
Polynomial-based Online Planning for
Autonomous Drone Racing in Dynamic Environments

Qianhao Wang †, Dong Wang †, Chao Xu, Alan Gao, and Fei Gao

Abstract— In recent years, there is a noteworthy advance-
ment in autonomous drone racing. However, the primary focus
is on attaining execution times, while scant attention is given to
the challenges of dynamic environments. The high-speed nature
of racing scenarios, coupled with the potential for unforeseeable
environmental alterations, present stringent requirements for
online replanning and its timeliness. For racing in dynamic
environments, we propose an online replanning framework with
an efficient polynomial trajectory representation. We trade off
between aggressive speed and flexible obstacle avoidance based
on an optimization approach. Additionally, to ensure safety
and precision when crossing intermediate racing waypoints, we
formulate the demand as hard constraints during planning. For
dynamic obstacles, parallel multi-topology trajectory planning
is designed based on engineering considerations to prevent
racing time loss due to local optimums. The framework is inte-
grated into a quadrotor system and successfully demonstrated
at the DJI Robomaster Intelligent UAV Championship, where it
successfully complete the racing track and placed first, finishing
in less than half the time of the second-place1.

I. INTRODUCTION

Quadrotors are gaining popularity in various industrial and
commercial scenarios due to their versatility and exceptional
performance. In recent years, autonomous drone racing, a
research field focusing on planning trajectories for quadrotors
to follow an aggressive reference routine while precisely
crossing some intermediate landmarks, receives considerable
attentions [1]–[4] and sparkes an international competition
craze, such as the AlphaPilot Challenge [5, 6] and the
Autonomous Drone Race [7, 8] in IEEE IROS. The ultimate
pursuit of minimizing the execution time in drone racing
increasingly ignites the fire for quadrotors to be applied in
several emergencies, such as post-disaster communications
and urgent transportation of essential supplies.

In such scenarios, dynamic obstacles or moving landmarks
that require investigation and traversal will inevitably arise
due to environmental changes. How to plan a minimum-
time trajectory through a series of waypoints in dynamic
environments remains a challenging problem that can not be
completely solved by previous works. In detail, this problem
requires that the planning method satisfies the conditions
simultaneously: (1) highest possible speed of completing
the track; (2) agile avoidance of the dynamic obstacles;

† Equal contribution.
All authors are with the College of Control Science and Engineering,

Zhejiang University, Hangzhou, 310027, China, and also with the Huzhou
Institute of Zhejiang University, Huzhou, 313000, China.

Email:{qhwangaa, fgaoaa}@zju.edu.cn
Corresponding Author: Fei Gao.
1https://pro-robomasters-hz-n5i3.oss-cn-hangzhou.aliyuncs.com/sass/event-

list.html

(a) (b)

Fig. 1: The snapshot of our online planning method applied in a challenging
dynamic environment, where the quadrotor is required to precisely pass
through two dynamic gates in order. In (a), the quadrotor passes through
the first gate and flies towards the second one. (b) depicts a close-up of
crossing the second gate.

(3) shortest possible computational time of trajectory replan;
(4) precise traversal of the waypoints.

The first two points (1) and (2) are intuitive for safe racing
in dynamic environments. As for (3), since not all variations
in the dynamic surroundings can be preemptively observed
and accurately predicted, these unforeseeable circumstances
require online replanning. Particularly during high-speed
drone racing, the efficiency of replanning is crucial for
ensuring the timeliness of trajectories. Although existing
works [1, 3] demonstrate the ability to compete with skilled
human pilots in racing, minute-level computational demands
make them prohibitive to respond to unforeseeable changes.
For (4), as shown in Fig. 1, some waypoints may have
low spatial tolerance even in motion. Inaccurate traversal
can cause collision or mission failure. However, most racing
works [2, 9] do not guarantee stable and precise traversal in
planning, because of the use of soft constraint approach that
relies on parameters.

In order to address the aforementioned requirements, we
propose a strong polynomial-based online planning frame-
work for racing in dynamic environments by incorporating
careful engineering considerations with our previous works.
We obtain the trajectory by an optimization method. For
online replanning of (3), we adopt MINCO [10] as the
trajectory representation and improve it to a time-uniform
version. This implementation is more lightweight yet still
maintains the capacity to allow for spatial-temporal deforma-

ar
X

iv
:2

30
6.

14
46

1v
1

 [
cs

.R
O

]
 2

6
Ju

n
20

23

tions, improving computational efficiency. For rapid speed of
(1), we boost the aggressiveness of quadrotors by minimizing
execution time in the optimization based on the temporal
freedom of trajectory. For precise waypoint traversal of (4),
we formulate this waypoint-through requirement into a hard
constraint to ensure safety and stability, regardless of whether
the waypoint is static or in motion. For obstacle avoidance
of (2), we build upon our previous work [11] by calculating
multiple trajectories in parallel under different topologies
segmented by dynamic obstacles and then selecting the
optimal one.

Finally, we integrate the proposed planning framework
into a customized quadrotor system, combining state estima-
tion, control, and real-time vision-based detection modules.
This system was deployed at the 2022 DJI Robomaster In-
telligent UAV Championship2, where quadrotors are tasked
with navigating a track with dynamic obstacles, narrow
gaps that require SE(3) planning, and gates. The gates must
be traversed in a specific order as fast as possible, even
though they are either in motion or have a random location
within a range. In this competition, our system succeeded
in completing the racing track and placed first, which proves
our method’s comprehensive capabilities of performing high-
speed flight in challenging dynamic environment.

