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Abstract— To automatically localize a target object in an
image is crucial for many computer vision applications. To
represent the 2D object, ellipse labels have recently been
identified as a promising alternative to axis-aligned bounding
boxes. This paper further considers 3D-aware ellipse labels, i.e.,
ellipses which are projections of a 3D ellipsoidal approximation
of the object, for 2D target localization. Indeed, projected
ellipses carry more geometric information about the object
geometry and pose (3D awareness) than traditional 3D-agnostic
bounding box labels. Moreover, such a generic 3D ellipsoidal
model allows for approximating known to coarsely known
targets. We then propose to have a new look at ellipse regression
and replace the discontinuous geometric ellipse parameters with
the parameters of an implicit Gaussian distribution encoding
object occupancy in the image. The models are trained to
regress the values of this bivariate Gaussian distribution over
the image pixels using a statistical loss function. We introduce
a novel non-trainable differentiable layer, E-DSNT, to extract
the distribution parameters. Also, we describe how to readily
generate consistent 3D-aware Gaussian occupancy parameters
using only coarse dimensions of the target and relative pose
labels. We extend three existing spacecraft pose estimation
datasets with 3D-aware Gaussian occupancy labels to validate
our hypothesis. Labels and source code are publicly accessible
here: https://cvi2.uni.lu/3d-aware-obj-loc/.

I. INTRODUCTION
Object localization in images has gained interest within

the computer vision community due to its potential impact
on a wide range of applications. While the axis-aligned
bounding box has been the de facto standard representa-
tion for object detections [1], ellipses have been recently
identified as another generic representation able to carry
more information about the object projection, such as its
orientation and more fitted envelope, therefore enabling, for
instance, more accurate 3D reconstructions [2].

2D Ellipse Regression Pioneering work in ellipse regres-
sion has been focusing on geometric ellipse parameters, i.e.
centre coordinates, minor and major axes and orientation
angle (see Fig. 1). To regress these parameters, Ellipse
Proposal Networks [3] use L1 losses, thus requiring relative
weighting between location and axes errors on one side and
orientation error on the other. To circumvent this, Lin et
al. [4] transform the parameters so that they are in the same
order of magnitude. The main limitation of these methods
lies in the discontinuity of the angular value to regress.
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Fig. 1. Top: We consider 2D projections of a 3D ellipsoid approxi-
mating the object. Bottom-left: Standard ellipse representation with cen-
tre coordinates (x0, y0), major (a) and minor (b) axes, and orientation
θ. Bottom-right: To cope with the discontinuity of θ, we propose to
represent the ellipse by an underlying implicit Gaussian distribution pa-
rameterized by both continuous mean µ = (x0, y0) and covariance Σ =(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
a2 0
0 b2

)(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
.

Gaussian Proposal Networks (GPN) [5], inspired by Re-
gion Proposal Networks (RPN) [6], look at ellipses as 2D
Gaussian distributions on the image plane and minimizes
the Kullback-Leibler (KL) divergence between the proposed
and groundtruth distributions as one single loss. Since KL
divergence has an analytical form for Gaussians and is
differentiable, GPN can be easily implemented and trained
with a back-propagation algorithm. However, the Gaussian
parameters are derived from the regressed geometric pa-
rameters (position, axes and orientation), therefore facing
the same discontinuity issue on angle regression. GPN has
been integrated into an object detection pipeline by Pan et
al. [7], where the Wasserstein metric is used instead of KL
to provide the model with proper distance loss. Ellipse R-
CNN [2] also regresses geometric ellipse parameters with
enhanced occlusion robustness, while ElDet [8] adds training
objectives such as maximizing Intersection-over-Union (IoU)
score between predicted and groundtruth ellipses. However,
these methods are designed to detect naturally occurring
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elliptic shapes in images, which does not correspond to our
use-case, where ellipses originate from a 3D virtual ellipsoid
modeling the object.

