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Abstract— In robotic insertion tasks where the uncertainty
exceeds the allowable tolerance, a good search strategy is
essential for successful insertion and significantly influences
efficiency. The commonly used blind search method is time-
consuming and does not exploit the rich contact information.
In this paper, we propose a novel search strategy that actively
utilizes the information contained in the contact configuration
and shows high efficiency. In particular, we formulate this
problem as a Partially Observable Markov Decision Process
(POMDP) with carefully designed primitives based on an in-
depth analysis of the contact configuration’s static stability.
From the formulated POMDP, we can derive a novel search
strategy. Thanks to its simplicity, this search strategy can be
incorporated into a Finite-State-Machine (FSM) controller. The
behaviors of the FSM controller are realized through a low-
level Cartesian Impedance Controller. Our method is based
purely on the robot’s proprioceptive sensing and does not need
visual or tactile sensors. To evaluate the effectiveness of our
proposed strategy and control framework, we conduct extensive
comparison experiments in simulation, where we compare our
method with the baseline approach. The results demonstrate
that our proposed method achieves a higher success rate with
a shorter search time and search trajectory length compared
to the baseline method. Additionally, we show that our method
is robust to various initial displacement errors.

I. INTRODUCTION

The insertion task, which involves mating different com-
ponents of a product, is one of the most common tasks
for industrial robots in the manufacturing industry. Despite
being basic, its performance significantly influences product
quality and production efficiency. However, the insertion task
is challenging because of its contact-rich nature and high
precision requirement. Due to these challenges, the robotic
insertion problem has attracted considerable research attention
in recent decades [1]–[9]. Generally speaking, the insertion
task involves four phases: grasp, approach, search, and insert.
During an insertion task, the robot first grasps the peg and
approaches the corresponding hole; then, it lines up the peg
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Fig. 1: An overview of the proposed method. (a) Illustration of
the search problem. The robot needs to align the peg with the hole.
(b) Illustration of the proposed search strategy. Our search strategy
actively applies force to exploit the information contained in the
contact configuration and locate the hole’s position. (c) Search paths
of different search methods. From left to right: blind search with
Spiral curve, blind search with Lissajous curve, and our method.
The hole and peg centers are represented as black and red circles,
respectively. Our search method can directly align the peg with the
hole along a straight line.

with the hole using a search strategy and inserts the peg.
Among these phases, the search phase is usually the most
time-consuming one [6], [8]. Even though the search phase
can be omitted with compliance for simple scenarios in which
the error tolerance is higher than the uncertainty [1], a good
search strategy is vital for tasks requiring high precision (e.g.,
chamferless holes) and tasks involving high uncertainty (e.g.,
household robots) [5], [6], [8].

A commonly used search strategy is blind search [5], [8],
[10], which involves moving the peg along a predefined path
(e.g., spiral or Lissajous curve) while pushing it against the
hole’s surface. The search continues until the peg is aligned
with the hole. This method guarantees locating the hole if
the search path is dense enough. However, it is inefficient
because the robot might need to move the peg for a long
distance, depending on the initial positional error.

In contrast, when humans unlock a door with a key in the
dark, they are unlikely to follow a predefined path. Instead,
they may use a more active strategy based on haptic sensing.
Before actually aligning the key with the keyhole, they have an
estimation of the hole’s position. This example highlights one
missing element in the blind search: the contact configuration
between the peg and the hole, which contains rich information
about relative displacement. How to make the search process
more intelligent has attracted a lot of research attention [7],
[10]–[13].

This paper focuses on the search problem and proposes an
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efficient search strategy that makes use of contact information
between the peg and the hole, leveraging only the robot’s
proprioceptive sensory information. Specifically, we first
formulate the search problem as Partially Observable Markov
Decision Process (POMDP) and design its primitives by
analyzing the static stability of the contact configuration. Then,
we derive a search strategy from the formulated POMDP and
incorporate the strategy to construct a Finite-State-Machine
(FSM) controller for the insertion task. In particular, to achieve
the FSM controller’s behaviors, we use a low-level Cartesian
Impedance Controller. The effectiveness of our method is
demonstrated through comprehensive comparison experiments
with the baseline method.