To summarize, the contributions of this paper are:
• We implement time-uniform MINCO by improving our

previous work, which boosts computational efficiency to
enhance the timeliness of replan for high-speed flight.

• We achieve a hard constraint on the position of drone
during crossing both static and moving waypoints, to
ensure precision of crossing, by modeling the position
of waypoints as trajectories about time and formulating
them as boundary conditions for joint optimization.

• We propose a replanning framework, combined with
evaluating different topologies segmented by dynamic
obstacles and large attitude flight, to deal with chal-
lenging environments. Ablation experiments and com-
petition prove our method’s effectiveness for racing in
dynamic environments.

II. RELATED WORK

We divide racing works online and offline depending on
whether the method can perform in real-time.

In general, offline methods are more comprehensive in
problem construction and can serve as the baseline for online
methods. Recently, there is a remarkable work [3] of Foehn
et al. to generate time-optimal trajectories for drones to
outperform professional pilots in racing. They use discrete
state points to represent the trajectory and solve it using
an optimization method while formulating the gate-through
requirement as a complementary constraint. Additionally,
they adopt a full-state quadrotor model with the thrust of
single rotor as control input and impose constraint on each
rotor, which saturates the actuator to achieve optimal time.
Different from traditional racing, Han et al. [2] focus on

2https://www.robomaster.com/zh-CN/robo/drone

planning SE(3) trajectories to cross narrow gaps. They opt
for polynomial trajectory and use the differential flatness
of the quadrotor [12] to deliver spatial constraints to SE(3)
state. Compared to solving a large-scale problem in Wang’s
work [10], this method develops parallel computing for
this planning problem, significantly enhancing efficiency. As
for cluttered environments, Penicka et al. [13] extend on
Li’s work [14] using a hierarchical sampling-based frame-
work guided with an incrementally more complex quadrotor
model. However, above methods do not have a real-time per-
formance, making them inadequate to adapt to unpredictable
changes, such as disturbances in the position of gate.

To enable the drone to handle environmental changes,
online replanning is essential. Some search-based methods
[15, 16] add the need to bring time to a minimum in the
cost function to achieve real-time replan for rapid flight.
But they can merely limit the acceleration of every axis
while failing to explore the boundaries of the actuator,
leading to conservative practices. For the 2019 AlphaPliot
Challenge, Foehn [5] perform an onboard detection of the
gates as a reference for replanning. They generate motion
primitives based on maximum acceleration and obtain the
time-optimal trajectory by sampling velocity states. Finally,
they use a polynomial to fit the trajectory to track. Afterward,
Romero [1] replace the polynomial parameterization of the
above work [5] and use the Model Predictive Contouring
Control (MPCC) [9] considering an accurate full-state model
which is extended to include a linear drag model [17] to
execute the trajectory obtained from sampling. Due to the
penalty on progress item and constraining the dynamics of
each individual rotor in MPCC, this approach can better
exploit the drone’s performance limits. Nevertheless, both
methods of leaving it to the controller to track the trajectory
that ignores the dynamic feasibility constraints can only
ensure the safety of the gate-through by adding a certain
cost weight at the controller side. This is rarely applicable
to dynamic environments.

As for the navigation works mentioned for collision-free
flight, they concentrate on handling the information about
the static or dynamic environment [11, 18] obtained from
perception to serve subsequent trajectory generation and on
constructing constraints to avoid obstacles [19, 20]. However,
they have a shortage of adaptability for drone racing tasks,
which require the quadrotor to traverse waypoints in order
with a focus on execution time.

III. TRAJECTORY REPRESENTATION

In this section, for enhancing the computational efficiency
for online replanning, we implement time-uniform MINCO
based on our previous work [10] to conduct spatial-temporal
deformation of the flat-output trajectory. We present the def-
initions and comparison in Tab. I. Essentially time-uniform
MINCO and the normalized one are just two special kinds
of MINCO. Therefore, to distinguish the special parts of the
different trajectory representations, we use the symbols with
hat ·̂ and the symbols with horizontal lines ·̄, such as Eq.(2)

TABLE I: Comparison of Different Trajectory Representations

MINCO Time-uniform MINCO Normalized Time-uniform MINCO

time
allocation

T = (T1, . . . , TM)T, (1) T̂ = (T/M)1, (2) T̄ = 1, (3)

boundary
conditions zo, zf , (4) zo, zf , (5)

z̄o = Ss(T/M)zo,
z̄f = Ss(T/M)zf ,

(6)

mapping
equation M(T)C = b(Q, zo, zf), (7) M(T̂)Ĉ = b(Q, zo, zf), (8) M(1)C̄ = b(Q, z̄o, z̄f), (9)

coefficients
solving

by online PLU factorization and
solving linear systems of equations ĉi = S2s(M/T)c̄i, (10) C̄ = M−1(1)b(Q, z̄o, z̄f). (11)

and Eq.(3), to denote the special parts in the time-uniform
MINCO and normalized one, respectively. In the following,
we go over the meaning of the variables that appear in Tab. I.

