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Abstract— Text detection is frequently used in vision-based
mobile robots when they need to interpret texts in their sur-
roundings to perform a given task. For instance, delivery robots
in multilingual cities need to be capable of doing multilingual
text detection so that the robots can read traffic signs and
road markings. Moreover, the target languages change from
region to region, implying the need of efficiently re-training
the models to recognize the novel/new languages. However,
collecting and labeling training data for novel languages are
cumbersome, and the efforts to re-train an existing/trained text
detector are considerable. Even worse, such a routine would
repeat whenever a novel language appears. This motivates us to
propose a new problem setting for tackling the aforementioned
challenges in a more efficient way: “We ask for a generalizable
multilingual text detection framework to detect and identify
both seen and unseen language regions inside scene images
without the requirement of collecting supervised training data
for unseen languages as well as model re-training”. To this end,
we propose “MENTOR?”, the first work to realize a learning
strategy between zero-shot learning and few-shot learning for
multilingual scene text detection. During the training phase, we
leverage the “zero-cost” synthesized printed texts and the avail-
able training/seen languages to learn the meta-mapping from
printed texts to language-specific kernel weights. Meanwhile,
dynamic convolution networks guided by the language-specific
kernel are trained to realize a detection-by-feature-matching
scheme. In the inference phase, “zero-cost” printed texts are
synthesized given a new target language. By utilizing the learned
meta-mapping and the matching network, our “MENTOR” can
freely identify the text regions of the new language. Experiments
show our model can achieve comparable results with supervised
methods for seen languages and outperform other methods in
detecting unseen languages.

[. INTRODUCTION

As cross-border travel and the popularity of social net-
works are increasing day by day, many languages, such as
Chinese, French, Russian, Spanish, Arabic, and English, are
listed as the world’s lingua franca. Thereby, the street view
texts in many countries are no longer limited to English or
domestic language but also non-official ones. Such changes
make multilingual scene text detection an essential issue for
autonomous robot or vehicle navigation.

Previous multilingual scene text detection methods usually
inherit the pre-trained model designed for detecting English
texts with modifications. As a result, the performance of
these methods could be limited due to the diverse character-
istics of different languages. For example, Chinese, Japanese,
and Korean are often written vertically, with large spacing be-
tween characters, disparate aspect ratios, and square shapes.
Thus, a rich and well-labeled multiple-language text dataset
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Fig. 1. Left: The detection results of an existing detector for multilingual
scene text could be problematic when the model encounters a language that
hasn’t been learned previously. Upper-right: For understanding unseen lan-
guages, previous approaches often require large-scale datasets collected and
annotated by humans to retain the models for recognizing new languages.
Lower-right: Free-of-charge printed text images are the only data required
for our method to detect texts of unseen languages without any effort on
model re-training.

becomes emergent to ensure a trained model can capture
various properties of multilingual texts.

However, a universal text dataset containing all languages
for supervised training does not exist. Furthermore, as the
most popular language in the world, English texts are usually
the majority in current public multilingual scene datasets.
Without careful training, the trained model would tend to em-
phasize a specific language and overlook others (i.e. biased),
leading to a performance drop in multilingual scenarios.

On the other hand, a practical multilingual text detecter
is expected to be extendable and can be applied to new
languages easily and quickly. Model finetuning using labeled
samples of new languages is a common approach to address
the issue. However, labeled data collection is expensive,
and model finetuning is also likely to cause catastrophic
forgetting on the learned languages. In summary, the current
challenges are as follows: 1) A universal text dataset con-
taining all languages for supervised learning is not available,
and it would take a heavy workload to create one; 2) The
imbalanced text training dataset raises training difficulty;
3) The detection model must be re-trained to detect new
languages. These challenges eventually inspire us to define
a new problem setting: “For generalized multilingual text
detection, the model should identify both unseen and unseen
language regions in the scene images, without relying on the
training data of unseen languages and model retraining.”

The conceptual difference between our new setting and
the conventional one is illustrated in Figure [T} To tackle



the new problem setting, few-shot learning (FSL) [21], [20],
[10], [24] seems to a possible solution which can walk
around the challenge of model retraining but still requires
supervised dataset collection for novel languages (even few-
shots). Another potential technique to address the problem
is zero-shot learning (ZSL) [11], where some approaches
indeed do not require any dataset collection for the new
recognition targets nor any model retraining. Nevertheless,
such free lunch comes from an important prerequisite for
adopting the auxiliary knowledge (e.g. a set of predefined
attributes shared among different object classes) as a bridge
to connect among multilingual texts, in which it is not trivial
to obtain (and does not exist to the best our knowledge) thus
making ZSL unsuitable for our new problem setting.