A. Related Works

Insertion Phase. Robotic insertion has been studied for
several decades due to its great importance. Early works
[1], [2], [14] analyze the contact wrenches acting on the
peg when the peg has been partially inserted into the hole,
and identify two important failure modes, jamming and
wedging. These works provide guidance in the design of
the robotic system’s compliance for insertion task, which
leads to the hardware remote-center-compliance (RCC) [3].
RCC responds quickly to external forces but lacks flexibility
for different applications [15]. To deal with this problem,
Cartesian Impedance Control [16] is proposed to achieve
compliance through software control and has been widely
used in the robotic insertion task [7], [17]–[20]. It can
compensate for the positional error and help to avoid jamming
and wedging modes.

Search Phase. Another concentration on the robotic
insertion community is in the search phase. That is, given
a rough initial estimation of the hole’s pose, how to align
the peg with the hole before the insertion phase. Search with
a predefined path is a widely adopted method [5] and has
shown effectiveness in reducing uncertainty. To make the
search process more intelligent, strategies based on force
[11]–[13], [20] or vision sensors [7], [10], [19], [21], [22]
are proposed. As for the force sensors, in [11], the reaction
moment peaks during two scan motions are used to interpret
the hole’s coordinates. Later in [12], the authors propose
a hole detection algorithm based on the measured external
wrench, which requires an F-T sensor with high precision
installed on the end-effector. In [20], the authors propose a
particle filter-based algorithm that updates the belief of the
hole’s position based on the robot’s proprioceptive sensing.
Nevertheless, the search phase in this work still depends on
the Lissajous search. In [13], the authors also tried to estimate
the contact configuration between the peg and the hole, but
their method requires a tactile sensor that provides more
information. Compared with the existing methods, our method
does not require tactile information and is based purely on
the robot’s proprioceptive sensing ability. The length of the
search trajectory in our method is also minimized. There
are also works that try to estimate the hole’s pose with
vision directly. In [7], the template-based matching method is
used to estimate the hole’s position. The more recent works

[10], [21], [22] use a learned neural network to predict the
hole’s relative pose. However, the vision method is subject
to occlusion problems, and the prediction accuracy is not
enough for scenarios demanding high precision in general.

POMDP and Reinforcement Learning. Some recent
works formulate the whole robotic insertion task as POMDP
problems. Nonetheless, the formulated POMDP problems
are generally intractable to solve directly, so reinforcement
learning is adopted [9], [23]–[26]. Reinforcement learning
learns a policy by interacting with the environment in a trial-
and-error manner. The learned policy has the advantage of
directly mapping multi-modal sensing data into action [9],
[25]. However, reinforcement learning is low in data efficiency,
and a large amount of data is required to train the agent.
Moreover, the agent trained in the simulation environment
also suffers from the sim-to-real gap problem.

B. Contribution

The contributions of this paper are as follows. First, we
offer a novel and systematic perspective on the search problem
through a POMDP formulation. By leveraging static stability
analysis to design the primitives, we achieve a significant
advantage in consistently and accurately identifying the hole’s
location. Second, built upon the formulated POMDP, we
propose a novel search strategy and incorporate it into a
comprehensive control framework, which efficiently solves the
robotic insertion task. Third, our extensive experiments show
that the proposed method outperforms the baseline approach
in terms of success rate, search times, and trajectory lengths.
Furthermore, our approach is notably robust to various initial
displacement errors.