An s-order MINCO is defined as an m-dimensional M -
piece polynomial trajectory. The i-th piece trajectory is
defined by an D = 2s− 1 degree polynomial as

pi(t) = cTi β(t), ∀t ∈ [0, Ti], (12)

where β(x) := (1, x, . . . , xD)T is the natural basis. ci and
Ti means the coefficients and duration of the i-th piece
respectively. For the M -piece trajectory, the total duration
is T =

∑M
i=1 Ti, and its coefficients C, time allocation T

and intermediate points Q can be written as

C = (cT1 , . . . , c
T
i , . . . , c

T
M)T ∈ R2Ms×m,

T = (T1, . . . , Ti, . . . , TM)T ∈ RM
>0,

Q = (q1, . . . ,qi, . . . ,qM−1) ∈ Rm×(M−1),

(13)

where qi means the 0-order derivative of pi(t) at Ti. And
in Tab. I, zo, zf ∈ Rm×s is the boundary conditions
containing high order derivative at p1(0) and pM (TM).
M ∈ R2Ms×2Ms and b ∈ R2Ms×m are matrixes with
T and Q, zo, zf as variables, respectively, which refer
to the Eq.(54, 55) in [10] for the detailed definition. In
Eq.(2, 3), 1 = (1, 1, ..., 1)

T ∈ RM . In Eq.(6, 10), Sy(x) :=
Diag(1, x, . . . , xy−1).

A. MINCO Trajectory

For an s-order MINCO, given boundary conditions Eq.(4),
intermediate points Q and time allocation Eq.(1), the co-
efficients C can be uniquely determined by zo, zf ,Q and
T based on the linear mapping equation Eq.(7), which is
defined as Theorem 2 in [10]. Because M is a nonsingular
banded matrix, based on its banded PLU factorization, the
coefficients can be computed by solving two linear systems
of equations with linear time and space complexity [21],
which prevents the need to explicitly calculate M−1.

For user-defined penalty function F (C,T) with available
gradients, MINCO serves as a linear-complexity differen-
tiable layer H(zo, zf ,Q,T) = F (C,T). To accomplish the
deformation of MINCO, we need to obtain the gradients of H
w.r.t. the trajectory’s variable zo, zf ,Q and T from the given
gradients ∂F/∂C and ∂F/∂T as Eq.(60, 68) in [10]. During
the process, results of right multiplying M−1 by a vector are
needed several times. Similar to coefficients solving, these
results can be get by using the PLU factorization of M.

B. Time-uniform MINCO Trajectory

It should be emphasized that, in Tab. I and this section,
the role of normalized time-uniform MINCO is to serve as
an intermediate state of the time-uniform MINCO to aid in
the calculation of coefficients and gradients.

We refer to a special MINCO trajectory with uniform time
allocation Eq.(2) as time-uniform MINCO, since each piece
has the same duration. The time-uniform MINCO still allows
for spatial-temporal deformation, which is accomplished
through the freedom of the total time T .

As Eq.(8) states, even with a uniform time allocation, we
still need to online deal with M−1 whenever T changes. To
avoid PLU factorization of M every time, using temporal
scaling, we define normalized time-uniform MINCO p̄(t) of
a time-uniform MINCO p̂(t), and the i-th piece is

p̄i(t) = p̂i(T/M · t), ∀t ∈ [0, 1], (14)

where p̄i(t) takes 1 as piece duration. Since the original
trajectory is time-uniform, As defined in Eq.(14), the in-
termediate waypoints Q do not change because the spatial
shape of the trajectory is kept constant. The high order
derivatives of p̄i(t) can be written as

p̄
(s)
i (t) = (T/M)sp̂

(s)
i (T/M · t), ∀t ∈ [0, 1]. (15)

Then the boundary condition is deflated by a factor of
(T/M)s in the s-th order derivative due to the temporal
scaling, as written in Eq.(6).

For the normalized p̄(t), the mapping is written by Eq.(9),
where the banded matrix M(1) becomes constant because
the quantity of the pieces M is fixed during trajectory
optimization. Therefore, M(1)−1 can be computed explicitly
or performed PLU factorization offline, instead of online
factorization every time T changes in the optimization. Then
the coefficients C̄ can be obtained from Eq.(11) and the
coefficients Ĉ of the original trajectory can be obtained
by scaling the normalized trajectory, as written in Eq.(10).
Moreover, the gradient calculation mentioned in Sec. III-A
can be performed without online factorization either. These
have an improvement in computational efficiency, as shown
in Sec .V-A.1.

To summarize, to use time-uniform MINCO yet avoid
online PLU factorization, we first normalize the trajectory in
time. Then we use the property that M(1) of the normalized
trajectory can be processed offline to quickly obtain the
normalized parameters C̄ and gradients. Finally, we get the

parameters Ĉ and gradients of the time-uniform MINCO
which is truly desired by time deflating as shown in Eq.(10).

IV. POLYNOMIAL-BASED ONLINE PLANNING

In this section, we use time-uniform MINCO as the trajec-
tory representation for online planning, requiring the shortest
possible execution time while satisfying some environmental
and actuator constraints. First in Sec. IV-A we construct
an optimization problem considering above requirements.
Then based on our dealing with its inequality and equation
constraints respectively in Sec. IV-B and IV-C, the problem
is reformulated into an unconstrained optimization problem
in Sec. IV-D. Additionally, in Sec. IV-E, we state some
engineering considerations that are effective in improving
racing performance. Note that the symbol definitions of time-
uniform MINCO in this section are inherited from Sec. III.