3D-Aware Ellipse Regression To the best of our knowl-
edge, Zins et al. [9], [10], [11] were the first ones to regress
3D-aware ellipses. In [9], they apply a L2 loss on the ellipse
centre and dimensions, while the angle prediction is framed
as a classification problem with posterior angular correction
loss. They also proposed two types of implicit functions
characterized by ellipse parameters for robustifying the loss
function: a local signed distance function enabling pixel-to-
pixel comparison between groundtruth and predicted func-
tions values [10] and an algebraic distance function based
on ellipse equation combined with an adaptive sampling to
provide rotation invariance [11]. However, implicit function
values are still computed based on the regressed geometric
ellipse parameters.

In this paper, we take up this implicit function idea
but propose to continuously regress its values over the
image pixels in the form of an occupancy heatmap. Before
training, the Gaussian distribution parameters and heatmaps
are directly computed from the ellipsoid projections using
the relative object-camera poses. We extract these param-
eters from the regressed heatmap during forward propa-
gation thanks to a novel non-trainable differentiable layer:
Extended-Differentiable Spatial to Numerical Transform (E-
DSNT). A combination of statistical losses is finally pro-
posed to optimize the model. Though our method can be
used in any use-case requiring 2D target localization, we
focus on the Space Situational Awareness (SSA) application
to validate it in this paper. Indeed, automatically localizing
a target uncooperative spacecraft is crucial for tasks such
as in-orbit rendezvous. We evaluated our work on three
spacecraft pose estimation benchmark datasets. In a nutshell,
our contributions are three-fold:

• A novel and fully differentiable object localization
pipeline that can regress 3D-aware ellipse labels directly
from an image. This proposed approach achieves state-
of-the-art performance on standard spacecraft localiza-
tion benchmarks;

• A method for generating 3D-aware Gaussian occupancy
labels given only 6-Degree-of-Freedom relative poses
and coarse object dimensions;

• An open-access release of 3D-aware Gaussian occu-
pancy labels (heatmaps, mean and covariance labels)
for three existing spacecraft pose estimation datasets.

The organization of the rest of the paper is as follows.
Section II describes the generation of 3D-aware Gaussian
occupancy labels for object localization in images. Section
III presents our object Localization model designed to regress
such labels. Then, experimental comparisons demonstrating
the state-of-the-art performance of the method are provided
in Section IV. Finally, Section V concludes the paper.

II. 3D-AWARE GAUSSIAN OCCUPANCY LABELS
This section describes how to readily generate Gaussian

occupancy labels from a 3D ellipsoidal model of the object

Fig. 2. Illustration of bounding box object label (left) and ellipse label
(right). The ellipse is a more accurate representation of many man-based
objects. Image from the URSO Dataset [12].

and the relative camera-object pose.

A. 2D Object Occupancy

Object occupancy in a picture can be defined as the
set of pixels corresponding to that object. In most cases,
object detection labels Lobj are in the form of bounding
boxes designed to encompass the object occupancy (see Fig.
2). Considering a bounding box with centre (xc, yc) and
dimensions (W,H), object detection labels can be written:

L
(bbox)
obj = [xc, yc,W,H] . (1)

Now assuming that the object occupancy is encoded by
an implicit occupancy function Op : R2 → R characterized
by parameters p, object labels can be written

Lobj = p. (2)

B. 2D Gaussian Occupancy Labels

Statistical information about the object occupancy is given
by means µx, µy , variances Σxx,Σyy and covariance Σxy of
the occupied pixels in the 2D image. Therefore, a natural
implicit occupancy function is the bivariate Gaussian dis-
tribution with centre µ = (µx, µy)

⊤ and covariance matrix

Σ =

(
Σxx Σxy

Σxy Σyy

)
. Finally, we define Gaussian occupancy

labels as

L
(Gauss)
obj = [µx, µy,Σxx,Σyy,Σxy]. (3)

C. 3D-Aware Gaussian Occupancy Labels

The parameters of a bivariate Gaussian distribution are
those of a characteristic ellipse, and vice versa. In our
method, we are interested in regressing the parameters of
the elliptic projection of a 3D ellipsoid, and for this reason,
we consider the Gaussian distribution arising from it.

