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Abstract— We present an approach to task scheduling in
heterogeneous multi-robot systems. In our setting, the tasks to
complete require diverse skills. We assume that each robot is
multi-skilled, i.e., each robot offers a subset of the possible skills.
This makes the formation of heterogeneous teams (coalitions)
a requirement for task completion. We present two centralized
algorithms to schedule robots across tasks and to form suitable
coalitions, assuming stochastic travel times across tasks. The
coalitions are dynamic, in that the robots form and disband
coalitions as the schedule is executed. The first algorithm we
propose guarantees optimality, but its run-time is acceptable
only for small problem instances. The second algorithm we
propose can tackle large problems with short run-times, and is
based on a heuristic approach that typically reaches 1x-2x of
the optimal solution cost.

I. INTRODUCTION

The parallelism offered by multi-robot systems is a natural
fit for missions in which large numbers of tasks must be
achieved as quickly as possible [1]. In realistic settings,
each task requires robots with specific skills, such as specific
sensors, actuators, or computational resources. However, as
the diversity of the tasks increases and the set of required
skills grows, it becomes infeasible to envision swarms of
identical robots that can interchangeably perform any task.
Rather, specialization and redundancy become desirable due
to better scale economy and expected long-term resilience
[2], [3].

The goal of this paper is to contribute to realizing this
vision. In our setting, a heterogeneous swarm of multi-skilled
robots must perform a set of tasks as quickly as possible. We
assume that, due to the diversity of the tasks, the robot must
form coalitions, i.e., teams of robots that, combined, offer
the required skills for each task to be completed [4]–[6].
In addition to heterogeneity, our problem setting has two
crucial features: (i) the diversity of the tasks also requires
the coalitions to be dynamically formed and disbanded on a
per-task basis; and (ii) all the required robots in a coalition
must be present at the same time for the task to progress.
These two features imply that, along with the combinatorial
problem of forming coalitions, the robots must also schedule
the optimal task agenda in a coherent manner.

The key difference between our work and existing works is
that we consider simultaneously multi-skill coalition forma-
tion and multi-robot task scheduling for a complete coverage
problem. With reference to the Korsah et al. taxonomy [7],
this problem is an instance of cross-schedule dependencies
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Fig. 1: A heterogeneous swarm of multi-skilled robots form-
ing coalitions. The tasks in this diagram are excavation of
blue resources (bottom left), and green material sampling
(center). The excavation task requires a resource sensor, an
excavating arm, and a bucket to carry resources. Material
sampling requires a scanner to find and locate the sample,
and an arm on a legged robot.

(XD), single-task robots (ST), multi-robot tasks (MR), and
time-extended assignment (TA). In addition, to make our
problem setting more realistic, we enrich our formulation
with stochastic travel times across tasks [8].

We study two centralized algorithms to solve this problem.
The first algorithm is optimal, but it scales poorly with the
number of tasks, robots, and skills. In contrast, the second
method scales to hundreds of tasks, robots, and skills. Even
though the latter method offers no optimality guarantees, we
empirically show that its performance is within a factor of 2
with respect to the optimum.

The rest of this paper is structured as follows. In Sec. 2 we
survey related work on coalition formation and multi robot
scheduling. In Sec. 3 we discuss the problem formulation
for both of our approaches. In Sec. 4 we analyze the results
of both the methods and compare them with each other. We
conclude the paper in Sec. 5.

II. RELATED WORK

The problems of task scheduling and coalition formation
have received wide attention in the literature. We identified
several axes to categorize relevant work in Table I.

Several works study coalition formation without schedul-
ing. Rahwan et al. [9] and Guo et al. [10] focus on ho-
mogeneous coalition formation. Rahwan et al. [9] considers
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static coalitions in which coalitions, once formed, are kept
constant throughout the experiment. Guo et al. [10] compare
static and dynamic coalition formation, in which the robots
are allowed to change coalition from task to task.

Recently, several researchers considered coalition forma-
tion of heterogeneously skilled robots [11]–[13]. However,
they focus on coverage and connectivity problems, neglecting
scheduling aspects. Similarly, Barton et al. [4] study coalition
formation in a network of heterogeneously skilled agents.
At the opposite end of the spectrum, Parker et al. [14] and
Visser et al. [15] study search-and-rescue scenarios with a
heterogeneous set of robots and focus on scheduling them
without coalition formation.

Significant effort has been devoted to combining coalition
formation with task scheduling [5], [6], [16]–[18]. However,
all of these works assume the robots to be homogeneously
skilled.

Some of the closest research to this paper studies coalition
formation with heterogeneous robots that also produces an
optimal plan with cross-scheduling dependencies [19]–[22].
However, these works do not consider multi-skilled robots;
rather, each robot is a specialist of a specific skill.

