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Abstract— It is important for daily life support robots to
detect changes in their environment and perform tasks. In
the field of anomaly detection in computer vision, probabilistic
and deep learning methods have been used to calculate the
image distance. These methods calculate distances by focusing
on image pixels. In contrast, this study aims to detect semantic
changes in the daily life environment using the current devel-
opment of large-scale vision-language models. Using its Visual
Question Answering (VQA) model, we propose a method to
detect semantic changes by applying multiple questions to a
reference image and a current image and obtaining answers in
the form of sentences. Unlike deep learning-based methods in
anomaly detection, this method does not require any training
or fine-tuning, is not affected by noise, and is sensitive to
semantic state changes in the real world. In our experiments,
we demonstrated the effectiveness of this method by applying it
to a patrol task in a real-life environment using a mobile robot,
Fetch Mobile Manipulator. In the future, it may be possible to
add explanatory power to changes in the daily life environment
through spoken language.

I. INTRODUCTION

Robots are becoming capable of performing a variety of
life-support behaviors. For robots to spontaneously perform
these life-support actions, it is necessary to capture changes
in the daily life environment in which the robot is operating.

In the field of computer vision, the task of capturing
changes in images includes anomaly detection. Research on
anomaly detection has been conducted for many years. Meth-
ods based on probabilistic models like Bayesian networks[1]
and hidden Markov models[2] are used for it, and in recent
years, deep learning methods have been used to deal with
complex situations. For example, some use Variational Auto
Encoder[3], some use generative models such as GAN[4].
These methods require collecting a large amount of data
to train the model. In contrast, our study uses language to
detect scene difference in daily life environment. Starting
with Transformer[5], models such as BERT[6], T5[7] have
demonstrated remarkable performance in language tasks.
Language models are also beginning to be introduced into
robotics fields[8][9][10][11][12][13][14]. In computer vision,
large-scale vision-language models trained using these lan-
guage models have been studied extensively, starting with
VQA[15], and in recent years, trained models capable of
performing various vision-language tasks, such as CLIP[16],
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“what does this image describe?”
“what is on this plane?”
…

A: “a stove with a tea kettle on 
top of it”
A: “a kettle on a stove”
…

Usually, there’s no kettle…

Fig. 1. Semantic scene difference detection using spoken language by the
robot. The robot perceives its daily life environment in the space of spoken
language and uses its semantic differential to detect changes.

GLIP[17][18], and OFA[19] have begun to be made avail-
able. Unlike image recognition models such as SSD[20] and
VGG[21], these models are difficult to train locally on a
small number of GPUs, but they are trained on a large
amount of text and image datasets with rich computational
resources and have knowledge about the language of human
society and images. Therefore, it is possible to accurately
extract features from a single image and translate them into
language. There are some studies that use pre-trained models
for anomaly detection in videos and datasets[22][23].

Based on this background, we propose a method to apply
a large-scale vision-language model that has already been
trained to calculate scene distance in daily life environment
for a mobile robot. The large-scale model answers questions
about the image captured by the mobile robot’s camera
and compares the sentences between reference and current
images to detect how different the situation is in the same
location. This sentence comparison is performed by prepar-
ing multiple questions in the VQA task and numerically
comparing the answers between reference and current image.
This method requires only one reference image for each
location and does not require any model re-training.

II. SCENE DIFFERENCE DETECTION USING
PRE-TRAINED VISION LANGUAGE MODELS

A. Overview of semantic scene difference detection system
using pre-trained vision-language model

The concept of this research is shown in Fig. 1. Robots can
capture semantic changes by comparing situations in their
daily life environment through language. It is important to
quantify these changes to detect anomalies and initiate tasks
in the daily life environment based on these results. Fig. 2
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Fig. 2. Overall view of semantic scene difference quantifying system using pre-trained vision-language model. The robot uses a large-scale vision-language
VQA model to compare reference and captured images, deriving their semantic distance by analyzing the answers to questions about the images. The
distance between the answer sentences is calculated using doc2vec, resulting in two vectors whose distance determines the semantic distance between the
images. Weights can be given to elements of the vectors to reduce the effect of question proximity.