A. Problem Formulation

In this paper, we use segmented polynomials to represent
the replan trajectory. Given the next N gates, we plan an
N -segment trajectory. As shown in Fig. 2, each colored
curve represents one segment. The n-th segment σn(t) is
an s-order m-dimensional Mn-piece time-uniform MINCO,
whose coefficients and intermediate points are defined as Ĉn

and Qn respectively, detailed in Eq.(13). Its time allocation
is defined as T̂n = (Tn/Mn)1, where Tn is the trajectory
duration of n-th segment. The whole segmented trajectory
σ(t) : [t0, tN] 7→ Rm is formulated as

σ(tn−1 + t) = σn(t),

∀n ∈ {1, 2, . . . , N}, ∀t ∈ [0, Tn],
(16)

where tn = t0+
∑n

j=1 Tj is the timestamp and t0 is the start
time of the trajectory. The coefficients, time allocation, and
intermediate points of the whole trajectory can be written as

C = (ĈT
1 , . . . , Ĉ

T
n , . . . , Ĉ

T
N)T ∈ R(

∑N
n=1 2Mns)×m,

T = (T̂T
1 , . . . , T̂

T
n , . . . , T̂

T
N)T ∈ R(

∑N
n=1 Mn)

>0 ,

Q = (Q1, . . . ,Qn, . . . ,QN) ∈ Rm×(
∑N

n=1(Mn−1)).
(17)

We require the trajectory to pass through a series of
gates, both static and moving, as quickly as possible, with
constraints of dynamical feasibility, narrow gap crossing, and
dynamic obstacle avoidance. Taking all requirements into
account, our problem takes the following form:

min
C,T

Jo =

∫ tN

t0

∥σ(s)(t)∥2dt+ ρ · ||T ||1, (18a)

s.t. σ
[0,s−1]
1 (0) = so, (18b)

σ
[0,s−1]
N (TN) = sf , (18c)

σ[0,s−1]
n (Tn) = σ

[0,s−1]
n+1 (0), ∀n ∈ {1, . . . , N − 1},

(18d)
σ(tn) = gn(tn), ∀n ∈ {1, . . . , N}, (18e)

Gx

(
σ(t), ..., σ(s)(t), t

)
⪯ 0, ∀x ∈ X ,∀t ∈ [t0, tN],

(18f)

start

end

static gate

moving gate
center of gate or desired
crossing position of gap

narrow gap
direction of motion

desired direction of the z-axis of the drone 𝒛𝒛𝑑𝑑𝑑𝑑𝑑𝑑
desired crossing position 𝑔𝑔𝑛𝑛𝑔𝑔

Fig. 2: Illustration of the segmented trajectory for replan to traversal the
four gates in order.

where we define two costs in Eq.(18a) for smoothness and
short execution time, which are weighed by parameter ρ.
Eq.(18b–18c) and Eq.(18d) are the boundary conditions and
the continuity constraint up to degree s − 1. so and sf are
boundary states. We denote σ[x,y] ∈ Rm×(y−x+1) as

σ[x,y] =
(
σ(x), σ(x+1), . . . , σ(y)

)
, x < y. (19)

Moreover, Eq.(18e) is the gate-through constraint, where
gi(t) is the predicted trajectory for the i-th gate. Eq.(18f) is
continuous-time constraints, the set X = {t, b, g, d} include
actuator physical limits on thrust (t) and body rate (b),
narrow gap crossing (g) and dynamic obstacle avoidance (d).

B. Inequality Constraints Transcription
For the inequality constraints Eq.(18f), which are required

to be fulfilled along the whole trajectory. We use the thought
behind penalty function method [22] to deal with these
constraints becoming time integral of constraint violations,
which is then evaluated by a finite sum of sample points.
We define these points sampled on n-th segment by p̊n,j =
σn((j/κn)Tn), j ∈ {0, 1, 2, . . . , κn}, where κn is the sample
quantity and we name p̊n,j as constraint points. We denote
the penalty function of the constraint points as

Gx(n, j) = Gx

(
p̊n,j , p̊

(1)
n,j , ..., p̊

(s)
n,j , tn−1 +

j

κn
Tn

)
. (20)

Then these inequality constraints Eq.(18f) can be trans-
formed into a weighted sum of the sampled penalty as

min
C,T

∑X

x
λxJx,

Jx =
∑N

n=1

Tn

κn

∑κn

j=0
ω̄jmax(Gx(n, j), 0)

3,
(21)

where λx is the weight for each cost Jx, we follow the trape-
zoidal rule [23] (ω̄0, ω̄1, . . . , ω̄κi

) = (1/2, 1, · · · , 1, 1/2).
Then for the inequality constraints Eq.(18f), with Eq.(12, 21),
once the gradients of Gx(n, j) w.r.t. p̊(k)

n,j , k ∈ {1, . . . , s} and
{T1, . . . , Tn} are given, we can derive the gradients ∂Jx/∂C
and ∂Jx/∂T which are required in the optimization. Then
we introduce each penalty function and its gradient.