Prorok et al. [23], [24] and Kosak et al. [25] address multi-
skilled robots. In the work of Prorok et al., [23], [24], the
robots offer a subset of the possible skills, whereas Kosak
et al. [25] allow “multipotent” robots to modify themselves
and adapt to the task at hand. However, all these works focus
on coalition formation without a scheduling component.

Amador et. al. [26], [27] addressed a comparable issue,
the ‘Law enforcement problem’ (LEP), which assigns police
officers to tasks with unknown locations, arrival times, and
importance levels. Although LEP considers cross-scheduling
dependencies for multi-skilled agents, their problem state-
ment differs significantly from ours. Their approach con-
cerns time-sensitive tasks with various importance levels and
agents who can abandon or ignore tasks if they do not offer
a higher utility. In contrast, our problem assumes all tasks
are equally important and not time-sensitive. Moreover, our
agents cannot abandon any tasks, and all tasks must be
completed.

We are also interested in the presence of stochastic aspects
in the problem statement. The works considered so far lack
such a component, but recent research has started to include
it. Nam et al. [8], for example, include stochastic travel times
in multi-agent task scheduling; however, their work does not
require coalitions formation. In the literature on coalitions,
stochastic aspects concern resilience and reconfiguration [2],
[28], [29], without a scheduling component.

III. APPROACH

A. Preliminaries

We consider an environment in which a set of m tasks
is scattered. Each task requires a specific set of skills. A
task can require any number of skills. In total, across all
tasks, l skills are required; some might be in higher demand
than others. The mapping between tasks and required skills

TABLE I: Comparison of the related work to the present
work. Legend: Coalt: Coalition, Heter: Heterogeneous set of
robots, Sched: Scheduling, Stoch: Stochasticity of any nature,
M-Skill: Multi-skilled robots.

Work Coalt Heter Sched Stoch M-Skill

[9], [10]
[4], [11]–[13]

[5], [6], [16]–[18]
[14], [15]
[19]–[22]

[2], [28], [29]
[8]

[23]–[25]
[26], [27]
this work

is captured by the binary matrix R, whose element rjs is 1
if task j requires skill s and 0 otherwise.

A swarm of n robots is deployed in the environment and
must perform the tasks as quickly as possible. The robots
may start from the same ‘depot’ or be scattered throughout
the environment. We assume that each robot offers a subset
of the possible skills, and the robots combined offer all the
required skills for the tasks to be completed. We restrict each
robot to have a maximum of l/2 skills. The binary matrix Q
encodes the mapping between robots and skills. An element
qis is 1 if robot i possesses skill s and 0 otherwise.

B. Optimal Formulation

We first discuss a Linear Program that produces the
optimal solution to the problem. We use a binary assignment
tensor (X) for the formulation. In this tensor, if an element
xijk is 1, then robot i attends task k right after task j;
otherwise the element is 0. We refer to the robot’s location
at the start and the end of the experiment as “task 0” and
“task m+ 1” respectively.

We denote with T the cost tensor that stores the travel
time from one task to another. Because the robots might
start from different locations, the travel cost from task 0 to
the other tasks differs from robot to robot. For this reason,
tijk denotes the travel time for robot i to navigate from task
j to task k. Travel times at this stage are deterministic; we
will explain how to handle stochastic times in Sec. III-B.4.

1) Valid schedule generation: We now discuss the con-
straints necessary to generate valid schedules for the robots.
Every robot i must start from task 0 (initial location) exactly
once (Eq. (1)) and finish its schedule at task (m+ 1) (final
location) exactly once (Eq. (2)). Therefore, task 0 is exit-only
(Eq. (3)) and task (m+ 1) is entry-only (Eq. (4)).



TABLE II: Table of parameters and variables

Symbol Description

l Total number of skills in a configuration
m Total number of tasks in a configuration
n Total number of robots in a configuration
Q Binary matrix for mapping between robots and skills
R Binary matrix for mapping between tasks and requirements
T Cost tensor
T s Matrix for the stochastic buffer time for travel
T e Vector for execution time of the tasks
X Binary assignment tensor
Y Matrix for arrival times of the robots at tasks
Y max Vector for the tasks’ execution start times
Z Matrix for how many robots offer each skill
Zb Matrix to denote excess skills at the tasks

∀i
m+1∑
k=1

xi0k = 1 (1)

∀i
m∑
j=0

xij(m+1) = 1 (2)

∀i
m+1∑
j=1

xij0 = 0 (3)

∀i
m∑

k=0

xi(m+1)k = 0 (4)

For what concerns the other tasks [1,m], we impose that a
task cannot appear twice in a robot’s schedule. To this effect,
a robot can enter a task k at most once (Eq. (5)) and exit
it at most once (Eq. (6)). In addition, if a robot has visited
a task j, it must leave it, and it cannot leave it without first
visiting it (Eq. (7)). Finally, robots cannot dwell at a task
after visiting it (Eq. (8)).