II. PROBLEM DESCRIPTION

In this work, we focus on the search phase of the robotic
insertion task. During the search phase, the robot needs to
reduce the uncertainty presented in the initial estimated hole’s
position. In particular, we consider a torque-controlled robotic
arm with a round peg rigidly attached to its end, and the
peg’s relative pose with the robot’s end-effector is known.
The robot can be controlled by commanding torque τc, and
the dynamics equation that governs the arm’s motion is:

M(q)q̈ + C(q, q̇)q̇ + τg(q) = τc +
∑
i

JT
i (q)F ext

i (1)

where q ∈ Rn is the joint position, q̇ ∈ Rn is the joint velocity,
M(q) ∈ Rn×n is the mass matrix, C(q, q̇) summarizes the

(a) (b) (c)

Fig. 2: Three types of contact configuration between peg and hole.
(a) No overlapping (b) Partially overlapping (c) Perfect alignment



centripetal and Coriolis effects, τg is the torque on the robot
caused by gravity and JT

i (q)F ext
i is the torque due to the

i-th external contact. The total external contact torque is
τext =

∑
i J

T
i (q)F ext

i , and Ji(q) is the i-th contact jacobian.
The robot can sense its joint position q, joint velocity q̇, and
the external torque τext acting on it. We define the plan of
the robot as a feedback control law τc(q, q̇, τext, t) that will
generate a sequence of motions of the robot. The frames that
we are interested in are the world frame {W}, the peg frame
{P}, and the hole frame {H}, as shown in Fig.8. The world
frame {W} locates at the robot’s base, the peg frame {P}
locates at the center of the peg’s end, and the hole frame
{H} locates at the center of the hole’s top. The pose of the
peg in world frame WTP can be obtained with the robot’s
forward kinematics:

WTP = ϕ(q) (2)

Initially, a rough estimation of the hole’s position W p̂H =
(x̂, ŷ, ẑ) is given to the robot. At the beginning of the search
phase, there are three types of contact configuration between
the peg and the hole, as shown in Fig. 2:

• No overlapping: the peg does not overlap with the hole.
• Partially overlapping: the peg partially overlaps the hole.
• Perfect Alignment :The peg is aligned with the hole.

In this paper, we consider that at the beginning of the search
phase, the peg partially overlaps the hole (see Fig. 2b).
Remark 1. For the no overlapping case, the contact configura-
tion contains no information about the hole’s relative position.
For the perfect alignment case, the peg is already aligned
with the hole, and the search phase is unnecessary. It should
be noted that in reality, the estimated hole’s position W p̂H is
neither accurate enough to directly align the peg with the hole
nor too noisy that the hole is completely missed. Therefore,
we focus on the Partially overlapping case.

Because of the uncertainty in W p̂H , there would be a
displacement error between the peg and the hole P pH , which
can be further reduced to a 2D vector e = (δx, δy) in x-
and y- direction. During the search phase, the robot needs to
move the peg and reduce the displacement error e to a goal
set G. The goal set G is determined by the hole’s clearance
and consists of displacements e with which the peg is aligned.
Therefore, the search problem during the search phase can
be formulated as:

Problem 1 (Search Problem). Given an initial displacement
e(0) = (δx0, δy0) between the peg and the hole, find a
plan τc(q, q̇, τext, t) of the robot, such that there exists a time
T < ∞, e(t) ∈ G for t > T .

III. POMDP FORMULATION

As introduced before, the blind search method neglects
the information contained in the contact configuration of
the peg and the hole. In order to utilize the information
contained in the contact configuration, the robot needs to
actively interact with the environment to collect information,
estimate the displacement and move the peg accordingly. The
POMDP models an agent interacting synchronously with a

world and trying to optimize a reward. The agent does not
have direct access to the world’s states and can only observe
some intermediate observations. It needs to maintain a belief
about the current state and update the belief based on the
observation. In order to optimize the reward, the agent chooses
actions to collect information and change the world state. In
our search problem 1, the actual location of the hole’s position
is unknown and active interaction with the environment is
necessary. Therefore, we model Problem. 1 as a POMDP.
In particular, we tackle Problem. 1 in a hierarchical manner.
In the formulated POMDP problem, we omit details of the
robot’s dynamics (1). The solution to the formulated POMDP
problem is a sequence of action primitives, which is then
converted to the robot’s plan τc(q, q̇, τext, t) by a low-level
controller.