To this end, we propose “MENTOR: Multilingual tExt de-
tectioN TOward leaRning by analogy”, that realizes a novel
learning strategy in-between zero-shot learning and few-shot
learning. To be detailed, during the training phase, based on
the idea that the character set of a new language is usually
the well-known prior knowledge no matter whether the scene
text images of such language is seen or not, we leverage the
“zero-cost” synthesized printed texts and the available seen
languages to learn the meta-mapping function from printed
texts to language-specific kernel weights through a latent
representation. Next, a dynamic convolution network guided
by the language-specific kernel is designed and trained to
realize target language text detection in a detection-by-
matching manner. Here, the learned meta-mapping plays two
roles: 1) It can implicitly describe the synthesized printed
texts from a given language as a language-specific latent
representation; 2) It further converts the latent representation
to a language-specific kernel for feature matching. In the
inference phase,“zero-cost” printed texts are synthesized
for a seen/unseen language. By utilizing the learned meta-
mapping and the matching network, our “MENTOR” can
freely identify the text regions of both seen and unseen
languages in testing images, where the only materials we
need for adapting to new languages are merely “zero-cost”
printed texts. Thus, our method works like FSL (from high-
level perspective) but requires no retraining and reliefs model
forgetting. Our main contributions are summarized as:

e We proposed a new problem setting for generalized

multi-language scene text detection.

o Our multilingual detector, MENTOR, is able to general-
ize the matching relationship between external informa-
tion (i.e., extracted from printed texts) and the features
of scene text to detect unseen languages.

o We design a data augmentation method to balance
the multilingual training dataset. Also, we develope an
efficient way to generate images of printed texts as the
external information of languages.

o Experiments show that our model performs comparably
with supervised multilingual detection models.

II. RELATED WORKS

Scene text detection in a complicated environment is
an essential and practical task, and becoming a critical

preprocessing step for robot navigation and many intelligent
services (e.g. scene text recognition/translation and environ-
mental understanding). Here we categorize the related works
into two fields: monolingual and multilingual text detection.
Monolingual Scene Text Detection. Although scene text
detection is not a new task, most related works focus on
developing advanced deep-learning networks to improve the
accuracy of monolingual scene text detection. Among them,
scene text detection for English gains more attention and
achieves great success due to richer supervised datasets. In
the early stage, scene text detection and object detection
were treated as similar tasks. Thus, region proposal networks
designed for object detection [8], [28], [31] are directly
utilized for text detection. However, text regions have flexible
and variant shapes that differ from rigid object detection,
raising a new challenge for using object detection approaches
for text localization.

The follow-up works hence propose to use regression-
based methods (estimating the corners of the bounding box
for a text region) for avoiding improper prior constraints on
the object aspect ratio which are typically adopted for object
detection. While [14], [29] advance to take into account
the geometric property of scene text regions to predict the
rotation angles of bounding boxes, most regression-based
methods still limit the text shape to be rectangular.

To detect more accurate text regions for text recognition,
researchers view the detection of irregular text as a new
challenge. Current methods [4], [16], [1], [27] no longer
ask text boxes to be quadrilateral. For example, the work
[16] generates a text box by predicting the parameter of a
Bezier-Curve. And [4] proposes to identify a rough text box
via estimating controllable boundary points, followed by a
refinement step to output more accurate and irregular outline.