More precisely, given an object whose dimensions along
its three orthogonal principal directions are 2a′, 2b′, 2c′, an
ellipsoidal approximation of the object is characterized by
matrix

Q∗ = diag
(
a′2 b′2 c′2 −1

)
. (4)

Then, denoting T the object centre position and R the
object orientation with respect to the camera, the ellipsoid
projection into the image (ellipse) is given by matrix

C∗ = PQ∗P⊤, (5)



Fig. 3. Illustration of our object localization pipeline designed to regress the parameters of a 3D-aware Gaussian implicit occupancy function (represented
as a heatmap in the central picture) in a fully differentiable manner. The model combines an MA-Net backbone to regress the implicit function values
over image pixels with a novel non-trainable differentiable layer (E-DSNT) to extract Gaussian distribution parameters. The corresponding ellipse is then
derived (overlaid in red in the right picture). Image from the SPEED+ Dataset [13].

where P = K [R|T] and K the camera intrinsic matrix [14].
The projected ellipse C∗ is therefore in the form:

C∗ = s

 · · −x0

· · −y0
−x0 −y0 −1

 , (6)

where s is a scale factor, · denotes any value, and (x0, y0)
is the ellipse centre that corresponds to the peak location of
the underlying Gaussian occupancy function:

µ = (µx, µy)
⊤ = (x0, y0)

⊤. (7)

The centred ellipse is then obtained by

C∗
centered = TC∗T⊤, (8)

where T =

1 0 −x0

0 1 −y0
0 0 1

 .

The 2 × 2 upper-left part of C∗
centered corresponds to the

covariance Σ of the Gaussian occupancy function, and its
eigendecomposition provides the ellipse orientation θ and
semi-axes (a, b):

Σ =

(
Σxx Σxy

Σxy Σyy

)
(9)

=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
a2 0
0 b2

)(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
.

(10)

III. OBJECT LOCALIZATION

Our object localization pipeline, illustrated in Fig.3, can
regress Gaussian occupancy labels L

(Gauss)
obj via implicit

function estimation in a fully differentiable manner. We
introduce a differentiable heatmap parameters extraction
layer E-DSNT coupled with a heatmap regression network
to estimate the implicit function values. These modules
are respectively presented in Sections III-B and III-A. The
statistical loss used to optimize the model is presented in
Section III-C.

A. Heatmap Regression Network
Any state-of-the-art segmentation network can be used to

regress the Gaussian occupancy function values Op(x, y)
across image pixels. In the experiments, we use the MA-
Net [15] network with ResNet34 [16] backbone since this
model can capture contextual dependencies based on an
attention mechanism, using two blocks (refer to Fig.3): a
Position-wise Attention Block (PAB), which captures the
spatial dependencies between pixels in a global view, and a
Multi-scale Fusion Attention Block (MFAB), which captures
the channel dependencies between any feature map by multi-
scale semantic feature fusion. As a last layer, a flattening-
softmax layer is added to ensure a normalized probability
density function, which we refer to as a heatmap in what
follows.

B. Differentiable Extraction of Gaussian Occupancy Labels
A bivariate Gaussian distribution is characterized by its

mean value µ, being the coordinates of the peak, and its
covariance matrix Σ encoding the spatial extent of the distri-
bution. A differentiable mean extraction layer was previously
introduced in the literature (see Section III-B.1), and we
extend it to extract the additional covariance matrix values,
refer to Section III-B.2.