The formulated POMDP problem P can be represented
with a tuple (S,A,O, T ,Ω,R), where S is the state space,
A is the action space, O is the observation space, T is
the transition model, Ω is the observation model, and R
is the reward function. The relevant state in our problem
is s = (e), which is the displacement e. The action space
A = {ai} is a set of action primitives that are used to collect
information or move the peg. The observation space O = {oi}
is a set of observation primitives that summarize high-level
information. The transition model T (s, a, s′) = p(s′|s, a) and
the observation model Ω(o, s, a) = p(o|s, a) are based on the
primitives and the contact model. In particular, we model T
and Ω as deterministic models, and the only uncertainty of
the formulated POMDP problem P is in the displacement e,
which is not directly observed. The robot keeps an internal
belief of v, b(v) ∈ [0, 1], with

∫
b(e)de = 1. The initial belief

b0(e) is a uniform distribution on D:

b0(e) =

{
1/

∫
D 1de, e ∈ D

0, e /∈ D
(3)

where D is the set of e that the peg partially overlaps the
hole. To describe the goal of aligning the peg with the hole,
the reward function is defined as:

R(s, a) =

{
1, e ∈ G
−1, otherwise

(4)

In the formulated POMDP P , we use action primitives
ai to narrow the action space. The action primitives ai are
high-level motion plans of the robots. The usage of action
primitives naturally decomposes the original problem of
finding robot plan τc(q, q̇, τext, t) in a hierarchical manner: 1)
finding a sequence of action primitives that achieve the goal;
2) realization of each action primitive with the commanded
torque τc by a low-level controller. We also design observation
primitives oi that summarize the high-level information of
possible outcomes. The usage of these primitives simplifies
the POMDP P and makes the planning feasible. However,
careful design of these primitives is necessary, especially for
collecting and interpreting meaningful information to update
the belief b. Our design of these primitives is based on the
observation that the static stability of the peg depends on both



the applied force on the peg and the contact configuration.
The reaction of the peg with respect to the applied force
can be used to collect information about e. What’s more, the
outcome of our designed action primitives is reliable. This
enables us to have deterministic transition and observation
models, T (s, a, s′) and Ω(o, s, a). The belief can thus be
updated determinately, and the solution to the POMDP P
can be found directly.

IV. ACTION AND OBSERVATION PRIMITIVES DESIGN

To illustrate the idea of our designed primitives, we will
start with the simplified planar search problem for which a
graphical analysis of static stability is possible. The designed
action and observation primitives in the planar case can be
generalized to the 3D case.

A. The simplified planar problem

+ -

(a) (b) (c)

+
-

Fig. 3: The planar problem and moment labeling. (a) The
simplified planar problem. (b) Moment labeling of a contact wrench.
(c) Moment labeling of a friction contact, where θ = 2arctan(µ)
and µ is the friction coefficient. The “+” region consists of points
where all contact wrenches only apply positive moment, the “-”
region consists of points where all contact wrenches only apply
negative moment, and the white region consists of points where the
contact wrenches can apply both positive and negative moment.

The simplified planar problem is shown in Fig. 3a. For
the planar problem, we can use moment labeling [27], [28]
to analyze the stability of the peg with respect to different
applied forces, which facilitates our design of primitives. The
moment labeling is a graphical way to represent the planar
contact wrenches. Illustrations of moment labeling are shown
in Fig. 3b and Fig. 3c.

