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Abstract—Conversational assistive robots can aid people, es-
pecially those with cognitive impairments, to accomplish various
tasks such as cooking meals, performing exercises, or operating
machines. However, to interact with people effectively, robots
must recognize human plans and goals from noisy observations
of human actions, even when the user acts sub-optimally. Previ-
ous works on Plan and Goal Recognition (PGR) as planning
have used hierarchical task networks (HTN) to model the
actor/human. However, these techniques are insufficient as they
do not have user engagement via natural modes of interaction
such as language. Moreover, they have no mechanisms to let users,
especially those with cognitive impairments, know of a deviation
from their original plan or about any sub-optimal actions taken
towards their goal. We propose a novel framework for plan and
goal recognition in partially observable domains—Dialogue for
Goal Recognition (D4GR) enabling a robot to rectify its belief
in human progress by asking clarification questions about noisy
sensor data and sub-optimal human actions. We evaluate the
performance of D4GR over two simulated domains—kitchen and
blocks domain. With language feedback and the world state
information in a hierarchical task model, we show that D4GR
framework for the highest sensor noise performs 1% better than
HTN in goal accuracy in both domains. For plan accuracy,
D4GR outperforms by 4% in the kitchen domain and 2% in
the blocks domain in comparison to HTN. The ALWAYS-ASK
oracle outperforms our policy by 3% in goal recognition and 7%
in plan recognition. D4GR does so by asking 68% fewer questions
than an oracle baseline. We also demonstrate a real-world robot
scenario in the kitchen domain, validating the improved plan and
goal recognition of D4GR in a realistic setting.

I. INTRODUCTION

People with cognitive impairments, such as dementia, often
struggle with focusing on everyday tasks and have limited at-
tention spans. Efforts to assist people in tracking task progress
have involved various approaches, including modeling tasks as
a hierarchical task network (HTN), using a Bayesian Hidden
Markov Model, or employing a Partially Observable Markov
Decision Process (POMDP) [6, 19]. However, previous ap-
proaches focus on observing users rather than engaging them
in an interaction. Our work aims to develop a model for a robot
capable of assisting people complete tasks with language-
based interactions; even when the users perform sub-optimal
actions or switch between multiple goals. Our robot tracks the
task progress using observations and question-asking using
natural language. Such a robot can also benefit an operator
building a machine, a child with autism doing their homework,
or a child learning to do chores.

Inferring the goals and intents of the human requires plan
and goal recognition (PGR) using noisy evidence from action

execution that can be done efficiently using planning tech-
niques [11]. One key challenge in human intent recognition
as a PGR problem is that the robot has partial observability of
human intentions. This is compounded by noisy sensors that
also create partial observability of the environment. Modeling
human progress during hierarchical tasks has been done using
Hierarchical Task Networks (HTNs) [19, 7]. However, these
recognition techniques again do not engage with the users and
assume that the user acts optimally. Moreover, incorporating
clarification questions and language utterance spoken by hu-
mans in PGR is challenging because of the huge space of
language observations. The existing solution to this problem
is heuristics [16, 5, 10], which are prone to fail as the tasks
and environment sensors become complex and noisy.

The main contribution of our paper is a novel formulation
that combines expressive and hierarchical task representation
of HTNs to represent the human mental states with the
sequential decision-making capabilities of a Partially Observ-
able Markov Decision Process, in our Dialogue for Goal
Recognition (D4GR). Our method keeps track of the envi-
ronment, user state and dialogue history internally to perform
PGR and guide in successful task completion.

POMDPs can model the uncertainty the robot faces as it
performs intent recognitions and enables the robot to ask
information-seeking questions. However, POMDP planners
traditionally do not decide the relevance of the state using
the task network at each sequential time step. Further, the
HTNs have no notion of rewards to generate a sequence
of actions to maximize the agent’s utility. To solve these
challenges, we assume that the user is a planner with goals
and subgoals that are represented hierarchically. Moreover, the
robot is a POMDP planner performing long-horizon dialogue
policy planning. This enables the robot to reason about asking
meaningful questions in ambiguous settings, such as the user
switching goals during multiple concurrent tasks and also per-
forming sub-optimal actions. Using this information, the robot
can better recognize human intents based on the human actions
estimated from noisy sensors and their language feedback.
This model also explicitly allows for sub-optimal plans by
a human user, which D4GR can detect.

