constraining this reaction-
force component at one joint to be 0. A better model is to
balance this component on both joints according to the angle
between the gravity and the human limb. Hence, we model



this reaction-force component on the shoulder, rz1, and the
elbow, rz2, as follows:

rz1 = rz2 sin
(
θ
2

)
, where θ = cos−1

(
(urb

z )⊤(−uua
z )

)
(9)

Where urb
z is the unit vector parallel to the gravity, and −uua

z

is the unit vector along the humeral bone of the arm. This
equation uses the angle between the arm and the normal of
the ground to provide a ratio for which joint holds more of
the weight. The same analysis can be done for any other
articulating limb of the body. In this work, we consider the
following three different choices of reaction-force constraints:
rz1 = 0, rz2 = 0, and the balanced one as described in Eq.
(9).

2) Kinematic Insufficiency: Here we show an example of
why kinematic information only is not enough to ensure safe
reaction forces on all joints. Depicted in the left image of Fig.
2 is a free-body diagram (FBD) of a single link from a 2-
link chain with a pin joint at its base and external forces at
the ”grasp point” from the robot, i.e., the wrench force. The
statics equations derived from this system are:

(f linkb)⊤ulinkb
x = fx + rx −mbg sin(θA + θB) = 0 (10)

(f linkb)⊤ulinkb
y = fy + ry +mbg cos(θA + θB) = 0 (11)

(mlinkb/Bo)⊤ulinkb
z = Lbfy + tz +

1
2
Lbmbg cos(θA + θB) = 0 (12)

Eq. (10) and (11) are all the forces applied to linkb and (12)
are the moments of linkb about the pin joint, point Bo shown
in Fig. 2. In these 3 equations, there are 5 unknown variables:
fx, fy, rx, ry, tz . Among them, rx and fx only appear in Eq.
(10). Without a constraint on the external force fx, the reaction
forces can be any value within (−Fmax, Fmax), where Fmax is
the maximum force that can be generated by a robot necessary
to follow the position trajectory resulting in a high potential
for injury.

3) MusculoSkeletal Injury: Outside of collecting data on
the material properties of tendons, there is still much being
explored to understand how tendons take load in vivo due to
their non-linear nature [19].

For our path planning problem, we will need to define
musculoskeletal injuries quantitatively to ensure that tendons
do not exceed the elastic region of material deformation.
A low estimate (from injury) for shoulder dislocation is
approximately 150N given by biomechanics literature [20].
The shoulder has no reaction torques as it is modeled as a
spherical joint with all rotational degrees of freedom.

In cases where measured injury thresholds are not readily
available, such as the elbow joint, we can use tendon mechan-
ics models with measured mechanical properties to estimate
their safety limits. Eq. (13) shows a typical linear relationship
between the yield force (Pyp), the cross-sectional area (Ao),
and the stress at the yield point (σyp):

σyp =
Pyp

Ao
(13)

The range of σyp has been calculated using data collected
in-vitro form the supraspinatus tendon [21] (σyp = 2.8 ±
0.7 N/mm2). Combining both solved (∗) and measured (†)

Algorithm 1: Trajectory Generation of Moving a Hu-
man Limb with a Robot Arm

Input: initial and final human-limb configurations, θi and θf ; the
objective function and the set of constraints defined in (1), J
and C; a sampling-based motion planning algorithm, MP; a
trajectory optimization algorithm, TO; the distribution of the
robot-base pose, N (µrb,Σrb); the maximum run time for
each sub-process, Tmax; the inverse kinematic function of
the robot, IKR

rb; the forward kinematic function of the
human, FKH

rb.
Output: a human-limb trajectory, θ0:T ; a robot-arm trajectory, q0:T
// Run sampling-based motion planning to solve

for a human-limb path
1 θ0:T = MP(θi,θf , J, C, Tmax)
// Run trajectory optimization to refine the

human-limb path
2 θ0:T = TO(θ0:T , J, C, Tmax)
// Run rejection sampling to solve for a

robot-base pose
3 do
4 prb ∼ N (µrb,Σrb)

// Run inverse kinematics to find the
robot-arm configurations

5 q0:T = IKR
rb(prb,FKH

rb(θ0:T ))
6 while (6) is not satisfied;

thresholds of safety, we can now define the human reaction-
force constraints, fH < fsafe as∥fs∥2

∥ts∥2
∥fe∥2
∥te∥2

 <

 150 N†

−
400 N∗

10 N/m∗

 (14)

E. Trajectory Generation

With all the constraints defined, we solve (1) in three
stages: generate a coarse human motion trajectory, refine the
human trajectory, and generate a robot motion trajectory. This
separation of human and robot trajectory solving treats the
biomechanical safety of the human as the priority, followed
by finding a feasible robot path, and is key to ensuring that a
safe solution is found in a reasonable time.