The moment labeling of the planar peg in contact with
the hole is shown in Fig. 4. Using moment labeling, we
can analyze the static stability of the peg with respect to
different applied forces. As can be seen from Fig. 4a, if there
is a downward applied force at the right end of the peg, the
peg will tilt rightward because the contact wrenches cannot
compensate for the applied force. On the contrary, if the
applied downward force is at the left end of the peg, the
applied force can be compensated by the contact wrenches,
and the peg will stay static, as shown in Fig. 4b. Similar
logic can be applied when the peg is on the right side of
the hole. By exploiting this static stability analysis, we can
design two action primitives for collecting information:

• afl: apply a downward force at the left end of the peg.
• afr: apply a downward force at the right end of the peg.
Together with the movement action primitives, the designed

action primitives are a ∈ {afl, afr, aml, amr, as}, where aml

+ - + -

(a) (b)

Fig. 4: Moment labeling analysis of the planar problem. The
red arrow represents the applied force on the peg. (a) Apply a
downward force at the right end of the peg. The applied force
cannot be compensated by the contact wrenches. The peg will tilt
rightward. (b) Apply a downward force at the left end of the peg.
The applied force can be compensated by the contact wrenches. The
peg will keep static.

is moving the peg leftward for time Ta, amr is moving
the peg rightward for time Ta and as is stay in current
position. The corresponding observation primitives are o ∈
{os, ol, or, oi}, where os is static, ol is tilting leftward, or is
tilting rightward, and oi is peg being partly inserted into the
hole. The belief b can also be simplified to be on 3 symbolic
states:ϕ ∈ {hl, hr, ha}, where hl, hr and ha means the hole
is on the left side, on the right side and aligned, respectively.
The initial belief on these symbolic states is {0.5, 0.5, 0}.
With the designed action and observation primitives, we
can model the transition model T and the observation
model Ω as deterministic. Therefore, the belief b can be
updated deterministically with observed o. For example, if
the observation ol is observed, the belief can be updated to
{1.0, 0, 0}.

Because of the simplicity of the formulated POMDP
problem P , we can give a search strategy for the planar
problem: the robot firstly applies afl or afr; based on the
received observation o, the belief b is then updated; then, the
robot continually applies aml or amr according to b until oi
is observed.

B. The 3D problem

It turns out that the above idea of designing primitives
based on the static stability of the peg with the applied force
can be generalized to the 3D case. To simplify the static
stability analysis, we use the idea of support polygon [29],
[30] from the legged robot community. The support polygon
is the convex hull of the legged robot’s all contact points with
the flat ground. It is used to characterize the static stability
of the legged robot: if the projection of the legged robot’s
center of mass (COM) to the ground is inside the support
polygon, the robot is stable; otherwise, if the projection is
outside the support polygon, the robot will tilt. The static
stability analysis of the 3D peg can be done in a similar way.
For our 3D partially aligned peg, the support polygon is the
convex hull of all the contact points between the peg and the
hole, as shown in Fig. 5a. If the projection of the applied
downward force to the horizontal plane is inside the support
polygon, as shown in Fig. 5a, then the peg will keep static;
otherwise, the peg will tilt, as shown in Fig. 5b.



(a) (b)

Fig. 5: Static stability analysis of the 3D contact configuration
between the peg and the hole. The support polygon is the shadowed
region. The intersection line is the blue line with two red-point ends.
(a) If the projection of the downward applied force is inside the
support polygon, the peg will keep static. (b) If the projection of
the downward applied force is outside the support polygon, the peg
will tilt around the intersection line.

Similar to the planar case, if we choose the downward
applied force inside the peg’s end, we can be sure that
if the peg tilts, it tilts towards the hole. Therefore, we
can design the action primitives for collecting information
as {a1f , a2f , . . . , aKf }, where aif applies downward force at
different locations inside the peg’s end. It should be noted
that, unlike the planar case, in 3D, two action primitives
are not enough for collecting information, as they might
not lie outside the support polygon to tilt the peg. The
downward applied forces should be uniformly distributed
around the perimeter of the peg end, and K should be
chosen large enough to cover a sufficient portion of the
perimeter. The movement action primitives are designed as
continuous {am = (n̂, Ta)}, which is moving the peg in a
2D direction n̂ for time Ta. The total action primitives are
{a1f , a2f , . . . , aKf } ∪ {am, as}.