We evaluate the usefulness of D4GR by measuring the
improved accuracy in PGR and comparing the planning time
and number of questions asked to two state-of-the-art baselines
in the simulated domain developed by Wang and Hoey [19].
Our system is able to more accurately infer human intents than
these baselines using information gathered from a language
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Fig. 1. Kuri robot performing human intent (plan and goal) recognition. The human, while making coffee, starts a new goal of washing hands. However, the
human forgets to use soap after turning on the faucet and instead turns off the faucet. The robot (with access to the Hierarchical Task Network representation
of goals) observes that the current world observations do not progress the previous goal and also cannot lead to a new goal completion and hence uses D4GR
to ask a clarification question. Based on language feedback, the robot reduces its confidence in the goal wash hands and suggests the next action as using
soap to complete one of the most plausible goals of washing hands.

without asking unnecessary questions. We run 880 trials
for varying sensor noise levels where the simulated human
tries to complete a combination of tasks in two domains -
the kitchen and blocks domain. In the kitchen domain, there
are three tasks - washing hands, making a cup of tea, and
making a cup of coffee while in the blocks domain, tasks
include an assortment of stacking letters to make 4-7 lettered
words - rote, tone, tune, hawk, capstone. With language
feedback and the world state information in a hierarchical task
model, we show that our D4GR framework outperforms HTN
by 4% on plan accuracy in the kitchen domain and 2% in the
blocks domain. In goal accuracy, for the highest sensor noise,
our D4GR performs 1% better than HTN in both kitchen and
block domains. We also deployed our algorithm on a social
robot Kuri as a demonstration of a socially intelligent robot
helping confused users complete tasks. In this demonstration,
Kuri performs improved PGR by asking clarification questions
and reducing uncertainty for a challenging scenario where
the user switches between multiple concurrent goals (e.g.,
washing hands and making coffee) and acts sub-optimally
in the kitchen domain. The demo can be found here: https:
//youtu.be/Om91zBiDDEY. An example sequence of the user
and robot interaction can be seen in Fig-1.

II. RELATED WORK

Plan and Goal Recognition as Planning: The first work on
PGR as planning was introduced by Ramı́rez and Geffner [15].
This research leverages classical planning systems to solve
PGR problems. Wang and Hoey [19] proposed an algorithm
for PGR based on hierarchical task network [4] that handles
noisy sensors and sub-optimality in human actions. However,
their approach detects mistakes heuristically using a manually
defined threshold while performing a one-step look ahead
without long-horizon planning. Additionally, it lacks dialog

conversation to improve belief in the actor’s progress in the
task. Another relevant work that does not engage with the user
is by Zhi-Xuan et al. [22], which performs online Bayesian
goal inference by modeling the agent as a boundedly rational
planning agent but is not designed and evaluated for multiple
concurrent hierarchical goals. Mirsky et al. [12] presents
favorable results for the hypothesis that feedback from the
acting agent can improve plan (goal and step) recognition,
but their paper performs goal recognition as reinforcement
learning and has a fixed language policy without exploring
the observer’s strategy for asking clarification question. Höller
et al. [7] employs HTN Planning for PGR but struggles with
sub-optimal actions and noisy sensors, focusing on handling
missing sensor observations instead.

Context-aware Social Robotics: In the past, research in
social robotics has focused on developing non-verbal social
behaviors for robots to assist the elderly [5, 10] during task
completion. These works place less emphasis on incorporating
language feedback/observations for user intent inference. Fur-
ther, the robot dialog policy (if involved) does not account for
the environmental context, dialog context, and user modeling.
Research in situated human-robot dialog by Bohus and Horvitz
[1], Thomason et al. [18], Idrees et al. [8] grounds speech
response in the environment but asks clarification questions
heuristically, using rule-based/greedy approaches and without
using a decision-theoretic framework. Such heuristics are
prone to failure as the tasks get complex and the environment
sensors become complex and noisy.