On the other hand, segmentation-based methods are pro-

posed to solve the problem of boundary ambiguity caused
by adjacent text regions. Instead of directly determining the
text regions, [25], [12] base on text segmentation to specify
shrunk text regions for separating text instances. Then, the
original text regions are restored by dilating the shrunk text
using the Vatti clipping algorithm [23].
Multilingual Scene Text Detection. Recently, multilin-
gual scene text detection begins to receive attention. Some
works expand the aforementioned monolingual approaches
and training strategies to detect multilingual texts directly
[3], [26]. However, the performance is typically unsatisfac-
tory owing to the variant text properties among multiple
languages. For instance, the scene texts in Chinese have
splitting long lines, which are quite different from other
languages. Accordingly, methods specifically designed for
multilingual scene text detection are proposed. The authors in
[15] propose context attention that includes global and local
contexts to explore better contextual information for different
languages, while [30] introduces a novel iterative module
to solve extremely long texts by continuous refinement. In
contrast, [6] developes a text feature alignment module,
which dynamically adjusts receptive fields to tackle the
problem of different aspect ratios for various languages.
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Fig. 2. Overview of our proposed framework “MENTOR”. Assuming that the target language is Japanese, we will prepare 5 sheets with printed Japanese
texts (which are almost zero-cost) as the input of Dynamic Guide (DG) while the scene text image to be examined is the input of our Text Finder (TF).
DG extracts the Japanese text attributes as auxiliary information to the prediction. TF is split into two paths after the backbone extraction. The Gray block
is a language-agnostic detection sub-branch that is trained separately and outputs the centerness map and the text map, M askteqt. The lower sub-branch
of TF predicts scene text language, and the middle feature F,,;4 will multiply with Mask¢est to send the text-only areas to the Language Mapper (LM).
In the Language Mapper, the transferred Japanese text attributes are used as the weights of different dynamic kernels, and convoluted with the scene text
features. Through progressive comparison, the regions where the scene text and the printed text have similar language characteristics are selected. Later,
the Japanese detection result is obtained. The detection flow can be directly applied to detect other unseen languages without retraining the model.

However, these multilingual text detection methods are
typically trained supervisedly and focus only on detecting
texts in the pre-defined language set. Given a testing image
contains texts of unseen languages, the conventional methods
would fail the detection task. Thus, training a generalized
detection model that can identify both seen and unseen
languages is still an open issue.

III. METHODOLOGY

Our goal is to design a detector following the new setting,
which can detect any specified seen or unseen languages
from the multilingual scene text image without requiring the
network to learn all languages in advance. The proposed
“MENTOR” framework is illustrated in Figure 2] which is
composed of three main components: Dynamic Guide (DG),
Text Finder (TF), and Language Mapper (LM). The DG,
TF, and LM modules work together in our proposed design
to achieve our objective. The DG module is responsible for
generating representational properties of different languages
from printed text images. The TF module is indispensable in
discovering the candidate text regions from the scene image.
Finally, the LM module matches the printed text attributes
(extracted by DG) with the scene text features (extracted by
TF) to check for any similarity between the text region in
the scene image and the printed text features.

In the following subsections, we first explain how to
generate the “zero-cost” external information (i.e., images of
printed texts) and how to synthesize balanced text instances
to augment scene images. Next, we introduce three main

components in detail. Finally, the design of our objectives is
described.

A. Printed text image generation

External information that researchers have defined in ad-
vance to describe languages is yet to be made available.
Nevertheless, our main idea stems from that each language
consists of character sets, which is well-known prior knowl-
edge, no matter whether the scene text images of a language
is seen or not. Hence, we leverage the character sets of each
language to generate “free-of-charge” images of printed texts
as the external information for text detection in our proposed
problem setting.

The procedure of printed text image generation is as
follows: First, a text line is generated by randomly selecting
several characters from the character set. Then, 15 text lines
are synthesized to form a printed text image corresponding
to a specific language. The font size of each text line
is randomly selected from 15pt to 40pt. Also, To make
sure our method is insensitive to synthesized content, we
conduct experiments using different content sources such
as Wikipedia, Lyrics, and Bible texts to form the printed
images. The results show that the different content sources
do not significantly affect the text detection performance.
Owing to many Chinese characters, we chose the 3000
most commonly used characters as the character set. The
Japanese character set includes the syllabaries, hiragana,
katakana, and kanji. However, we increase the probability
of drawing syllabary samples to distinguish themselves from



the Chinese characters. Moreover, we find the number of
English character sets is small. We, therefore, selected 4000
commonly-used vocabularies as the sample set and randomly
drew words to form printed text images to highlight the
difference between English and other Latin languages. The
procedure above allows free-of-charge printed text images to
be synthesized efficiently.

B. Synthetic text generation

MLT19 [18] is used as our training dataset, containing
ten languages and at least 1000 images in each language.
Typically, each image in the dataset includes English texts
and other-language texts. Such a distribution of language
instances would have the detector favors English prediction.
Therefore, we generate other synthetic instances that help
balance the distribution of languages in scene images. First,
we extracted several articles from BBC News in various
countries and used the vocabulary in the articles as the words
to synthesize texts for each language. Later, we ensure that
each scene image in MLT19 contains up to a dozen synthetic
words. The language of each synthetic word is randomly
selected from the training language set. The color and font
size are also randomly chosen, but synthetic words are not
allowed to overlap with the original scene texts. It is worth
noting that a part of the synthetic texts must have the same
language as the real one in the current scene. It would help
to learn the desired matching relationship for text detection.
More discussions will be in the ablation study.