1) Actuator Limits with Drag Effects Gt and Gb: To ensure
that the trajectory is physically feasible, we constrain the
thrust f and body rate ω through the differential flatness.
Meanwhile, due to the high speed of racing, aerodynamic
effects cannot be ignored, then we extended the quadrotor’s
dynamics with a drag model of our previous work [24]. As
shown in the Eq.(17-21) of [24], given the trajectory, thrust,
body rate and rotation R ∈ SO(3) in the world frame of the
constraint point p̊n,j can be denoted as

f, ω,R = F
(
p̊
(1)
n,j , p̊

(2)
n,j , p̊

(3)
n,j

)
, (22)

We define the penalty of actuator physical limits as

Gt(n, j) = (f − fm)2 − f2
r ,

Gb(n, j) = ||ω||2 − ω2
max,

(23)

where fm = (fmax + fmin)/2 and fr = (fmax − fmin)/2,
fmax and fmin are the maximum and minimum values of
thrust. ωmax is the maximum body rate. With Eq.(22, 23),
the gradients ∂Gt(n, j)/∂p̊

(k)
n,j , ∂Gb(n, j)/∂p̊

(k)
n,j , k = 1, 2, 3

can be calculated easily using the chain rule.
2) Narrow Gap Crossing Gg: In this framework, we

assume that we can obtain the optimal attitude and position
for crossing a narrow gap from other modules such as online
detection. As shown in Fig. 2, we set the desired direction
of the z-axis of the quadrotor when traversing the gate as a
normalized vector zdes ∈ Rm. To avoid loss of generality,
we set the optimal crossing position as a gate, denoted as the
ng-th gate to be passed through. The position constraint will
be detailed in Sec. IV-C.2, and here we only describe the
direction constraint during gate crossing. To make it safer to
traverse the narrow gate with a large attitude, we impose this
constraint on the trajectory at a certain sample range nran

in front of and behind the ng-th gate:

Gg(n, j) = ||Re3 − zdes||2 − θtol,

∀j ∈

{
{0, 1, . . . , nran}, n = ng

{κn − nran, . . . , κn}, n = ng − 1
,

(24)

where e3 = (0, 0, 1)T, θtol ∈ (0, 1) is the tolerance, R is
the rotation of p̊n,j obtained from Eq.(22). Then the gradien
∂Gg(n, j)/∂p̊

(k)
n,j can be computed with Eq.(22, 24).

3) Dynamic Obstacle Avoidance Gd: Based on our previ-
ous work [11], we model a dynamic obstacle as ellipsoid:

E = {x|E(x,y) < 1}, E(x,y) = (x−y)TH(x−y), (25)

where H = RT
Ediag(1/a

2, 1/b2, 1/c2)RE , a, b, c is the axis-
length, RE is its rotation and y is the center of the ellipsoid.
Then we define the obstacle avoidance penalty as

Gd(n, j) = dthr − E

(
p̊n,j , pd(tn−1 +

j

κn
Tn)

)
, (26)

where pd(t) is the predicted trajectory of the dynamic
obstacle, dthr is security threshold. Similar to Sec. IV-B.1
and IV-B.2, by the chain rule, we can utilize Eq.(26) to obtain
gradient of Gd(n, j) w.r.t. p̊n,j and {T1, . . . , Tn}, which are
used to derive ∂Jd/∂C and ∂Jd/∂T for optimization, as
stated in Sec. IV-B.

C. Equality constraints Elimination

In Sec. IV-B we transform the inequality constraints by
the penalty function method, in this section we eliminate the
equation constraints by replacing the decision variables.

1) Boundary Conditions and Continuity Constraint: We
define z0 as the start state of the first segment and zn as the
end state of the n-th segment:

z0 = σ
[0,s−1]
1 (0),

zn = σ[0,s−1]
n (Tn), ∀n ∈ {1, . . . , N}.

(27)

For the n-th segment, given the time allocation T̂n, inter-
mediate points Qn and the boundary conditions zn−1, zn,
its coefficients Ĉn can be uniquely determined by a serie of
calculations Eq.(8–11). We denote this calculation process as

Cn = M(Qn, T̂n, zn, zn−1). (28)

We set Z = (z1, . . . , zN−1), and fix z0 = so and zN =
sf . Based on Eq.(28), C can be determined with variables
Z , T and Q. Therefore, for our original problem Eq.(18),
we replace the decision variables from (C, T) to (Z , T ,
Q), eliminating the constraints of Eq.(18b–18c).

2) Gate-through Constraint: The requirement of crossing
gate is usually handled with soft constraints, for instance,
penalty function ∥σ(tn)− gn(tn)∥2 used in [1, 9]. However,
As shown in Fig. 2, when the gate is small, the space toler-
ance at the moment of crossing is very low. The use of soft
constraints does not guarantee that trajectory passes through
the center of the gate, which leads to more pressure on safety
being placed on other modules, such as the controller. In
this paper, we construct hard constraints for gate-through to
ensure that the trajectory can traverse the center of the gate.

We split the state matrix zn as ((zn)0, (zn)∗), where
(zn)0 ∈ Rm×1 is the 0-order derivative state, and (zn)∗ ∈
Rm×(s−1) means the derivatives whose order from 1 to s.
Then the gate-through constraints Eq.(18e) can be written as

(zn)0 = gn(tn)

= gn(t0 +
∑n

j=1
Tj),

(29)

which demonstrates that (zn)0 can determined by T . There-
fore, the mapping function Eq.(28) can be formulated as

Cn = M

(
Qn, T̂n,

(
gn(t0 +

∑n

j=1
Tj), (zn)∗

)
,

(
gn−1(t0 +

∑n−1

j=1
Tj), (zn−1)∗

))
.