POMDP-based Collaborative Dialog: Partially observable
Markov decision processes (POMDPs) provide a rich frame-
work for planning under uncertainty. They excel in optimizing
agents’ actions over long horizons in complex environments
despite incomplete state information from noisy sensors [6].

https://youtu.be/Om91zBiDDEY
https://youtu.be/Om91zBiDDEY


Fig. 2. Hierarchical Task Network for two of our tasks - washing hands,
and making tea

Young et al. [21] and Doshi and Roy [3] built POMDP-based
dialog systems. However, these only use language as obser-
vations, not world observations, for belief updates to choose
actions with the highest reward accumulation. Whitney et al.
[20] fuses language and world observations for object fetching
tasks but does not model the user’s mental state during multi-
step task completion. The closest work to ours is by Hoey
et al. [6], featuring an engaging assistant that incorporates only
world observations and not language observations for multi-
step tasks. They can infer human actions and psychological
states through hand and towel tracking but can not handle
multiple and concurrent tasks and backtracking and are limited
to hand washing. Research has recently focused on using
reinforcement learning in a collaborative dialog for interactive
task learning Chai et al. [2]. However, these works require
an existing dataset for offline learning, while our planning
approach doesn’t necessitate data collection or learning.

III. TECHNICAL APPROACH

Given the sensor measurements Ow of the world state W ,
an assistive robot needs to infer the probabilities of the hidden
user intent—the person’s current goal G and the current prim-
itive human action α. Partial observability of the latent user
intent and noise in the sensor observations impact accurate
inference of G, W , and α at every sequence of human actions.
We infer the probability distribution of the hidden states G,
W , and α using HTN planning to generate feasible plans for
the human-given predefined tasks similar to work of Wang and
Hoey [19]. With the ability to ask clarification questions, the
robot actively improves the inference of the latent states. The
user’s response in the form of language observations, ol, gives
the agent additional information about their task. With our
D4GR framework, the robot decides when to ask clarification
questions and which user action to inquire about, based on
information gathered from both the sensors and language. Our
framework avoids asking unnecessary questions and balances
between information-gathering actions, like asking questions,
and goal-inducing actions, such as providing the correct next
step.

Fig. 3. Influence diagram for D4GR.

A. POMDP Definition

We model our PGR problem as a POMDP [9] planning
problem,generating an approximately optimal action policy
for the robot. Formally, a POMDP is defined as a tuple
(S,A, T,R,Ω, O, γ, b0) where S is the state space, A is a
the action space, T is the transition probability, R is the
reward function, Ω is a set of observations, O defines an
observation probability and γ is the discount factor. Since st
is not known exactly, the POMDP model updates, at each
timestep, the probability distribution over all possible states
(belief state bt). The POMDP agent uses a planner to generate
an optimal policy for the robot’s action, which in this case is
the communication with the human user.

B. D4GR Formulation

We define a novel model, Dialogue 4for Goal Recognition,
a Partially Observable Markov Decision Process (D4GR)
that combines the goal and plan recognition components as
described by Wang and Hoey [19] with the POMDP formalism
to allow robots to take action in the environment through
dialogue for improved PGR. For efficient human intent recog-
nition and estimation of optimal action policy, our D4GR must
handle the large space of the world and language observations.
Our formulation leverages the hierarchical task structure of
HTN and assumes independent assumptions between state
variables set of goals G, human user action α, and world state
W for efficient belief update. Our D4GR has the following
components: (S,A, T,R,Ω, O, γ; b0).

State (S): The state, st ∈ S, consists of a tuple of the
user’s mental state, Mt, and the world state, Wt, along with
information needed to track the dialog state. We represent
the user mental state using HTNs. We assume access to the
HTN’s fixed knowledge graph TaskNet for the tasks, where
the root node(s) represent the high-level tasks/goals G that the
human can do. The internal nodes are sub-tasks that can be
decomposed into leaf nodes depicting primitive human actions.
α denotes the current primitive human action. We model the
user’s mental state M represented by G and α. The partial
TaskNet for our kitchen domain is shown in Fig-2.