To prevent the model from overfitting to the seen lan-
guages, we also generated printed text images and synthetic
text instances in Thai, Gujarati, Amharic, and Hebrew as
pseudo-unseen languages during the training phase only.
These pseudo-unseen languages help to generalize our model
and would not be used in the inference phase.

C. Dynamic Guide

The Dynamic Guide (DG) aims to learn to generate rep-
resentational attributes for different languages from printed
text images. We take five printed text images, XPT"t =
{x;}2_, € RY>*I>XHXW aq input, and extract their features
through a backbone (i.e., ResNet34[5]) followed by an
average-pooling, which is denoted as below.

Bpm'nt _ avg(Back_bonepm’nt(Xprint)) c R5><C><1><1 (1)

To aggregate the 5 feature vectors (i.e.,BP"") to form
a compact but rich representation for distinguishing dif-
ferent languages, we take the minimum, maximum, and
average values of the five feature vectors, and then concate-
nate them to generate the language-specific representation
MatchPm™t ¢ R3¢*1x1 Note that we also treat M atchP™*™t
as the learnable attributes (i.e., from the viewpoint of
attribute-based zero-shot learning), which play important
roles in seen/unseen text matching. Eventually, M atchP™"
is defined as

Matchprint _ min(Bprint) D max(Bprint) D avg(Bprint)
(2)

To improve the ability to deal with unseen languages and
further help the Dynamic Guide learn representative lan-
guage features, we add an auxiliary branch to realize a
language classifier and classify Matchp,in: into c classes,
where c is the number of seen languages. For classification,
Matchyyin: is passed through a tiny neural-net with two
fully connected layers. Thereby, the language representation
feature, M atchprint, would also be supervised by the binary
classification loss. Since we expect our text detector to be
applied to unseen languages, we avoid the extracted language
feature to represent only the close-set languages used for
training. To enhance language feature generalization, we thus
generate printed text images of pseudo-unseen language as
the other inputs for training. Without adding extra classes
(e.g., unseen classes), we ask the probability outputs of ¢
seen languages to be as small as possible, which implicitly
strengthens the ability to represent other open-set languages.

D. Text Finder

The main purpose of the Text Finder (TF) is to obtain
the differentiable features from scene images so that the
text regions of the target language can be identified and
the cluttered background can be removed in the following
detection module. We divide TF into two subbranches; one
is the language-agnostic text detection sub-branch, Subj2¢7s,,
and the other is the language classifier, Subj; ™, .

The target of Subjcils, is to detect all text regions, ex-
cluding only the background, whether the language is seen or
unseen. To achieve this goal, the model should learn the com-
mon text characteristics within various languages rather than
extracting the specific text characteristics of the seen lan-
guages for training. Kim et al. [9] proposed a classification-
free object localization network (OLN) that estimates object-
ness by locating objects using a class-independent loss to
address the problem of always ignoring new objects in the
open world when detecting objects. Inspired by this work, we
pre-train and later fixed the language-independent SubjS5ls,
(i.e. including ResNet50[5], FPN, and the following “Convs”
block shown in Fig. [2)) to learn generalized text features and
identify the text regions without language classification. For
SubiSele, pre-training, scene text images are inputted to the
ResNet backbone (i.e. ResNet50[5]) for feature extraction,
followed by Feature Pyramid Network (FPN)[13] for low-
and high-level feature aggregation. The “Convs” block im-
plements convolutional neural networks to produce dense and
pixel-wise text/non-text classification; it also localizes text by
estimating centerness [22]. Later, the dice loss for pixel-wise
text classification and L1 loss for centerness estimation are
used to supervise the SubjC;l<, pre-training.