In the planar case, the observation primitives contain os
and oi. However, the two observation primitives ol and or
are not enough to characterize the tilting motions in 3D. By
assuming that the friction is large enough such that sliding
does not happen when the peg tilts with action aif , the tilting
motion is a rotation around the intersection line between
the peg and the hole. What’s more, this intersection line
can be calculated based on the trajectory of the peg frame
{P}’s origin W pP (t), which can be obtained based on the
forward kinematics (2). Therefore, we design the observation
primitives characterizing the tilting motion as {ot = (k̂, p)},
where k̂ ∈ R2 is the direction of the intersection line and
p ∈ R2 is a point that this intersection line passes. The total
observation primitives are {os, oi}∪{ot}, which summarizes
the possible outcomes of the designed action primitives.

The observation primitive ot contains information on the
contact configuration. Similar to the planar case, we model
T and Ω as deterministic. The belief b(e) can be updated
with ot determinately based on geometric analysis. Suppose
that (k̂, p) is observed for a round peg with radius r, based
on symmetry, it immediately follows that e is perpendicular
to k̂ and the direction of e is Rot(−π

2 )k̂, where

Rot(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(5)

What’s more, with p known, the length l of the intersection

line can be obtained. The belief b(e) can then be updated
into a Dirac delta function

b(e) =

{
∞, e = 2

√
r2 − l2/4Rot(−π/2)k̂

0, otherwise
(6)

with
∫
e
b(e)de = 1.

Like the planar problem, because of the simplicity brought
by the designed primitives, we can give an efficient search
strategy to the formulated POMDP problem P . The robot
firstly use actions a1f to aKf until ot = (k̂, p) is observed.
With ot, the robot updates the belief b accordingly. Then
based on the updated belief, the robot continually moves the
peg towards the hole using am = (Rot(−π

2 )k̂, Ta) until oi is
observed.

V. CONTROL FRAMEWORK

The solution to the formulated POMDP problem is an
efficient search strategy consisting of a sequence of action
primitives conditioned on the observation primitives. Because
of the simplicity of our proposed search strategy, we can
incorporate it into a Finite-State-Machine (FSM) controller
for completing the robotic insertion task. The FSM controller
needs to complete the peg-in-hole task from the approach
phase to the insert phase. The states and the associated robot
behaviors of the proposed FSM controller are:

1) Approach: The robot moves the peg down to approach
the hole.

2) Tilt: The robot applies action primitives a1f to aKf in
sequence.

3) Move: The robot applies action primitive am based on
the belief b(e).

4) Insert: The robot inserts the peg into the hole.
5) Finish: The robot has successfully inserted the peg.
6) Fail: The robot fails in previous states.
7) Reset: The robot moves to the start position.

The search strategy is implemented in states Tilt and Move.
The FSM controller is illustrated in Fig. 6. The transition
conditions between different states are manually designed
and are based on q, q̇, and τext.

Approach

Tilt

Insert

Finish

Move

Fail

Reset

Fig. 6: State transitions of the proposed FSM controller. The
transitions in a normal insertion process are shown as solid arrows.
A reset process is triggered if the robot fails to complete the insertion
successfully. The transitions in the reset process are shown as dashed
arrows.

In order to convert the behaviors in the FSM controller
to the robot’s plan τc(q, q̇, τext, t), a low-level controller is
needed. During the peg-in-hole task, the robot will inevitably
make contact with the environment. To make the robot’s
behaviors in the presence of contact robust, we use the



Cartesian Impedance 
Controller

FSM
Controller

Manipulator

Fig. 7: An overview of the control framework. The FSM controller
sends high level command to the Cartesian Impedance controller,
which then sends the commanded torque to the manipulator.