The world state Wt combines the states of world smart
sensors sst and the attributes of objects involved in the task
attt, such as dryness of the hand, state of the faucet, etc. The



dialog state variable qt stores the latest primitive human action
referenced by the robot in its clarification question. Thus, the
state st can be factored into the following components:st =
(Mt, qt,Wt, ) where Wt = (sst, attt), Mt = (Gt, αt). Here
Gt, αt, attt, sst are the hidden variables, while qt is the known
variables, hence making this a Mixed Observable Markov
Decision Process (MOMDP) [13]. The influence diagram can
be seen in Fig-3.

Action(A) includes the actions of the agent. The robot for
this research can perform the following predefined language-
based actions - 1) Wait: does nothing but advances the time
step. 2) Ask{argmax(α)}: The robot asks a clarification
question about the primitive action α with the highest belief.
The question template used is: “I believe that you just did
action (αi), is this correct?”. 3) inform next instruction:
informs the next action that the user should perform at the
current timestep based on the current belief. This action is
chosen based on a fixed policy and is executed when the
user provides a negative language response to the robot’s
clarification question.

Observations (Ω) encompass both the user’s language (ol)
and observations about the world state (ow). ow includes
discrete observations of the world smart sensor’s state sst
and the attributes of the task-related objects attt such as
hand dry == true, faucet on == false, etc. These observations
are binary for the states in Wt, so the faucet can only be on or
off. The language observations are natural language responses.

Observational Model (O): The robot needs a model
of p(o|s) = p(ol, ow|s) to update its belief. Most of the
complexity of our model is captured in this observation model
and belief update defined in the sec-III-C.

Transition Model (T ) : T (s, a, s′) ≡ p(st+1|st, at). Our
stochastic transition function is factorized as shown in Eq-
1, following a similar approach to Wang and Hoey [19]. We
factor our mental model Mt into Gt and αt. Additionally, we
assume that the last question asked, qt, is independent of G,
α, and W .

p(st+1|st, at) = p(Gt+1|Wt+1, Gt)× p(Wt+1|Wt, αi,t+1)×
p(αt+1|Wt, Gt)× p(qt+1|qt, a). (1)

In Eq-1, we assume that qt changes deterministically from null
to max(αt) after the robot asks a clarifying question. Further,
G is deterministically carried forward to the next time step.

p(qi,t+1|qi,t, at)

=

{
1 for max(α) else 0, if a ̸= NULL

1 for qi,t, else 0 at == NULL.

Reward (R(s, a)) We provide a positive reward (5) for
asking a clarifying question when the user is doing the wrong
or suboptimal lowest primitive step. A negative reward (−5)
for asking a clarifying question when the human user is
doing the correct primitive step or when the agent asks a
question about a wrong primitive action. Thus, doing nothing
accumulates zero rewards until the right question is asked,

while not asking a question or asking a wrong one results in
a penalty.

C. Belief Update for Goal Recognition and Planning

Our belief update performs human intent recognition by
maintaining a belief over the hidden user’s mental state
Mt = (Gt, αt) and the world state Wt. The actions executed
by the user produce an observation of the world state ow
indicating the change in the world state Wt. The user can
also provide speech/language feedback ol in response to the
clarification question asked. We classify the intent of each
sentence into positive or negative feedback using the bag of
words approach. Negative responses rn include { ‘no’, ‘nope’,
‘other’, ‘not’ } while positive responses rp include the words {
‘yes’, ‘yeah’, ‘sure’, ‘yup’ }. Further, our world sensor noise
model generates the correct sensor state with probability sr
and the incorrect sensor state with 1− sr. We adopt the noise
model for the sensor described by Wang and Hoey [19].