The subbranch Subj;77v . is used to extract features of
the text related to its language class. Its design concept is the
same as the language classification of Dynamic Guide. The
only difference is that Subj;; o0, . classifies the language
pixel-wisely. When training Subj 7%, .. We generate the
synthetic texts by the processing flow mentioned in Sec. [[TI{
to augment the scene text images. Next, the synthetic
scene text image passes through the fixed and shared ResNet



backbone to extract multi-level features. After a series of
convolutions, as illustrated in Fig. the features from
different levels are resized and concatenated to generate the
language-specific feature maps F,;q for pixel-wise language
classification. When training Subj;;7¢ ., we also apply the
aforementioned pseudo-unseen languages to avoid the pref-
erence of detecting only the seen language. For text regions
belonging to pseudo-unseen languages, the Subj; "% - is
forced to assign a small probability to the ¢ seen languages.

Moreover, since SubjSils, is designed to catch all the
text regions (i.e., including seen and unseen languages), we
treat the output as a text mask, denoted as Maskicy:. By
multiplying the middle feature maps Fi,;q and M askie,t to
generate M atch®“°"¢, the input of the following Language
Mapper, we can significantly reduce false text detection

caused by the cluttered background.

E. Language Mapper

In the Language Mapper (LM), we have M atch?"™™™ from
DG and M atch®“°"™¢ from TF. The goal of the LM is to learn
the corresponding relationship between the learnable printed
text attributes and the scene text feature, which can also be
said to take side information as a reference to check if there
is a similarity between the scene text and its mentor.

Since side information is replaceable and its corresponding
printed text varies dynamically, well-used static convolution
networks, whose parameters would be stuck to fit the seen
language after training, become inappropriate. In order to
meet the dynamically-changed input X?"*, we adopt the
input-dependent dynamic kernels as the medium of side in-
formation to search for the corresponding scene text feature,
as shown in Fig. [2] (i.e., language mapper). Remarkably, we
design multiple Fully Connected (FC) networks to translate
the language-specific attributes (M atch?™"!) to correspond-
ing kernel weights for multi-level dynamic convolutional
networks. The process is defined as follows:

Flrerner = chhared(MatChmet‘id),

3
Kernel; = FCier, (Frernet),t =1~ 3. )

The three kernels Kernel;,i = 1,2,3 shown above gradu-
ally figure out the target text features in Match®°°"; later,
a static convolutional network is utilized to generate the
outputs stored in two-channel maps. The first output channel
indicates whether a pixel belongs to the same language as
Xprint. The second channel is a fine-grained estimation of
the text regions, which are further refined based on the first
channel. This helps to separate the close text instances. In
experiments, we found that Japanese, Chinese, and Korean
may sometimes be regarded as the same language. To
distinguish their difference, we use pixel-wise contrastive
learning, which aggregates and separates features according
to target (positive) pixels and non-target(negative) pixels.
Note that target and non-target pixels used for training can
be determined via supervised labels. Specifically, after each
dynamic convolution network, we apply the contrastive loss
on the projected feature space. In this way, we can distinguish
texts with similar appearances but from different languages.

As shown in Fig. 2] our framework outputs two segmen-
tation maps, denoted as kernel and text maps; they are then
post-processed to generate the final text bounding boxes.
Note that the kernel map is a shrinking version of the text
field. By referring to the predicted text area (maps), we use
the progressive scale expansion algorithm [25] to expand the
predicted kernel area. Finally, we compute the minimum area
quadrilateral and extract the bounding boxes.

FE Optimization

The whole network training includes two steps. In the first
step, we pre-train the subnetwork Subjc;”<,, defined in the
TF module, to learn language-independent text features via
the following objective function.

£detect = )\mask:lcmask + Ace'mfe?"‘C'center- (4)

Lmask represents a dice loss for the prediction of text or non-
text. Leenter 18 L1 loss used to supervise whether a pixel is
the center of a word. Here, we follow [9] to determine the
training label for text centerness. Also, we set both A\,,qsk
and Acenter to 1 in this pre-training step.

In the second step, we fixed SubjSl s, and train the other
parts based on L., defined as

‘cmatch = Ascene‘cscene + )\printedﬁprinted

(5)
+)\tewt£tea:t + )\kernelﬁkernel + Zr?:l)‘coni ‘Cconi .

Here, Lscene and Lyrinteqd are binary classification losses
used to supervise the language type classifiers. However,
Lscene 18 a pixel-wise classification loss used in the TF
module. In contrast, £y, inteq is an image-wise loss appended
in the DG module. On the other hand, we introduce the two
pixel-wise dice losses, Liert and Lierner, at the output of
the LM module to supervise the estimated text and shrunk
text regions. Lastly, L., is the contrastive loss also used in
the LM module. In this step, we set Agcenes Aprinted> Atewts
Akernel and )\(wm),i =1,2,3as0.01,0.01, 1, 1, 0.05 before
the first 100 epochs; later, we change Ascene, Aprinted and
Aconiy t0 0.001, 0.001 and 0.005.