Fig. 3. Examples of differences in output sentences depending on the
words used. Pronouns and singular and plural forms slightly change the
output sentences.

shows an overall view of the method used to quantifying its
semantic change. The patrol robot compares the reference
and captured images and derives their semantic distance. A
large-scale vision-language VQA model is given multiple
question sentences, a reference image, and a captured image,
and the answer sentences for each image are obtained. The
distance between the answer sentences corresponding to the
same question sentence in the two images is determined
by doc2vec, and two vectors of the same dimension as the
number of question sentences are derived. By finding the
distance between these two vectors, the semantic distance
between the two images can be obtained, but by giving
appropriate weights to the elements of the vectors, the effect
of the semantic proximity of the questions can be reduced.

B. Features of Large-Scale Vision-Language Models in
Scene Difference Detection Tasks

In this study, we use OFA as a large-scale vision-language
model. There are five types of tasks for generating rectangles

and text from images: Visual Grounding, Grounded Caption-
ing, Image Text Matching, Image Captioning, and Visual
Question Answering. Image Captioning (IC) and Visual
Question Answering (VQA) are suitable for explaining the
situation, as they allow the user to ask questions and obtain
the answers. VQA in OFA sometimes outputs strange sen-
tences like “prototype prototype prototype of table”, “messily
messy office space” so we use IC.

The model outputs slightly different answers to questions
with similar expressions, as shown in Fig. 3. Since the
output of the model changes depending on the prepositions,
pronouns, and verbs used, it makes sense to input a variety
of expressions, even for the similarly worded questions.

C. Evaluation of Scene Difference

We describe a method for calculating the scene difference
distance at a patrol location. As shown in Fig. 2, dozens
of questions are prepared in advance to ask a large-scale
model to describe a situation. Suppose that m questions are
prepared, and m answers can be obtained by inputting a
single image and m questions to OFA. The questions and
answers are transformed into a 768-dimensional vector via
all-mpnet-base-v2 [24], a pre-trained language model that
further fine-tunes MPNet [25]. Define these as

q1, q2, ..., qm

a1,a2, ...,am

respectively. Let

aref
1 ,aref

2 , ...,aref
m



be the sentence vectors of the reference responses, and define
the Scene Distance SD as

SD =

m∑
k=1

wkDc(ak,a
ref
k )

using the weights wk. Dc is the cosine distance, defined by
follows

Dc(p, q) = 1− p · q
||p||||q||

Normally, the weights wk is calculated as follows

wk =
1

m
(1)

However, this method makes it difficult for questions of dif-
ferent types to be reflected in the scene distance. Therefore,
we propose the following method to calculate the weights w

Mrel =


Dc(q1, q1) Dc(q1, q2) · · · Dc(q1, qm)
Dc(q2, q1) Dc(q2, q2) · · · Dc(q2, qm)

...
...

. . .
...

Dc(qm, q1) Dc(qm, q2) · · · Dc(qm, qm)



=


0 Dc(q1, q2) · · · Dc(q1, qm)

Dc(q1, q2) 0 · · · Dc(q2, qm)
...

...
. . .

...
Dc(q1, qm) Dc(q2, qm) · · · 0



v =


1
1
...
1


w =

Mrelv

||Mrelv||
(2)

The weights w in (2) have the function of decreasing the
contribution of similar meaning questions and increasing
the contribution of questions with different meanings from
others.

The further apart the meanings of the questions are, the
more scene difference can be captured. We define Quality of
Questions QoQ, a measure of the goodness of the questions
being chosen, as

QoQ =
∑
i,j

Mrelij

This is the sum of all the elements of Mrel. The more
different the meanings of the questions are from each other,
the larger the sum becomes, so the larger QoQ is, the better
the questions are selected.

III. EXPERIMENTS

Scene difference detection experiments were conducted in
the environment of the 73B2 laboratory in Engineering Bldg.
2 at the University of Tokyo. As shown in Fig. 4, this facility
is a laboratory for robots, but it is also equipped with a
kitchen, dining table, and work desk, making it suitable for
evaluating the proposed method in multiple scenes. We use

desk spot

kitchen spot
table spot

Fig. 4. Experimental environment and name of the spot. Fetch Mobile
Manipulator navigates to each spot for scene difference detection and points
the head camera to the spot to take pictures. Locations where the robot would
be expected to perform life support tasks were selected: dining table (table
spot), kitchen (kitchen spot), and office desk (desk spot).