The observation model can be further expanded and approx-
imated as follows:

p(ot|st; at−1) ∝ p(st|ot, at−1) ∗ p(ot|at−1). (2)

Overall, the probability of st given ot and at−1 can be fac-
tored into the world observation model and language observa-
tion model in Eq-3. We assume that the world observation ow,t

solely provides information about the W and α. Meanwhile,
the language observation is relevant to the human action α,
the last question asked qt, subsequently affecting the goal.

p(st|ot, at−1) ∝ p(Gt|Wt) ∗ p(Wt|ow,t) ∗ p(αt|ow,t) ∗ p(ow,t)︸ ︷︷ ︸
world observational model

∗ p(αt, qt|ol,t) ∗ p(ol,t) ∗ p(qt|at−1)︸ ︷︷ ︸
language observational model

. (3)

For both the world and primitive action belief update in
eq-3, the components p(Wt|ow,t) and p(αt|ow,t) are derived
from Wang and Hoey [19]. The Bayesian update is as follows:

p(αt|ow,t) ∝
∑

wt−1∈Wt−1

∑
wt∈Wt

p(αt, ow,t, wt−1, wt), (4)

p(Wt|ow,t) =
∑

wt−1∈Wt−1

∑
αi,t∈αt

p(αi,t, ow,t, wt−1, wt).

(5)

We adopt the proposed algorithm for goal recognition,
p(Gt|Wt) in Wang and Hoey [19]. The algorithm maintains
a goal belief distribution by generating a probabilistic expla-
nation set - ExplaSet. Each expla ∈ Explaset uses HTN
planning to explain the observations so far. The probability
of each goal gi in G given the world state is the sum of
probabilities of expla ∈ ExplaSet whose PredictedGoal
== gi. Our algorithm reweighs primitive actions probabilities
based on the language observational model described below,
influencing the world belief update according to Eq-5 and,
consequently, the goal recognition update.



Fig. 4. Results for Top1 Goal Accuracy versus Sensor Reliability for the two domains kitchen and block

The derivation of the language observational model is:

p(αt, qt|ol,t) ∗ p(ol,t) ∝ p(ol,t|αt, qt). (6)

We adopt a bag-of-words approach as our POMDP’s ob-
servational model instead of utilizing a large language model
(LLM) like GPT3. LLMs are not inherently grounded. Our
model explicitly establishes a connection between sensor in-
formation and semantics through a transition model in the
POMDP. Although LLMs could be incorporated for intent
classification using the right prompt, we did not pursue this
direction as it falls outside the focus of our paper.

To estimate the effect of the language observation ol on α
and q, we calculate p(ol,t|αt, qt). For this, we consider three
possibilities for the state: If the highest belief primitive action
αmax,t is the same as the question asked, then the user is likely
to respond with positive/confirmation feedback. The opposite
is true if αmax,t ̸= qt. If qt = Null, then no question has
been asked, so both types of responses are equally likely. The
mathematical representation of p(ol,t|αt, qt). is governed by
the following conditional probability table:

p(ol,t = Y es) p(ol,t = No)

αmax,t = qt 0.99 0.01
αmax,t ̸= qt 0.01 0.99
qt = Null 0.5 0.5

TABLE I
CONDITIONAL PROBABILITY FOR p(ol,t+1|αt, qt)

At each time step as the human performs an action, we solve
the MOMDP using the POUCT solver [17] to approximate
the optimal policy for the robot’s communication with the
human. The observational model is then employed to update
the robot’s belief of user’s mental state M = {G,α}.

IV. EVALUATION

Our evaluation aims to test the hypothesis that our hier-
archical decision-theoretic framework D4GR improves 1) the
accuracy of goal recognition and plan recognition of human

activity and 2) the robot’s ability to guide the person towards
task success. We evaluate the enhanced performance of
our algorithm by measuring the accuracy of goal recognition
and prediction of the next human action, also referred to as
plan recognition, at every time step. We also measure the
planning time, the cumulative expected return, and the number
of clarification questions asked for completing the tasks by
D4GR and compare it against the three presented methods in
simulation. We also perform a robot demonstration of D4GR
for the scenario where the human switches between washing
hand and making tea tasks.

We use the simulation environment introduced by Wang
and Hoey [19] for our experiments. The simulator models
real environment state changes that result from the prim-
itive actions specified in the HTN for the virtual human.
In the simulator, 44 binary virtual sensors are observing
the world state. Some of the examples include sensors
for hand dry, faucet on, block picked up. For our exper-
iments, we vary sensor reliability from 99% to 80%.