IV. EXPERIMENTS
A. Datasets

ICDAR 2017 MLT (MLT17)[19] comprises text embedded
in natural scene images such as road signs and signboards.
It contains 18,000 images, including 7200 training images,
1800 validation images, and 9000 testing images. The lan-
guages involved include Arabic, Bangla, Chinese, English,
French, German, Italian, Japanese, and Korean, which might
appear simultaneously in the same image. Besides, the
dataset collected 2,000 images for each of the languages.
ICDAR 2019 MLT (MLT19)[18] was built upon MLT17
with an additional language, Hindi. For better training, it
consists of 20,000 real scene images and 277,000 synthetic
ones (SynthTextMLT[2]). Ten languages are involved in both
real and synthetic images. We evaluated our method by
the MLT17 validation set, which does not contain Hindi.
Accordingly, we used MLT19 without Hindi as the training
dataset to train our model.



IIIT-ILST[17] is a dataset and benchmark for scene text
recognition for three Indian scripts - Devanagari, Telugu, and
Malayalam. It comprises nearly 1000 images in the wild,
which is suitable for scene text detection and recognition
tasks. We take the Malayalam part as our unseen language
for evaluation.

B. Implement detail and evaluation metrics

Since scene text images are more complex than printed
ones, we choose ResNet-34 for the Dynamic Guide (DG)
and deeper ResNet-50 for the Text Finder (TF), respectively.
We train our model on the MLT19 training dataset, including
1000 images per language, and evaluate our model on the
MLT17 validation set. Because the MLT17 dataset does
not contain Hindi, we exclude it from our training and
testing datasets. Precisely, the multiple languages we used
for training or evaluation include Chinese, English, Arabic,
Bangla, Japanese, and Korean. To ensure that we have
enough training languages to learn the meta-mapping, which
generalized the mapping relationship between the printed
texts and language-specific representation, five of the six
languages are chosen as the training set, and the rest is
regarded as the unseen testing language. We also apply the
k-fold cross-validation strategy for performance evaluation.

We train our model in two stages. In the first stage, we
train the language-agnostic text detection part of the scene
branch on a SK MLT19 dataset without any synthetic data.
In the second stage, we train the rest of the network with
the same 5K MLT19 training images but with additionally
pasted synthetic text instances on these images. For data
augmentation, we randomly crop the scene text images for
all scene images in the datasets and resize them to 832 x 832.
For the printed text images, we resize them to 512 x 512.
The initial learning rate is set to 10~2 and divided by ten
after 7,500 iterations. Table presents our model’s size,
computational cost, and running speed.

Note that our work focuses on pixel-wise text region
segmentation instead of using regression-based methods to
generate text bounding boxes directly. Thus, We converted
the bounding boxes defined in ground truth as segmentation
label maps by setting the pixels inside the bounding boxes
to 1 and the others to O for a fair evaluation. In the following
experiments, we also convert the detection results from
the other compared methods into segmentation results. We
evaluate our approach in two ways to demonstrate that we
can detect the target language (i.e., specified by the painted
images) in a testing scene image, including seen and unseen
languages. First, we use the original MLT17 validation set as
the test set. Furthermore, we manually paste synthetic texts
on the testing scene images from the MLT17 validation set
to construct a more challenging testing set, named “‘synthetic
MLT17”. The language of these synthetic text instances
includes not only the five seen languages and the unseen
one but also two additional languages, Russian and Greek,
which have not been seen. By doing so, we increase the
difficulty of the new detection task.

C. Comparions

Our comparison is with the supervised methods E2E-
MLT[2] and MultiplexerOCR[7], which include both text
detection and language identification. E2E-MLT was the first
published multi-language text spotting method, trained on
public scene text datasets and the synthetic multi-language
dataset “SynthTextMLT”. With 245,000 images in 9 lan-
guages, text detection and language recognition were trained.
Note that E2E-MLT employs a majority voting scheme to
perform language identification based on each character’s
language outputMultiplexerOCR, the SOTA scene text spot-
ting method, is trained on the MLT17 train set, the MLT19
train set, and SynthTextMLT, using over 273K images. Lan-
guage recognition is accomplished by extracting the masked
pooled feature from their proposed detection module.