1) Mean Extraction: Differentiable Spatial to Numerical
Transform (DSNT) [17] is a non-trainable and differentiable
layer for extracting the mean value of a given normalized
Gaussian heatmap Ẑ with size H × W . Following this
method, we compute two coordinates encoding matrices X
and Y with entries

Xi,j =
2j − (W + 1)

W
; Yi,j =

2i− (H + 1)

H
,

∀i = 1, . . . , H; ∀j = 1, . . . , W .
Observing that the heatmap encodes the probability P of

the pixel [Xi,j , Yi,j ] to be the location of the peak p, we
have:

P (p = [Xi,j , Yi,j ]) = Ẑi,j .



The prediction of p is made through its expectation

µ = E[p] =
[
< Ẑ,X >F < Ẑ, Y >F

]
(11)

where < ·, · >F is the Frobenius inner product.

2) Covariance Matrix Extraction: Denoting px, py the
coordinates of p, we extend DSNT to extract the heatmap
variances along the x-axis Σxx and y-axis Σyy, as well as its
covariance value Σxy . We refer to such parameter extraction
procedure as Extended-DSNT (E-DSNT). Specifically, we
use the definitions of the aforementioned quantities and
derive the following equations:

Σxx = E[(px − E[px])2]
=< Ẑ, (X − µx)⊙ (X − µx) >F

(12)

Σyy = E[(py − E[py])2]
=< Ẑ, (Y − µy)⊙ (Y − µy) >F

(13)

Σxy = E[(px − E[px])(py − E[py])]
=< Ẑ, (X − µx)⊙ (Y − µy) >F

(14)

Therefore, the Gaussian distribution parameters are the
centre µ, obtained from Eq. (11), and the covariance matrix
Σ formed by left terms of Eq. (12), (13) and (14).

3) Ellipse Parameters Computation: The centre of the
ellipse is simply (x0, y0) = µ. Its axes a, b and orientation
θ are obtained by the eigendecomposition of the covariance
matrix Σ (see Eq. 10).

C. Model Loss

Our loss L can be written as a combination of two losses.
We use the Wasserstein distance LW to directly optimize the
Gaussian parameters, while the Jensen-Shannon divergence
LJS, applied on the heatmap values, is used to regularize the
implicit occupancy function Op. Our loss is then

L = LW + λ.LJS, (15)

with a scalar factor λ to balance the two losses.
In details, considering predicted and groundtruth Gaussian

distributions Gpd and Ggt characterized by means and covari-
ances (µpd,Σpd) and (µgt,Σgt), the Wasserstein distance
term is given by:

LW = dW (Gpd,Ggt)

= ||µpd − µgt||22 + tr

(
Σpd +Σgt − 2

(
Σ

1
2
gtΣpdΣ

1
2
gt

) 1
2

)
.

(16)

Such closed-form expression avoids relying on handcrafted
relative weights to balance the contributions of mean, vari-
ance and covariance terms.

The Jensen-Shannon divergence term is defined as:

LJS =
1

2
DKL(Gpd∥Gm) +

1

2
DKL(Ggt∥Gm), (17)

where Gm = 1
2 (Gpd + Ggt) and DKL(D1∥D2) is the

Kullback-Leibler divergence between any distributions D1

and D2, given by

DKL(D1∥D2) =
∑

(i,j)∈I

D1(i, j) log

(
D1(i, j)

D2(i, j)

)
. (18)

That term is computed directly from the implicit function
values over pixels (i, j) of heatmap I . The Jensen-Shannon
divergence has the advantage of being symmetric, in contrast
with Kullback-Leibler, and it has been proven to perform
better than the latter in [17].

IV. EXPERIMENTS AND DISCUSSION

Datasets Extension with 3D-Aware Gaussian Occu-
pancy Labels We have extended three public spacecraft
pose estimation datasets with Gaussian occupancy labels.
SPEED [20] and SPEED+ [13] are the standard benchmarks
for spacecraft pose estimation methods, while AKM [21]
is a recently released dataset featuring texture-less and
symmetrical space objects [22]. No CAD data is available
in the first two datasets, but our method requires only the
coarse dimensions of the considered spacecraft (TANGO
dimensions: 80×75×32cm [23]).