A. Domain and Experiment Test Cases

We test our algorithm in two domains: a block domain and a
kitchen domain. The Knowledge Base, TaskNet of the HTN
for the kitchen has three goals: wash hands, make tea, and
make coffee. and the block domain has five goals of stacking
blocks to make words with varying lengths of 4 to 7. The
five goals of our block domain are rote, tone, tune, hawk,
and capstone. The two domains differ in their HTN planning
structure, as the block’s domain has higher goals (root nodes)
but a shorter tree depth than the kitchen domain. Such a setup
allows us to explore the effect of HTN structure on goal and
plan recognition performance. We evaluate the performance of
our algorithm over four categories of test case scenarios:

Single Goal & Correct Steps: Captures scenarios where
the human always executes a correct action sequence for
achieving a single goal.



Fig. 5. Results for Top1 Plan Accuracy versus Sensor Reliability for the two domains kitchen and block

Multiple Goals & Correct Steps: The person works on
multiple goals simultaneously by switching back and forth,

Single Goal & Wrong Steps: A human has a single goal
but can execute wrong steps affecting progress toward the goal.

Multiple Goals & Wrong Steps: The human moves back
and forth between goals and executes wrong actions.

The easiest case is Single Goal & Correct Steps, and the
hardest is Multiple Goals & Wrong Steps.

B. Baselines:

We compare D4GR’s performance in simulation with three
other methods. Our first baseline is HTN, a previous method
of HTN-based goal recognition introduced by Wang and Hoey
[19]. This method passively incorporates partially observable
world observations for PGR without engaging with the user.
Our second method is ALWAYS-ASK which acts as an oracle
that always asks the correct clarification question and uses
the language feedback for the belief update of D4GR. This
baseline always has the highest goal and step recognition ac-
curacy but receives a lower reward because it asks unnecessary
questions. Our third baseline is SIPS1 introduced by Zhi-
Xuan et al. [22]. This algorithm is not equipped to handle
hierarchical nature of goals.

C. Metric Definitions:

We measure 1) Top 1 Accuracy for Goal recognition, 2)
Accuracy for Plan Recognition similar to Wang and Hoey
[19] averaged over all timesteps. These metrics measure the
accuracy of our belief update. To evaluate our POMDP for-
mulation, we also measure the planning time taken: runtime
averaged over the steps, the cumulative reward for the whole
human action sequence, and the number of questions asked
averaged over trials.

1The SIPS baseline is adopted from the code repository cited in Zhi-Xuan
et al. [22] and uses their default setting: static goal transition.

V. RESULTS

Our proposed algorithm aims to improve the capability of
the robot for goal and plan recognition. The performance of
D4GR depends on how accurately our cognitive assistive robot
estimates the belief states for the human mental model Mt:
the likelihood of goals G and the human actions α at each
simulated step. The ground truth of each human action’s α
given the goal G can be obtained from the knowledge base.

A. Exp 1 - Goal Accuracy Performance

In Fig-4, we present results for the average goal accuracies
of D4GR and compare them with the baselines over varying
sensor reliability and test case categories. The reason for
choosing the sensor reliability range from [0.8 to 0.99] is
because most of the deep-learned vision and human action
detectors have similar average accuracy [14]. Overall, as the
sensor reliability decreases, the accuracy performance of HTN-
based methods (ALWAYS-ASK, D4GR, HTN) suffers. The
oracle baseline, ALWAYS-ASK, always has the highest goal
accuracy. Even at lower sensor reliabilities (higher sensor
noise), D4GR’s accuracy remains higher than HTN in all
experiment categories by 1% on average in both domains.
This trend indicates that even when the sensor’s observational
model fails, D4GR can better predict the belief states than
HTN. The SIPS method did not generate functional plans for
our kitchen domain even when the input specification was
correct. Their particle filter algorithm could not find feasible
plans for the goals. Hence, presenting the results in the blocks
domain. Compared to the SIPS baseline, our method is 30 %
better in the blocks domain. We significantly outperform the
SIPS baseline in the multiple goals scenario by almost 43%
because SIPS does not handle the hierarchical nature of goals.
The problem categories with single goals (correct steps &
wrong steps) have the best performance for the lowest sensor
reliability. We see D4GR performance boost by 2.8% in the
kitchen domain and 1.4% in the blocks domain as compared to