In Table [I, we compare our methods with the two SOTA
methods on the MLT17 validation set and show the language-
wise F-score results. Both our methods (a) and (b), which
use Korean and Chinese separately as the unseen language,
outperform the two supervised methods. In setting (c), where
Arabic is an “unseen” language, we achieve comparable
performance to E2E-MLT, which uses Arabic as a “seen”
language. Additionally, our results demonstrate superior
performance for the seen languages, particularly Chinese,
Japanese, and Korean.

We also evaluated Malayalam from the IIIT-ILST dataset
as an unseen language in Table [ As MultiplexerOCR does
not have a category for unseen languages, we considered
any text with a detection confidence lower than 0.5 as an
unseen language category. In this case, MultiplexerOCR only
achieved an 11.159% detection rate for unseen languages,
and even with adjustment of the confidence threshold, the
optimal F-score only increased by about 2%. By contrast,
our Malayalam results demonstrate greater effectiveness in
handling unseen languages than other methods.

Furthermore, we provide evaluation results for the syn-
thetic MLT17 validation set in Table [l This test scenario is
even more challenging, but our results show that our perfor-
mance remains competitive with other supervised learning
methods even when Chinese is designated as an unseen
language. On the other hand, Korean is a language that
can be easily confused with Chinese and Japanese, yet we
still outperformed E2E-MLT when Korean was designated
as an unseen language. Arabic text has a unique line-like
appearance and can be more similar to a background texture
than actual text, making it challenging to treat Arabic as an
unseen language.

D. Ablation study

Number of printed text images & number of progres-
sive comparison. We have experimented with different num-
bers of printed text images as the input of the DG module,
where the results for unseen text detection summarized in Ta-
ble [Vl demonstrate that our model is insensitive to different
settings. Regarding the number of progressive comparisons
(i.e., the number of dynamic kernels), we once set it to 1
at the beginning of our model development; however, it did



TABLE 1.

Comparison with the related works on the MLT17 validation set and Malayalam in IIIT-ILST. **’ means the unseen language of the method.

‘X’ means that the method cannot detect unseen languages. We try three settings that use (a) Korean, (b) Chinese, and (c) Arabic as unseen languages

alternatively.
Method English ~ Arabic  Bangla  Chinese  Japanese Korean Malayalam
E2E-MLT[2] 55.43 55.431 3.027 50.594 12.9 32.715 X
MultiplexedOCR[7] | 83.284 80.074  78.104  56.251 70.986 67.862 11.932%
(a) Ours 84.031 80.952 81.76 83.585 76.896 72.479 * 65.837*
(b) Ours 82.527 82.092  80.909  69.046* 83.51 84.013 55.895%
(c) Ours 81.778  54.646*  82.134  82.554 80.737 83.143 43.992*
TABLE II. Comparison with related works on the synthetic MLT17 validation set and synthetic Malayalam in IIIT-ILST. The synthetic Malayalam dataset
also includes all languages in the MLT17 dataset.
Method English  Arabic  Bangla Chinese Japanese Korean Malayalam
E2E-MLT][2] 50.19 54.67 4.027 55.138 22.346 34317 X
MultiplexedOCR[7] | 67.392 75.511 78.874 54914 62.024 71.21 11.159*
(a) Ours 71.76 74949  79.044 74351 71.556 50.534 * 55.607*
(b) Ours 63.119 71.811 80.393  48.905* 63.472 75.385 42.497*
(c) Ours 63.424  46.061*  80.328 80.328 59.254 75.385 36.586*
TABLE III. Computational cost and running speed. The following table j
lists the number of trainable parameters and FLOPs of our MENTOR model. : i =S
Param (M) FLOPs (G) FPS [BREBIEOLED) &dl E
Text Finder 2738 37392
Dynamic Guide 21.55 37.72 (@ Ego:““d”ﬁn"ﬁ ROOM ESCAPE GAME
Language Mapper 53.85 621.44 Infektiousiiskases. HFEF 2
MENTOR 102.78 1033.08 3.25 uvm{s T o o= 'E
TABLE IV. Number of printed text images.
1 5 10 15 20
English 63202 63276 6338 62989  63.032
Korean 77338  77.379  77.537 77331 717.518 -
Chinese (unseen) | 48.906 48.939 48.939 48939  48.907 %Eﬂﬂl 2z HIst

not function well enough. Afterward, we experimented with
increasing the number of dynamic kernels for progressive
comparison. Considering the training parameters required by
the dynamic kernel (cf. Table in [25]) and the overall training
time, we finally use 3 dynamic matching layers.