TABLE I
NAVIGATION COORDINATES FOR EACH SPOT

Spot Name x[m] y[m] yaw[rad]
table spot 4.036 7.344 1.753

kitchen spot 1.559 7.231 2.296
desk spot 4.319 6.108 -2.231

Fetch Mobile Manipulator[26] from Fetch Robotics to move
to the table spot, kitchen spot, and desk spot where demand
for life support behaviors is likely to be high in the figure,
move the head camera to a specific position, and capture the
scene. The coordinates for capturing these images are shown
in Table I, and the angles of the torso and head are shown
in Table II. In this experiment, the robot navigated to these
spots and moved the height of the torso and the angle of
the head camera to the target position and angle each time,
so there were slight differences in position and posture each
time. We performed this imaging four times a day for two
months and collected 145 images at the table spot, 144 at
the kitchen spot, and 141 at the desk spot. The images used
below are representative images extracted from this data.

We prepared 67 questions to express the situation. The
questions include

• what does this image describe?
• what is being done?
• what objects are seen?
• what is on it?
• how many people?

A. Scene Distance Measurement Using All Questions

The spot shown in Fig. 4 was imaged and the scene
distance was quantified with the proposed method using all
67 questions. The reference images at the table spot, kitchen
spot, and desk spot and the images taken at other times are
shown in Fig. 5. The graphs of the scene distance at that
time are shown in Fig. 6, Fig. 7 and Fig. 8, respectively.

In table spot A, the placement of the remote control and
keyboard is slightly different but almost the same as in



Reference A B C D

Reference A B C

table spot

kitchen spot

Reference A B C D

desk spot

Fig. 5. Images of table spot, kitchen spot, and desk spot taken by Fetch Mobile Manipulator. Only one image of the reference state exists for each spot.
Images A, B, C, and D taken at different times are compared with this reference image.

TABLE II
ROBOT POSTURE FOR TAKING A PICTURE AT EACH SPOT

Spot Name torso[mm] neck yaw[deg] neck pitch[deg]
table spot 21.57 -2.170 19.57

kitchen spot 21.56 3.178 16.32
desk spot 21.58 -1.116 10.83

Normal; in B, a cardboard box and a bag are placed; in
C, a person is working on a PC; and in D, food containers
are scattered around. C had the highest scene distance.

In kitchen spot, A has the kettle on the induction stove
shifted to the next position; B has a pot; C has food and
cooking utensils on the sink and a frying pan on the induction
stove. C had the highest scene distance.

In the desk spot, A is in the same state as Normal; B has
a laptop PC with a monitor; C has a person working; D has
two people working. C had the highest scene distance.

B. Evaluation of Variance Values for Two Different Weight-
ing Methods

We evaluated the weighting method proposed in Sec.II-C
for calculating the scene distance at the largest scene distance
for each spot. 10 questions are randomly selected from
67 questions, and 10,000 sets are created. For each set of
questions, QoQ of the questions is calculated. The horizontal
axis represents the QoQ, and the vertical axis represents the
variance of the scene distance for each separation bin, as
plotted in Fig. 9，Fig. 10 and Fig. 11. Both the methods
Eq.(1) and Eq.(2) in Sec.II-C are plotted. The variance of
both methods decreases as QoQ increases and indicates that
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Fig. 6. Scene distance and feature of four types of scenes at table spot.
The scene distance of image A, which is almost the same situation as the
reference, is small, and the scene distances of the other images change with
the degree of semantic difference in the situation.

the variance of the proposed method is smaller in regions
where QoQ is small.