(30)

To eliminate the constraints of Eq.(18e), We replace the
variables in Sec. IV-C.1 from (Z , T , Q) to (Z∗, T , Q),
where Z∗ = ((z1)∗, . . . , (zN−1)∗).

D. Problem Reformulation

Combining the transcription of inequality constraints in
Sec. IV-B and the elimination of equality constraints in

Sec. IV-C, the whole original problem Eq.(18) is finally
reformulated as an unconstrained optimization problem:

min
Z∗,T ,Q

J = (Jo +
∑X

x
λxJx). (31)

Sec. IV-B gives the gradients of J w.r.t. (C,T), but we
change the decision variables in Eq.(31). Based on Eq.(28),
we can obtain the gradients of C w.r.t. (Z , T , Q), which
are detailed in the Eq.(60, 68) in [10]. However, in the new
mapping function Eq.(30), we set zn a matrix with (zn)0 and
(zn)∗ as variables, and (zn)0 is a vector with T as decision
variable. Therefore, to obtain the gradient of J w.r.t. the new
decision variables (Z∗, T , Q), which are required when
solving the final problem Eq.(31), we derive the gradient

∂(zn)0
∂Tk

=
∂gn(tn)

∂tn

∂(t0 +
∑n

j=1 Tj)

∂Tk
=

{
0, n < k

ġn(tn), n ≥ k
.

(32)

E. Implementation Details

1) Parallel Optimization for Different Topologies: Al-
though dynamic obstacles are addressed in many works [11,
18], they only care about obstacle avoidance, ignoring the
spatial topology segmentation brought by dynamic obstacles.
The choice of different topologies has a significant impact on
the execution time of racing, as demonstrated in Sec. V-A.3.
Therefore, in this paper, as shown in Fig. 6, we generate
several trajectories with different topologies split by the
dynamic obstacle. Then we use them in parallel as initial
values for trajectory optimization and finally choose the one
with the shortest flight time for the drone to execute.

2) Numerical Optimization: We adopt L-BFGS3 [25] to
solve the unconstrained optimization problem Eq.(31).

3) Global Planning: For some large-scale scenarios, such
as Sec. V-B, we first generate a global reference trajectory
using a one-segment MINCO trajectory, and then use part of
the global trajectory as the initial value for the optimization
of the local online replanning during flight.

V. EVALUATIONS

In this section, to verify the effectiveness of our con-
tributions summarized in Sec. I, we design three ablation
experiments. Then to validate the practicality of our planning
method, we integrate the method into a complete quadrotor
system, which is applied to 2022 DJI Robomaster Intelligent
UAV Championship2. All the simulation experiments are run
on a desktop equipped with an Intel Core i7-10700 CPU.

A. Ablation Experiments

1) Evaluation for Efficiency Improvement of Time-uniform
MINCO: We compare the computational efficiency of
MINCO and time-uniform MINCO with the same segment
and piece number. For both of them, we test the number
of segments N varied from 2 to 5, while the number of
pieces M = {2, 4, . . . , 10}. Both methods are given the
same initial trajectory for each comparison. The results are

3https://github.com/ZJU-FAST-Lab/LBFGS-Lite

5

0

10

15

t/×𝟏𝟎−𝟓s

42 6 8 10 M

2

3

4

5

N

20.2

26.4

28.5

26.2

26.7

23.6

26.1

26.6

24.5

27.3

23.8

24.0

26.0

25.6

28.1

25.7

25.6

26.7

28.5

25.8

percentage of time reduction/%

Fig. 3: Illustration of the time of a single iteration in the trajectory
optimization. The transparent area represents the more computation time
that MINCO takes than the time-uniform MINCO.

illustrated in Fig. 3, where the time of a single iteration of the
trajectory optimization is visualized. We represent the time
spent by time-uniform MINCO with different colored bars.
The transparent part indicates the additional time required for
MINCO compared to time-uniform MINCO. Additionally,
we show the percentage of time reduction of time-uniform
MINCO over MINCO on each bar.

As shown in Fig. 3, using time-uniform MINCO effec-
tively improves the calculation efficiency, even if the quantity
of segments or pieces varies.

t = 5.99(e)

hard constraint𝜆gate = 104

t = 5.91(d)

𝜆gate = 103

t = 4.87(c)

𝜆gate = 102

t = 2.36(b)

(a)

start

enddynamic gate

moving range

𝜌 = 105

Fig. 4: Illustration of the top view of the results in Sec. V-A.2. The short
thick black lines represent the static gates and the short thick red line
represents the dynamic gate. The circle on the line represents the center
of the gate. The red bar on the red line indicates the movement range of the
dynamic gate. (a) demonstrates the trajectories of the quadrotor completing
the track under different soft constraint weights and the same time weight
ρ = 105. (b)-(e) represent the moments for the quadrotor to pass through
the dynamic gate with different parameters.