Object Localization Metrics Our metrics are the
Intersection-over-Union score (denoted by IoU), the Overlap
score (Overlap), the Dice-Sorensen coefficient (Dice), the
Relative Volume Difference (RVD) and the Modified Haus-
dorff Distance (MHD) [24]. Denoting P and G the sets of
pixels inside predicted and groundtruth ellipses, the metrics
are defined as

IoU =
area(P ∩G)

area(P ∪G)
, (19)

Overlap =
area(P ∩G)

min(area(P ), area(G))
, (20)

Dice = 2
area(P ∩G)

area(P ) + area(G)
, (21)

RVD =
|area(P )− area(G)|

area(G)
. (22)

While these four metrics characterize in different ways the
discrepancy between regions P and G bounded by predicted
and groundtruth ellipses, MHD [24] direclty measures the
discrepancy between the (discretized) ellipses ∂P and ∂G:

MHD = max (mhd(∂P, ∂G),mhd(∂G, ∂P )) , (23)

where mhd(.) is the relative modified Hausdorff distance:

mhd(∂P, ∂G) =
1

|∂P |
∑
p∈∂P

min
g∈∂G

(∥p− g∥2) (24)

in which p and g denote points on the respective discretized
ellipses (total number of points for ellipse ∂P : |∂P |).

Considering these five metrics allows for a fairly extensive
comparison between the performance of different ellipse
prediction methods.



TABLE I - EXPERIMENTAL VALIDATION ON AKM [19] DATASET. BEST RESULTS ARE IN BOLD.

IoU (↑) Overlap (↑) Dice (↑) RVD (↓) MHD (↓)
Rubino et al. [18] 0.78±0.06 0.93±0.04 0.88±0.04 0.12±0.08 6.88±5.98
Zins et al. [10] 0.91±0.12 0.96±0.07 0.95±0.08 0.02±0.04 3.93±5.63
Ours (LW) 0.89±0.05 0.98±0.02 0.94±0.03 0.08±0.06 3.48±1.80
Ours (LW + LJS) 0.93±0.03 0.97±0.02 0.96±0.01 0.01±0.01 2.16±0.66
Ours (LJS) 0.93±0.03 0.97±0.02 0.96±0.02 0.01±0.01 2.26±0.77

TABLE II - EXPERIMENTAL VALIDATION ON SPEED+ [13] DATASET. BEST RESULTS ARE IN BOLD.

IoU (↑) Overlap (↑) Dice (↑) RVD (↓) MHD (↓)
Rubino et al. [18] 0.70±0.13 0.91±0.10 0.82±0.13 0.17±0.17 88.35±119.49
Zins et al. [10] 0.85±0.18 0.95±0.12 0.91±0.15 0.07±0.15 54.38±116.38
Ours (LW) 0.82±0.09 0.95±0.05 0.90±0.06 0.08±0.13 9.59±7.18
Ours (LW + LJS) 0.86±0.08 0.95±0.05 0.92±0.05 0.03±0.06 7.85±6.86
Ours (LJS) 0.87±0.07 0.95±0.04 0.93±0.05 0.01±0.05 7.58±6.89

Baselines Given a 3D object modelled by an ellip-
soid, our method aims at regressing its elliptic projections
in the pictures. We provide a qualitative and quantitative
comparison with two other representative 3D-aware ellipse
regression methods. It is important noting that most 2D
ellipse regression methods [3], [4], [5], [6], [7], [2], [8] are,
by contrast, to detect naturally occurring 2D elliptic shapes
in images. The first baseline, from Zins et al. [10], is a
2-stage approach consisting in localizing the object using
an object detector (Faster R-CNN [6] with ResNet50 [25]
backbone in the official implementation), then regressing the
geometric ellipse parameters from the cropped image. This
method is an improved version of their previous work [9].
The second approach, used in most ellipsoid-based pose
estimation problems (e.g., [18]), consists in fitting an axis-
aligned ellipse within the detected bounding box (same
detection model in the experiments).