IV. DISCUSSIONS

A. Qualitative Evaluation of Scene Distance

We discuss the results of Fig. 6, Fig. 7 and Fig. 8. In the
table spot A and the kitchen spot A, the scene distances were
less than 0.2 for the movement of the remote controller and
the movement of the kettle, and the scene distances were not
high for slight movement of the objects. The scene distance
of A in the desk spot is about 0.14, and the change in the
scene distance is considered to be small in relation to the
robot’s navigation and head posture deviation. The scene
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Fig. 7. Scene distance and feature of three types of scenes at kitchen spot.
The scene distance of image A, which is almost the same situation as the
reference, is small, and the scene distances of the other images change with
the degree of semantic difference in the situation.
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Fig. 8. Scene distance and feature of four types of scenes at desk spot.
The scene distance of image A, which is almost the same situation as the
reference, is small, and the scene distances of the other images change with
the degree of semantic difference in the situation.

distance of C in the kitchen spot is larger than that of B,
indicating that the scene distance can describe the amount of
things and the complexity of the situation. The scene distance
of C in the desk spot is higher than that of B. It is clear
that the scene distance increases when the complexity of the
situation where the objects in the image remain unchanged
and a person starts working is added. The above results
suggest that, with appropriate thresholding, it is possible to
detect semantic anomaly.

B. Variation in Scene Distance due to Question Bias

We discuss the results of Fig. 9, Fig. 10 and Fig. 11．
Depending on how the questions are selected, the scene
distance will have a wide range of values: for a small QoQ,
the variance tends to be large, and for a larger QoQ, the
variance tends to be small. This is because when QoQ is
small, either all the questions are close in meaning, or there
are a small number of questions with different meanings
mixed in with the close meaning questions, and the output
similarity is affected by the close meaning questions. The
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Fig. 9. Comparison of variance of scene distance in C in table spot for
same weights and suggested methods. Our method has a smaller variance
regardless of QoQ.
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Fig. 10. Comparison of variance of scene distance in C in kitchen spot for
same weights and suggested methods. Our method has a smaller variance
regardless of QoQ.

proposed method achieves a smaller variance when QoQ
is small than when the same weights are used. This is
because the contribution of a small number of questions with
different meanings is increased and the influence of many
questions with the same meaning is decreased. The effect
of this variance suppression varies depending on the scene
conditions. This is thought to be due to the influence of
the similarity of the output responses, and it is necessary to
examine the contribution of these responses to each other.

C. Variation in Scene Distance due to Question Content

Scene Distance varies depending on the questions used.
In the experiment, we prepared many variations of the
questions to capture a wide range of semantic differences.
The questions used can be customized for each task. For
example, if the user wants to classify the state of a person,
it is possible to input questions focusing on the presence
or movement of the person. In the future, when performing
clustering and anomaly detection in daily life environments,
the proposed system will allow users to specify clusters they
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Fig. 11. Comparison of variance of scene distance in C in desk spot for
same weights and suggested methods. Our method has a smaller variance
regardless of QoQ.

wish to classify and anomalies they wish to detect using
natural language questions.

V. CONCLUSIONS

In this study, we proposed a scene difference detec-
tion method using a pre-trained large-scale vision-language
model for mobile robots to detect changes in our daily life
environment. Multiple questions are prepared in advance,
and reference images and current images are input to the
model together with the question sentences, and the current
difference is calculated by quantifying the difference between
each answer sentence. In this process, the similarity of the
meanings of the questions is taken into account, and the
scene distance is calculated by weighting the value of the
distance between the answers. Experimental results using
these methods showed that, first, the semantic scene distance
of the situation can be quantified and that the contribution
of weak changes in the object, robot navigation, and posture
errors to the scene distance is small. Second, the proposed
weighting method was found to reduce the variance of the
scene distance due to differences in the meaning of the
selected questions. This method eliminates training costs
in the local environment and may accelerate the spread of
robots that can detect any semantic change in the living
environment. The proposed method can be directly applied
to a system in which a robot spontaneously decides whether
or not to help a person by using questions about the person’s
actions or decides whether or not to clean up a room by using
questions about the state of the objects in the room based on
the normal state of its environment.

As a prospect of this research, it has the potential not
only to quantify scene distances from the obtained answer
sentences but also to explain changes using a spoken lan-
guage with a large-scale language model such as GPT-3[27].
In addition, constructing a system that clusters environmental
conditions based on the obtained scene distance and unsuper-
vised learning may also allow the robot to perform accurate
tasks based on the conditions.
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