11.84 4.11 0.58

3.08 0.72 0.10

2.05 0.09 0.01𝟏𝟏𝟏𝟏𝟑𝟑

0

0

0

soft

𝟏𝟏𝟏𝟏𝟒𝟒

𝟏𝟏𝟏𝟏𝟓𝟓

𝟏𝟏𝟏𝟏𝟐𝟐 𝟏𝟏𝟏𝟏𝟑𝟑 𝟏𝟏𝟏𝟏𝟒𝟒𝜆𝜆gate
𝜌𝜌

4.64 9.66 11.70

10.49 11.91 25.79

16.36 26.00 26.72

12.01

12.10

12.16

soft

distance to gate12m 0m flight time4.5s 27s

𝟏𝟏𝟏𝟏𝟐𝟐 𝟏𝟏𝟏𝟏𝟑𝟑 𝟏𝟏𝟏𝟏𝟒𝟒

(a) (b)

hard
(ours)

hard
(ours)

Fig. 5: Results of experiments in Sec. V-A.2, where time weight ρ and soft
constraint weight λgate vary from 103 to 105 and 102 to 104, respectively.
(a) shows the average distance from the trajectory to the corresponding n-
th gate at the moment tn, from far to near, the color changes from red to
green. (b) displays the flight time with different parameters, from less to
more, and the color varies from green to red.

2) Evaluation for constraints for Precise Gate Crossing:
We compare our method proposed in Sec. IV-C.2 with a
commonly used soft constraint method which uses penalty
function λgate∥σ(tn)− gn(tn)∥2, where λgate is the weight.
The experiment scenario is set up as shown in Fig. 4.(a),
where the quadrotor is required to pass through 5 gates in
order. The red dynamic gate moves at 2 m/s horizontally back
and forth from side to side within a certain range, which is
indicated by the red bar in Fig. 4.(a). To compare fairly, each
trajectory optimization is given the same initial value and
we set other parameters that are not about this experiment
the same. We set different time weight ρ and soft constraint
weights λgate for the experiments.

The results are illustrated in Fig. 5, soft constraint method
struggles to find suitable parameters to trade off the shortest
possible execution time with precise gate crossing. To elab-
orate, when choosing the parameters that achieve a small
distance to gate as shown in the green area of Fig. 5.(a),
the soft constraint method causes poor results in terms of
the time of flight as shown in the red area of Fig. 5.(b).
Conversely, when choosing the parameters that aim for the
shortest possible flight time in the green or yellow area of
Fig. 5.(b), the soft constraint method is difficult to precisely
crossing the gate, which corresponds to the red area of
Fig. 5.(a). In contrast, our hard constraint approach only
needs to focus on adjusting the time weight ρ to shorten
the execution time, while maintaining precise traversal.

To more visually demonstrate the importance of accurate
traversal, in Fig. 4, we visualize the trajectories of our
method and the soft constraint method when the time weight
ρ = 105. The results show that, compared to the soft
constraint method, our method guarantees accurate traversal
for both dynamic and static gates.

3) Evaluation for Choosing Different Topologies Seg-
mented by Dynamic Obstacles: We use a typical scenario
to verify the usefulness of this engineering consideration.
As shown in Fig. 6.(a), the quadrotor is required to take off
from the start point, pass through two gates in order, and
then reach the end point. Between the two gates, there is
a dynamic obstacle which we model as an ellipsoid. The
movement of its central position with respect to time we

start

start

end

dynamic obstacleobstacle’s trajectory

end

time

0s 5.6s

Traj 1

Traj 2

Traj 3

Traj 4

(a)

(b)

Fig. 6: Illustration of the results in Sec. V-A.3. (a) demonstrates the
experiment setup. (b) shows the trajectories optimized based on initial values
from different topological.

TABLE II: Trajectories of Different Topologies

Traj number 1 2 3 4

execution time (s) 3.82 3.79 5.60 4.38
trajectory length (m) 20.41 20.05 22.97 20.64

represent by a colored trajectory in Fig. 6.(a). We set the
trajectories through different topologies past the obstacle as
initial values. The final trajectories after optimization are
illustrated in Fig. 6.(b), the bolded trajectory is significantly
faster than the trajectories of other topologies. Meanwhile,
we present the execution time of each trajectory in Tab. II,
where the choice of different topologies has a considerable
impact on the execution time, which confirms the validity of
our evaluating and choosing different topologies segmented
by the dynamic obstacle.

B. 2022 DJI Robomaster Intelligent UAV Championship

We take part in the second event Autonomous Racing of
this competition, where the quadrotor is required to fly in a
dynamic and challenging environment as fast as possible.
The racing track is about 160 m long, which contains
a series of static gates (as shown in Fig. 7.(a)), moving
obstacles, dynamic gates with different movement patterns
(as illustrated in Fig. 1), and a shaped gate which demands
to plan SE(3) trajectory (as shown in Fig. 7.(b)). The radius
of the gates is 1 m. The positions of the gates are provided
ahead of each race up to approximately 2 m uncertainty.
This requires the drone to be able to detect gates and make
trajectory adjustments in real time, such as online replanning
based on the detection results.

TABLE III: Parameters of Planning

N M m λt λb λg λd

2 4 3 100 100 10000 10000

In the competition, we integrate the proposed framework
into a customized quadrotor system, combining localization,
detection, and control modules. For the planning module, the
parameters defined in Sec. IV of trajectory optimization are

(a)

(b)

Fig. 7: Illustration of the flight of our system in the 2022 DJI Robomaster
Intelligent UAV Championship.

shown in Tab. III. The average time overhead of replan is
16.6 ms when considering SE(3) for narrow gaps and 7.0 ms
when not considering. We opt for VINS-MONO [26] as the
localization module. Then we use the point cloud from the
depth image for the detection of gates and dynamic obstacles.
Finally, we adopt MPC [17] as the control method to track
the planned aggressive trajectory.