Cartesian Impedance Control as the low-level controller. The
pose of the peg WTP can be expressed as a 6-dimension
vector xp = (W pP , φp) where W pP is the peg frame’s
position and φp is the peg frame’s orientation expressed
in Euler angle. Denote xd as the desired pose of the peg
frame and

A(φp) =

[
I 0
0 T (φp)

]
(7)

where T (φp) serves to map the derivative of the Euler angle
to the angular velocity. Then, the commanded torque τc in (1)
to achieve the Cartesian Impedance Control is:

τc = τg(q) + C(q, q̇)q̇ + τff

+ JT
p (q)[A−T (φ)Kp(xd − xp)−Kd(vd − vp)]

+ (I − J†
pJp)[K

null
p (q0 − q)−Knull

d (q̇)] (8)

where Jp(q) is the robot’s jacobian at the peg’s frame and
J†
p is the jacobian’s pseudo-inverse; Kp,Kd ∈ R6×6 is the

gain matrix in the Cartesian space; vp and vd is the real and
desired twist of the peg’s frame, respectively; Knull

p ,Knull
d ∈

Rn×n is the gain matrix to stabilize the controller in the null
space; q0 is the robot’s normal position; τff is the additional
feedforward torque. For more details about the Cartesian
Impedance Control, the readers are recommended to refer
to [15]. It should be noted that in τc, we have an additional
feed-forward term τff to apply the required wrench, as used
in action primitive aif . Suppose that we would like to apply
wrench F in frame {a}, then

τff = JT
a (q)F (9)

where Ja is the robot’s jacobian at frame {a}.
The overall control framework is shown in Fig. 7. The

Finite-State-Machine controller sends high-level commands
(τff , xd, vd,Kp,Kd) to the Cartesian Impedance controller,
which computes the commanded torque τc on the robot. The
gains Kp and Kd are different at different FSM states.

VI. SIMULATION VALIDATION

To validate the effectiveness of our proposed search strategy
and the overall control framework, we run comprehensive
simulation experiments. In particular, we compare our pro-
posed search strategy with the spiral search method for 600
different initial displacements e. The simulation platform used
is Drake [31]. To improve the authenticity of the contact
simulation, we use the Hydroelastic contact [32] to model
the contact between the peg and the hole.

x Y

Z

{W}

x Y

z

{P}

x Y

z

{H}

Fig. 8: Setup of the simulation. The world frame {W}, the peg
frame {P}, and the hole frame {H} are shown.

A. Experiment Setup

The simulation setup is shown in Fig. 8. We use the Kuka
Iiwa 14 of 7 degrees of freedom as the robot model. A peg
with radius r = 10mm is rigidly fixed to the robot’s end-
effector. The clearance of the hole is 1mm. Both hole and
peg are chamferless. The FSM controller runs at a frequency
of 50 Hz, and the Cartesian Impedance controller runs at a
frequency of 1 kHz. At the beginning of each experiment,
the peg frame {P} is 3cm above the hole frame {H}. We
compare our proposed search strategy and the spiral search
strategy for different initial displacements e = (δx, δy) =
(δr cos(θ), δr sin(θ)). In particular, δr ranges uniformly from
6.67mm to 15mm for 10 values and θ ranges uniformly from
−π to π uniformly for 60 values. Therefore, in total, 600
experiments are performed for each search strategy.

B. Implementation Details

In the implementation of our proposed search strategy, we
choose the action primitives aif , i = 1 . . .K as downward
forces distributed uniformly around the peg’s edge, with
K = 6, as shown in Fig. 9a. The force magnitude of aif is
shown in Fig. 9b. In the Move state, the robot moves the peg
directly towards the estimated hole’s position in a straight
line while applying a downward force of 5N at {P}. No
additional overlaid oscillation is added during the Move state.
In the comparison experiments, the Tilt and Move states of
the FSM controller are replaced with a Spiral state. In the
Spiral state, the robot moves the peg following a spiral path
on the hole’s surface while applying a downward force of

(a) (b)

21.750.25

15

Fig. 9: Illustration of action primitives ai
f . (a) Locations of the

action primitives ai
f , i = 1, . . . , 6 in our implementation. (b) Force

magnitude of the action primitive ai
f .