A sampling-based motion planning algorithm and trajectory
optimization are used to solve for the coarse and refined human
motion trajectories, θ0:T , while satisfying the human motion
constraints, MH(·), respectively. A sampling-based motion
planner quickly finds a feasible path, even in non-convex
scenarios [22]. A trajectory optimizer takes the non-smooth
and suboptimal initial path and performs gradient descent
(while checking for constraint satisfaction) to converge quickly
to a smoother and shorter path, θ0:T .

Since the robot is assumed to regulate a feasible joint
trajectory, q0:T , the robot trajectory can be directly solved
for by using the human forward kinematics and the opti-
mized θ0:T , and using FKH

rb to define a geometric grasping
constraint (6) for each time step, and then applying inverse
kinematics of the robot, IKR

rb. The only unknown is the robot
base to human transformation, ph

rb ∈ R6, described in the
position and axis-angle spaces. This transformation determines
whether an inverse kinematic solution can be found or the
trajectory is out-of-reach. In search and rescue missions, this
transformation describes how the robot should approach the



TABLE I: Human model parameters

Parts Sphere Cylinder Weight (kg)
Radius (m) Radius (m) Length (m)

Upper Arm 0.095 0.095 0.22 5
Lower Arm 0.075 0.075 0.25 3

human, and we use rejection sampling to find a feasible ph
rb.

A transformation is sampled from a normal distribution with
mean µrb and covariance Σrb. The feasibility of a sample
is evaluated by checking if (6) is satisfied. While conducting
rejection sampling to solve for a feasible robot base to human
transformation, the robot joint trajectory, q0:T , is solved via
inverse kinematics from the grasping constraint (6). Algorithm
1 describes the complete trajectory generation process.

IV. EXPERIMENTAL SETUP AND RESULTS

We evaluate our proposed human model, biomechanic safety
constraints, and trajectory-generation method in both simula-
tion and real-world environments. For simulation experiments,
we visualize the generated trajectories in CoppeliaSim4, a
robotic simulator, and evaluate its geometric feasibility. For
real-world experiments, we perform quantitative and qualita-
tive analyses by letting a robot arm runs its planned trajectories
while grasping a real human limb (Fig. 4).

A. Experimental Setup
In the experiments, we use the human kinematic model man-

ually designed in a Unified Robot Description Format (URDF)
file, which is visualized in the right image of Fig. 2. The
robot arm that grasps a human limb is a Franka Emika Panda.
The dynamical equations and biomechanic safety constraints
in Eq. (1) are solved using MotionGenesis5. Together with
the dynamical constraints, a geometrical collision-checking
algorithm FCL [23] is incorporated into both sampling-based
motion planning and trajectory optimization to ensure safe
trajectories. We choose BIT* [24] implemented in the Open
Motion Planning Library [25] as the sampling-based motion
planning algorithm. Given an initial human-limb trajectory
found by BIT*, SLSQP [26], [27] implemented in Scipy [28]
is used to perform trajectory optimization on it. Finally, a
sampled robot-base pose and its corresponding robot-arm
trajectory are evaluated and solved in CoppeliaSim using its
inverse-kinematic solver.

Table I shows the parameters we use when defining the
human model. The upper and lower arms of this model are
both composed of two spheres and a cylinder, as pictured in
the right image of Fig. 2. When running trajectory genera-
tion, we set cp = co = 1 and the maximum run time of
each sub-process as 120 seconds. The mean of the robot-
base poses µrb = [x̄rb ȳrb 0 0 0 γ̄rb]

⊤, where x̄rb, ȳrb,
and γ̄rb are manually chosen that makes the robot face the
human body. The covariance of the robot-base pose is defined
as Σrb = diag(0.01, 0.0025, 10−6, 10−6, 10−6, 0.07), where
diag(·) turns a vector into a diagonal matrix.

4https://www.coppeliarobotics.com/
5http://www.motiongenesis.com/
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Fig. 3: Forces along a trajectory by time step where an arm laid in a rest pose
beside the body is raised vertically in the air. The graphs show the magnitude
of the robot wrench forces, shoulder reaction forces [rx1, ry1, rz1], elbow
reaction forces [rx2, ry2, rz2], and elbow reaction torques tx2 respectively.
Three different force-distribution constraints explained in Section III-D1 are
compared. The imbalanced force constraints result in the reaction forces
beyond the acceptable values derived in Section III-D3.

TABLE II: Analysis of the generated trajectories

Trajectory Number 1 2 3 4 5

Pos. Length (m) 1.47 1.18 1.47 3.1 1.82
MP Ori. Length (rad) 3.16 1.23 2.09 4.13 2.99

Run Time (s) 100.69 104.45 102.95 101.82 111.61

Pos. Length (m) 1.18 0.44 0.91 1.28 1.55
TO Ori. Length (rad) 1.37 0.38 0.98 1.2 2.39

Run Time (s) 2.37 31 31.36 47.66 72.64

Feasible ✓ ✓ ✓ ✓ ✓

B. Simulation Experiments

Given different sets of initial and target human-limb con-
figurations, we first evaluate the path length, run time, and
geometric feasibility after generating human-limb and robot-
arm trajectories using Algorithm 1. Table II demonstrates
(1) the position as well as orientation length of the human-
wrist trajectories, (2) run time, and (3) if the trajectories are
geometrically feasible, i.e., if they lie within joint limits and
are collision-free. The geometric feasibility is evaluated using
CoppeliaSim. The results show that motion planning can take
a while to find a feasible path and is not guaranteed to find an
optimal one given limited time. With the refinement stage, the
quality of an initial path from motion planning can be quickly
improved while still maintaining its feasibility.