Runtime (s) ↓ Cumulative Expected Return ↑ Question Frequency ↓
Domain Method 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

ALWAYS-ASK 2.085 1.869 1.563 1.367 -37.253 -62.769 -69.323 -73.569 1.000 1.000 1.000 1.000
D4GR 28.750 20.445 18.814 17.084 -26.056 -24.656 -23.014 -23.989 0.297 0.318 0.325 0.358
HTN 9.056 1.524 1.371 1.040 0.000 0.000 0.000 0.000Block

SIPS 43.173 41.615 40.654 40.934
ALWAYS-ASK 0.484 0.425 0.407 0.343 -41.848 -55.593 -62.342 -73.265 1.000 1.000 1.000 1.000
D4GR 13.912 13.439 13.572 11.384 -24.527 -26.542 -26.399 -21.437 0.312 0.317 0.316 0.296Kitchen
HTN 0.415 0.380 0.391 0.349 0.000 0.000 0.000 0.000

TABLE II
TREND IN QUESTIONS ASKED, REWARDS ACCUMULATED AND RUNTIME (SENSOR RELIABILITY VARIES FROM 80% TO 99%)

HTN. The Oracle, on average, is 6.3% more accurate than the
HTN baseline in this category. Our D4GR improves accuracy
by inferring when and what to ask a question rather than
always asking.

B. Exp 2 - Plan Accuracy Performance

Similar to goal accuracy, we plot the planning accuracy for
D4GR and compare it with the baselines for varying sensor
noise in Fig-5. Our algorithm overall is 3% more accurate
than HTN in both domains. For the lowest sensor reliabilities,
D4GR is 4% better than HTN in the kitchen domain and 2%
better than HTN in the block domain. For the multiple goal
scenarios (correct and wrong steps), D4GR performs the best
with an accuracy improvement of 2.7% in the kitchen domain
and 2.3% in the block domain.

C. Exp 3 - Trend in Questions Asked, Rewards Accumulated
and Runtime:

Our proposed algorithm aims to improve the PGR capabili-
ties of the agent by enabling the robot to engage with the users
and ask for language feedback. One performance measure
is the number of helpful clarification questions asked with
varying sensor reliabilities in Table-II. When the environment
and human actions are unambiguous (sensor reliability is
high and/or the human is performing correct actions), D4GR
enables the robot to intelligently infer that it does not need
to ask lots of questions. At sensor reliability 0.99, D4GR
still asks questions because users can do sub-optimal actions
leading to ambiguity. Overall the agent asks questions 32.4%
and 31% of the time in the block and kitchen domains
respectively. When compared over varying sensor noise, the
change in the number of questions asked is insignificant; the
numbers lie within the same standard deviation.

Further, asking a large number of clarification questions,
especially if they are not relevant to the current progress of
the task, takes more computing resources since planning will
have to be done at every timestep. This effect is measured by
the runtime and the reward accumulated by D4GR. Our reward
function penalizes asking a lot of questions, especially when
they reference an irrelevant human action. Our results show
that D4GR takes more planning time per step as compared
to ALWAYS-ASK and HTN but is 48% faster than SIPS.
All these measurements are done on a machine with 31 GB
RAM, Intel® Core™ i7-9750H CPU @ 2.60GHz × 12. The
code was run single-threaded. D4GR takes more time than

HTN but enables accuracy performance boost as noted in
previous sections, Sec-V-A and Section-V-B. Further, D4GR
accumulates a higher reward/lower penalty as compared to
ALWAYS-ASK by 58% in both domains highlighting that
D4GR does not ask unnecessary questions.