Object Localization Results Tables I and II show a
comparison between our model optimized with Wasserstein
loss only, Jensen-Shannon loss only and a combination of
both (λ = 1), along with methods from Rubino et al. [18] and
Zins et al. [10]. It shows that our method, even if relying on a
lighter backbone (ResNet32), outperforms its competitors on
AKM and SPEED+ datasets for each of the five metrics. For
our model on AKM dataset, both losses leveraging Jensen-
Shannon divergence achieve the same level of accuracy,
suggesting that the most important optimization factor is
the implicit function regularization. On SPEED+, the model
trained only with Jensen-Shannon divergence obtained the
best performance because the Gaussian implicit function is
slightly truncated outside image boundaries, thus misleading
the parameters extraction.

In addition, our 1-stage approach has the advantage of
performing localization and parameter extraction simulta-
neously in a fully differentiable manner. Moreover, the
parameters extraction is performed by the novel E-DSNT
non-trainable layer, hence resulting in a lighter model. Fi-

Fig. 4. Qualitative results on SPEED+ (top) and AKM (bottom)
datasets. Implicit occupancy functions from regressed parameters overlaid as
heatmaps (left), with extracted (red) and groundtruth (green) ellipses (right).

nally, it avoids regressing a discontinuous angular parameter
(ellipse orientation), unlike [9], [10] and all other ellipse
detection methods. Qualitative results, presented in Fig. 4,
show the implicit occupancy function values, groundtruth and
predicted ellipses.

3D Reconstruction To assess the 3D-awareness of our
predictions, we use regressed ellipse parameters as inputs to a
3D ellipsoid reconstruction method based on triangulation of
2D ellipses [18]. We randomly selected 100 images from the
SPEED+ dataset and reconstructed the ellipsoid based on the
ellipses regressed from the different methods. Figure 5 shows
that the ellipsoid reconstructed from our predictions (in red)
is closer to the groundtruth ellipsoid (green) than those
obtained from other methods (blue, magenta). Quantitatively,
an evaluation conducted over 200 subsets of 50 random
images is provided in Table III. It shows that our method
allows for the most accurate reconstruction, demonstrating



Fig. 5. Illustration of TANGO spacecraft (SPEED+ dataset) with
groundtruth (in green) and reconstructed ellipsoids from our method (red),
Zins et al. [9] (blue) and Rubino et al. [18] (magenta). The reconstruction
method is from [18]. The ellipsoid reconstructed from our predictions is
closer to the groundtruth ellipsoid than those obtained from other methods.

TABLE III - 3D RECONSTRUCTION ERRORS ON SPEED+ [13]
DATASET, USING ELLIPSE TRIANGULATION METHOD [18]. BEST

RESULTS ARE IN BOLD.

Position Orientation Size
Rubino et al. [18] 5.9cm 10.2◦ 11.0cm
Zins et al. [10] 2.1cm 4.1◦ 8.0cm
Ours (LJS) 1.0cm 0.1◦ 2.4cm

the 3D awareness of our regressed ellipses, which is of
particular importance for a possibly following 6 Degrees-
of-Freedom (6DoF) object pose estimation task [26], [27].

V. CONCLUSION

In this paper, we presented a fully differentiable 3D-
aware object localization method based on Gaussian implicit
occupancy function and ellipse labels. We explained how
to readily generate consistent Gaussian occupancy labels to
extend already existing pose datasets without requiring any
CAD model of the object. We also release the labels for
three public spacecraft pose estimation datasets. Future work
will focus on integrating that 2D localization model into an
end-to-end 6DoF spacecraft pose estimation pipeline, and
evaluate on real datasets [13], [28].
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