We visualize the flight of our system in the competition in
Fig. 1 and 7. Readers can get a better understanding of the
experiment from the attached video. Additionally, we show
the final results and rankings in Tab. IV, where our system
is significantly faster than the other teams, demonstrating
the great performance of our method for racing in dynamic
environments.

TABLE IV: Ranking of Competition Results1

rankings our team 2nd place 3rd place . . .

completion time (s) 22.0 50.3 76.9 . . .

VI. CONCLUSION

In this paper, we propose a polynomial-based trajectory
planning method to address the 4 requirements for racing
in dynamic environments presented in Sec. I. Efforts in
trajectory representation, hard constraint designed for cross-
ing waypoints, and parallel evaluation of trajectory under
different topologies, effectively improve replan efficiency,
the accuracy of waypoint traversal, and flight time when
facing dynamic obstacles. Finally, the method is applied to
the DJI competition, and the outstanding result proves the
good performance of our method.

REFERENCES

[1] A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online
replanning for agile quadrotor flight,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 7730–7737, 2022.

[2] Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-racing: An
open-source strong baseline for se(3) planning in autonomous drone
racing,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp.
8631–8638, 2021.

[3] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p.
eabh1221, 2021.

[4] D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka,
Y. Song, G. Cioffi, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing: A survey,” arXiv e-prints, pp. arXiv–2301, 2023.

[5] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig,
M. Muglikar, and D. Scaramuzza, “Alphapilot: Autonomous drone
racing,” Autonomous Robots, vol. 46, no. 1, pp. 307–320, 2022.

[6] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “Flightgog-
gles: Photorealistic sensor simulation for perception-driven robotics
using photogrammetry and virtual reality,” in 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2019, pp. 6941–
6948.

[7] H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler,
D. Falanga, A. Simovic, D. Scaramuzza, S. Li, M. Ozo, C. De Wagter,
et al., “Challenges and implemented technologies used in autonomous
drone racing,” Intelligent Service Robotics, vol. 12, pp. 137–148, 2019.

[8] J. A. Cocoma-Ortega and J. Martı́nez-Carranza, “Towards high-
speed localisation for autonomous drone racing,” in Advances in
Soft Computing: 18th Mexican International Conference on Artificial
Intelligence, MICAI 2019, Xalapa, Mexico, October 27–November 2,
2019, Proceedings 18. Springer, 2019, pp. 740–751.

[9] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive
contouring control for time-optimal quadrotor flight,” IEEE Transac-
tions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.

[10] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[11] Y. Wang, J. Ji, Q. Wang, C. Xu, and F. Gao, “Autonomous flights
in dynamic environments with onboard vision,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2021, pp.
1966–1973.

[12] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation, 2011, pp. 2520–2525.

[13] R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint
flight in cluttered environments,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 5719–5726, 2022.

[14] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal of
Robotics Research, vol. 35, no. 5, pp. 528–564, 2016.

[15] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in 2017 IEEE/RSJ international conference on intelligent robots and
systems, 2017, pp. 2872–2879.

[16] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se (3),” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[17] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking of
high-speed trajectories,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620–626, 2017.

[18] G. Chen, S. Wu, M. Shi, W. Dong, H. Zhu, and J. Alonso-Mora,
“Rast: Risk-aware spatio-temporal safety corridors for mav navigation
in dynamic uncertain environments,” IEEE Robotics and Automation
Letters, 2022.

[19] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2020.

[20] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[21] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2013.

[22] L. S. Jennings and K. L. Teo, “A computational algorithm for
functional inequality constrained optimization problems,” Automatica,
vol. 26, no. 2, pp. 371–375, 1990.

[23] W. H. Press, H. William, S. A. Teukolsky, A. Saul, W. T. Vetterling,
and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of
Scientific Computing. Cambridge University Press, 2007.

[24] Z. Wang, C. Xu, and F. Gao, “Robust trajectory planning for spatial-
temporal multi-drone coordination in large scenes,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2022, pp.
12 182–12 188.

[25] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1,
pp. 503–528, 1989.

[26] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

https://books.google.com.hk/books?id=1aAOdzK3FegC
https://books.google.com.hk/books?id=1aAOdzK3FegC

	Introduction
	Related Work
	Trajectory Representation
	MINCO Trajectory
	Time-uniform MINCO Trajectory

	Polynomial-based Online Planning
	Problem Formulation
	Inequality Constraints Transcription
	Actuator Limits with Drag Effects Gt and Gb
	Narrow Gap Crossing Gg
	Dynamic Obstacle Avoidance Gd

	Equality constraints Elimination
	Boundary Conditions and Continuity Constraint
	Gate-through Constraint

	Problem Reformulation
	Implementation Details
	Parallel Optimization for Different Topologies
	Numerical Optimization
	Global Planning

	Evaluations
	Ablation Experiments
	Evaluation for Efficiency Improvement of Time-uniform MINCO
	Evaluation for constraints for Precise Gate Crossing
	Evaluation for Choosing Different Topologies Segmented by Dynamic Obstacles

	2022 DJI Robomaster Intelligent UAV Championship

	Conclusion
	References