D. Robot Demonstration

We performed a robot demonstration to highlight the fea-
sibility of D4GR in the real world. The Kuri robot was used
primarily for the demo due to its audio transcription capability.
The demonstration consisted of a human performing two
interleaving tasks in a kitchen while the Kuri robot observed
the actions performed and engaged with the user using the
D4GR algorithm. The human begins with making coffee and
then moves to wash their hands. Unlike HTN, which struggled
to recognize the change in goal, D4GR correctly identified
both goals. The demonstration simulated sensor reliability at
0.8 using an oracle and sensor noise model. Kuri used D4GR
to intelligently infer when to ask a question and what to ask
and is able to perform goal recognition and planning correctly.
In the case of negative feedback from humans, Kuri offers its
predicted correct step to the human.

VI. DISCUSSION AND FUTURE WORK

Our deployed algorithm D4GR shows improved accuracy
for goal and plan recognition than the baseline HTN and
SIPS. It does so while asking fewer questions than the
ALWAYS-ASK oracle policy. Our deployed robot with D4GR
performs real-time communication, as demonstrated. The time
taken for online planning is influenced by two critical pa-
rameters of the POMDP solver: 1) d, representing the finite
depth of the probabilistic decision tree constructed with state-
action pairs, and 2) n, the finite number of observations
sampled from each node. Increasing d and n enhances the
solver’s accuracy and increases runtime. To achieve real-
time communication, we conducted empirical experiments and
determined that setting d = 19 and n = 6 provided appropriate
action choices within a reasonable time.

Our algorithm shows promising improvements in PGR ac-
curacy, although it comes with increased runtime compared to
HTN. Our algorithm is designed to assist users with cognitive
impairment in their daily tasks, focusing on non-time-critical
activities. By providing delayed feedback, our social assistive
robot increases the likelihood of users learning from mistakes



and avoiding continuous repetition of errors compared to using
HTN. We can reduce runtime further by retaining only the
highest probable explanation sets, denoted as ExplaSet in
HTN planning. However, this impacts the PGR accuracy since
ExplaSet with multiple goals during initial steps can get
pruned due to their lower probabilities. In the multi-goal
and low sensor reliability setting, D4GR shows slightly lower
PGR accuracy than HTN. This is due to D4GR’s reliance on
noisy beliefs and user switching goals, leading to a higher
probability of asking questions about irrelevant actions. The
rational language feedback also adversely affects the update
of the explaset, potentially diminishing its utility in later
timesteps of the episode.

Our work is also limited by the type of clarification ques-
tions the robot can ask. We have a fixed template for the
question. It will be interesting to see how humans respond to
various clarification strategies and how the robot can plan over
a space of such categories. This will increase the action space
requiring more exploration by the POMDP solver. Further, our
language observational model is a bag of words model. It can
be more expressive by incorporating inference from LLMs.

Further, our work assumes access to a pre-defined knowl-
edge base for the tasks. One thing that we will be exploring
in the future is how to make the knowledge base adap-
tive to a layman user’s needs and preferences as the task
progresses through interactive dialogue. Our research opens
venues for language grounding and human intent recognition
in other collaborative tasks like building machines/complex
furniture together by humans and robots. This is an encourag-
ing step toward enhancing the sensory capabilities of home-
service robots that can assist people in completing tasks with
language-based interactions.

VII. CONCLUSION

We propose a novel algorithm for robots to interactively
keep track of people’s ongoing progress in a task using
questions. Moreover, our D4GR framework can suggest plan
improvements to users in solving a task if required. Our work
shows that: 1) modeling the user as an HTN and incorpo-
rating language feedback improves robots’ belief of human’s
progress in simulation; 2) POMDPs are effective methods for
tracking a task’s progress and asking clarification questions.
Our D4GR formulation has a similar goal and step recognition
accuracy as the best baseline ALWAYS-ASK method while
asking 68% fewer questions. In future work, we aim to conduct
a user study with the targeted population to measure our
approach’s usefulness during the interaction. D4GR’s ability
to intelligently balance between clarifying uncertainty with
a lesser number of questions allows for realistic interactions
between a social robot and a human. This ability in the future
can allow for realistic interactions with human users during
collaborations over tasks between humans and robots.
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