We also analyze the reaction forces/torques of the human
limb and the robot wrench forces when running each trajectory.
To demonstrate the importance of properly modeling the
distribution of reaction forces on human joints, we compare
the results calculated based on three different distributions as
introduced in Section III-D1, i.e., shoulder relief (rz1 = 0),
elbow relief (rz2 = 0), and balanced (Eq. (9)).

Fig. 3 shows the human reaction forces/torques and the
robot wrench forces of a trajectory that repositions a human
arm from resting beside the body to be held up vertically off
the ground. If an imbalanced distribution is chosen, the human-
joint reaction forces can be very high along the trajectory,



Fig. 4: The images from left to right are the live human experiment including
the Panda arm mounted on a mobile platform and the matching simulated
trajectory shown in Coppeliasim.
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Fig. 5: The forces from live experimental data. The graphs above show
the shoulder-joint reaction forces [rx1, ry1, rz1], elbow-joint reaction forces
[rx2, ry2, rz2], and robot wrench forces [fx, fy , fz ] respectively with the
x-axis having relative time step. Each graph contains the experimental data
collected with a real human subject and the simulation data from the same
trajectory using three different force-distribution constraints explained in
Section III-D1. tx2 is not graphed. Its range from the live experiment is
[−1.3,−1.5] Nm, and the simulated values are almost 0 Nm.

especially when using the shoulder-relief model. These high
values indicate that the robot arm needs to move the human
limb with large wrench forces, which can cause severe damage
to the human body. On the other hand, if we choose to
balance the reaction forces on both the shoulder and the elbow
(balanced), the human-joint reaction forces satisfy the safety
values in Eq. (14). Note that the elbow reaction torques are
very small for all three models since the arm is lifted off the
ground without bending the elbow too much. These results
demonstrate that the human-joint reaction forces predicted by
our model align well with intuition.

C. Live Experiments

The feasible robot-arm trajectories are tested in real-world
environments, where a Franka Emika Panda robot repositions
a real human limb (Fig. 4). To evaluate the robot wrench forces

and the human reaction forces in live experiments, we measure
the robot Jacobian matrix, JR(qi), and torques, τR

i , for each
time step i. This allows us to obtain the robot wrench forces
by wR

i = JR(qi)τ
R
i . Then the human reaction forces are

calculated by solving Eq. (8). Fig. 5 plots the human-joint
reaction forces and the robot wrench forces from simulation
and real-world data. Similar to the results in Fig. 3, the
balanced distribution model produces the smallest predicted
human-joint reaction forces compared to the shoulder-relief
and elbow-relief models. In addition, the forces predicted by
the balanced constraint are closer to the ones calculated from
real-world data. Note that the magnitude of the robot wrench
forces measured from real-world data is very small. The reason
might be that the human arm is not completely passive, and
the muscles and tendons can provide extra forces to support
the arm.

V. DISCUSSION AND CONCLUSIONS

In this paper, we explored a critical aspect of search and
rescue operations of unconscious casualties carried out by
mobile manipulators: reconfiguring limbs of a human body
under biomechanical safety constraints. We provide the first
formal representation of the overall robot motion planning
problem and present a solution to solve the geometric and
biomechanical constraints that arise.

Several limitations arise from this current initial approach.
For problem formulation, the breakup of the problem solving
for intermediate wrench forces on the robot guarantees suf-
ficiently low joint loading. However, the robot trajectory is
still defined using kinematic constraints. These constraints do
not limit the wrench forces outputted from the robot, and the
position controller within the robot defines its own force limits.
Our solution solves trajectories as a quasi-static problem and
loosely goes between statics and geometric constraints/losses.
A more ideal solution integrates dynamics rather than quasi-
static assumptions into path planning and optimization. The
choice to constraint joint force components, although rea-
sonable, limits the possible solutions for acceptable wrench
forces of optimizing the robotic trajectory and rejects some
paths that would otherwise have been acceptable. Furthermore,
the tendon anatomy, specifically its effect in applying spring
forces that provide resistive forces within the joint range of
motion, was not accounted for and may have impacted force
distribution in the live demo results compared to our simulated
model. Finally, our algorithm can be sped up by porting
everything from Python to C++.

Future work will involve addressing other components of the
larger casualty repositioning problem, including identifying a
discrete sequence of key human poses that move from one pose
to another (i.e., a task planning problem), determining biome-
chanically safe grasp candidates on limbs with consideration
of injuries, and accounting for partial or noisy observations in
real camera settings.
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