5N at {P}. For all experiments, we do not reset the robot
after the Fail state is reached. The robot can only attempt to
insert once in each experiment.

C. Metrics

To evaluate the performance of the search strategies, we
define 4 metrics: success rate, search time, search trajectory
length, and cycle time. In addition, we define a metric,
estimation accuracy, to evaluate the proposed search strategy’s
precision in determining the hole’s position.

1) Success Rate ρ: One experiment is regarded as success-
ful if the peg can be fully inserted into the hole. It is regarded
as failed if the fail state is reached or the maximum time is
reached. The success rate of a search strategy is ρ = Ns/N ,
where Ns is the number of successful experiments and
N = 600 is the total number of experiments.

2) Search Time Ts: Search time Ts = ti − ts is the total
time of the search phase where ti is the time that Insert state
is entered and ts is the time that Tilt or Sprial state is entered.

3) Search trajectory length ls: The length of {P}’s
trajectory during the search phase.

4) Cycle Time Tc: The total time of the insertion process.
5) Estimation accuracy ϵ: Denote the estimated hole’s

displacement as ê. The estimation accuracy is defined as

ϵ = arccos(
eT ê

∥e∥ ∥ê∥
) (10)

The unit of ϵ is in degree.

D. Results

The experiment results are summarized in Table. I. Our
method achieved 596 successful experiments out of 600, while
the spiral search method achieved 509 successful experiments
out of 600. The average cycle time for our method is 12.5s,
while for the spiral search method is 106.6s. The average
search time for our method is 10.2s, while for the spiral
search method is 102.9s. The spiral search method needs
to take a much longer time to locate the hole compared
with our proposed method. We observe that the search phase
accounts for most of the time for both our method and the
spiral search method. Moreover, our method’s average search
trajectory length is much shorter than the spiral search method:
1.3cm versus 46.8cm. Snapshots of one experiment using our
proposed method are shown in Fig. 10. The trajectory of the
peg frame {P} during this experiment is shown in Fig. 11b.
The trajectory of the peg frame {P} using spiral search from
the same initial position is shown in Fig. 11a. With our
method, the peg follows a much more efficient trajectory. Our
method accurately estimates the hole’s position, with average
ϵ = 1.38◦.

E. Discussion

The results show that our proposed method can accurately
estimate the hole’s position and insert the peg into the hole
with a high success rate. Compared with the spiral search
method, our proposed method achieves a higher success rate
and is much more efficient in search time and trajectory

length. In our implementation, during the Move state, the peg
follows a straight line towards the hole, imposing a strict
estimation accuracy requirement. To improve the robustness
of our method, small overlaid oscillation can be added to the
peg’s motion in the Move state.

VII. CONCLUSION

In this work, we present a novel search strategy for
the robotic insertion task. Our proposed search strategy is
based on a systematical POMDP formulation of the search
problem and the analysis of the contact configuration’s
static stability. The proposed search strategy is realized with
a control framework combining a high-level Finite-State-
Machine controller and a low-level Cartesian Impedance
Controller. Our method is suitable for torque-controlled robots
and only relies on the robot’s proprioceptive sensing ability.
Extensive comparison experiments with the baseline method
are conducted to validate the effectiveness of our method. The
results show that the proposed method is robust to different
initial displacement errors and exhibits a high success rate. In
addition, our method is more efficient and has both a shorter
search time and search trajectory length.

In the future, we plan to test the proposed method in real
hardware. Sensor noise and joint friction within a real-world
robotic system pose potential challenges to our proposed
method. Extending our method to consider complex-shape
peg and orientation error is also a potential future direction.
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