Language-agnostic text detection. In Text Finder, the
output of language-independent text detection, Subjiels,, is
used as a mask to filter complex backgrounds. We hope the
detector can identify as many text regions as possible but
does not need the ability to distinguish languages. Thus,
its function is to learn the common characteristics among
all possible languages. We use real scene text images as
training data to train Sub’S¢"¢,. However, to verity its ability
to detect unseen languages, we tested Sub¢l<, with the
synthetic MLT17 validation set, including text instances from
the five seen languages and three unseen languages explained
above. The results in Table [V] show the success rates of text
detection for each specific language. According to the results,
the performance of detecting texts from unseen languages
is comparable to that of seen languages, meaning that the
proposed method realizes the goal of language-independent
text detection.

Intersection synthetic data vs. disjoint synthetic data.
As mentioned in Sec. 3.2, we synthesize text for the second-
step training to make MENTOR more general to the unseen
languages. During synthesizing texts, we find that parts of
the generated texts should come from the same language as
the ones in the real scene. For analysis, we compare two syn-
thetic text sets while training: the “intersection dataset” and
the “disjoint dataset”. For example, if Chinese and English

L= |

J.S-\

Fig. 3. (a) Detection results trained with disjoint synthetic scene data.
The target language from left to right is Japanese, Japanese, and Korean.
All the real scene text is detected regardless of its language, which reveals
that a good matching relationship is not well-learned due to the insufficient
training of the language mapper. (b) The model was trained on intersection
synthetic data. Korean is the unseen language. The detector can detect both
synthesized and real scene texts in Korean without being confused with
other languages.

TABLE V. Language-agnostic detection on synthetic MLT17 valida-
tion set. The language-agnostic detectoris trained with real-scene images
containing five seen languages. Russian and Greek texts are synthetic.

Language | seen/unseen | Percentage (%)
English seen 86.378
Arabic seen 79.667
Bangla seen 80.511
Japanese seen 86.565
Chinese seen 88.294
Korean unseen 80.334
Russian unseen 78.517
Greek unseen 75.155

phrases appear in a scene image and we generate synthetic
texts from the two languages, it becomes “intersection data”;
otherwise, we call it “disjoint data”. To prevent “MENTOR”
from detecting only real scene texts and ignoring synthetic
texts, we find the intersection dataset can help our model
learn the intrinsic properties of texts instead of learning
the style difference between the real and synthetic texts.
Contrastively, if using ‘disjoint datasets” for training, the TF
module only detects the real scene texts, the DG module
cannot generate the language-specific representation, and the
LM fails to detect texts by matching.



TABLE VI. Quantitative detection results under intersection synthetic
data vs. disjoint synthetic data. Using disjoint synthetic data, our model
learns to detect scene texts according to text style. In the unseen Korean case,
the Korean scene texts occupy more than the texts from other languages,
leading to an illusion of good detection results. In contrast, the model can
be well-trained for multilingual text detection based on intersection data.

Train . . . Korean
data Japanese  English  Arabic  Chinese  Bangla (unseen)
Disjoint 53.99 58.07 57.39 71.58 71.15 69.4
Intersection 71.56 71.76 74.94 74.35 79.04 50.53

Table [V} shows the F-score of training with intersection
data and disjoint data. When using disjoint data, we find
an unreasonable result that the performance of the unseen
Korean is better than other seen languages. By checking the
detection results shown in Fig. Eka), we find the model is
falsely trained to detect only the real scene texts rather than
learning the intrinsic property of languages. After training
with intersection data, we get more reasonable performance.
Fig. B[b) is an example.

V. CONCLUSION

We introduced a new problem setting for multilingual
scene text detection and proposed a novel method for de-
tecting both seen and unseen languages. To identify the text
regions of an unseen language without model re-training and
labeled data, our “MENTOR” introduces “DG”, a dynamic
and learnable module, to extract language-specific features
for each language. Moreover, the “TF’ module detects seen
and unseen text regions and extracts pixel-wise language
features from the input image. Finally, by comparing the
language-specific features (from DG) and pixel-wise scene
text features (from TF), we can identify the text regions of
unseen languages via our “LM” module. The experiments
demonstrated the effectiveness of our “MENTOR” network.
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