∀i∀k\{0,m+ 1}
m∑
j=0

xijk ≤ 1 (5)

∀i∀j\{0,m+ 1}
m+1∑
k=1

xijk ≤ 1 (6)

∀i∀j\{0,m+ 1} (

m∑
k=0

xikj =

m+1∑
k=1

xijk) (7)

∀i∀j xijj = 0 (8)

These constraints could result in schedules where a robot
travels along multiple different paths at the same time. There
might be one valid path, starting from task 0 and ending at
task m + 1, and an invalid path, looping between three or
more tasks. To solve this, we add “lazy constraints” that
reject a candidate solution if it contains such loops. The
algorithm to detect loops is reported in Alg. 1. Intuitively, the
algorithm checks the number of tasks covered in the valid
path from 0 to m + 1. It then compares this number with
the total number of tasks covered in the whole schedule.
Dissimilarity in these two numbers indicates the existence
of an invalid path in the schedule.

Algorithm 1 Detecting loops in a candidate solution
for each robot i do

next ← 0
count ← 0
while next is not m+ 1 do

next ← argmax
k

(xi,next,k)

count ← count + 1
end while
visited ←

∑m+1
j=0

∑m+1
k=0 xijk

if count ̸= visited then
return solution is not valid

end if
end for
return solution is valid

2) Skill allocation: To satisfy the skills required by the
tasks, a robot i must possess at least one of the required
skills to attend a task k ∈ [1,m].

∀i∀k\{0,m+ 1}
m∑
j=0

xijk ≤
l∑

s=0

qisrks. (9)

For a schedule to be valid, each task must have robots with
the required skills. To achieve this, we introduce matrix Z,
where zks indicates the number of robots that offer skill s
required for task k (Eq. (10)). We ensure that each element
in Z is greater than or equal to the corresponding element
in the skill requirement matrix R (Eq. (11)).

∀s∀k\{0,m+ 1} zks =

n∑
i=0

m∑
j=0

xijkqis (10)

∀s∀k\{0,m+ 1} zks ≥ rks. (11)

The above constraints theoretically allow for a task to have
more skills than required. In general this is unavoidable,
because the robots contributing to a task might have over-
lapping skills while also contributing unique ones. However,
there is a benefit in avoiding schedules where certain tasks
are attended by superfluous robots, i.e., robots that have some
of the required skills, but none of them is unique within
the coalition. The benefit is that rejecting superfluous robots
makes the search space much smaller, significantly reducing
run-times as we empirically observed in the experiments we
ran during early phases of this work.

To identify superfluous robots, we use the binary matrix
Zb (Eq. (12)) where zbks equals 1 if skill s is excessive for
task k, and 0 otherwise.

∀s∀k\{0,m+ 1} zbks =

{
0 if zks ≤ rks

1 otherwise.
(12)

We then impose that, if a robot i attends a task k, the robot
must have at least one skill that is not in excess. In Eq. (13)
zbksqis is 1 when a skill s of robot i is in excess for task k,
and

∑
s z

b
ksqis is the number of redundant skills robot i has

for task k. Due to constraint (9), if robot i attends task k then



Fig. 2: Arrival times of robots i1 and i2. Robot i1 attends task
k after j1, whereas the robot i2 attends the same task after j2.
The duration of execution, travel, and stochastic buffer time
are denoted by te, t, and ts, respectively. Task k’s starting
time is given by ymax

k . Robot i2 is the last to arrive at the
task, so ymax

k is equal to its time of arrival (yi1k.)

∑
s qisrks ≥ 1, i.e., at least one of robot i’s skills is required

by task k. We can then impose the following constraint:

∀i∀k\{0,m+ 1}
m∑
j=0

xijk = 1 =⇒

l∑
s=0

zbksqis ≤
( l∑

s=0

qisrks

)
− 1 (13)

3) Arrival times: One of the core requirements in a
coalition is the simultaneous presence of all its members.
In this paper, we assume that the absence of even a single
robot makes it impossible for a task to progress. Hence, a
task can start when the last required robot has joined the
coalition at the location.

To express these requirements, we consider the arrival
times of each robot. We introduce matrix Y whose elements
yik store the arrival time of robot i at task k. If a robot does
not visit a task, its corresponding arrival time is set to 0:

∀i, k\{0}
m∑
j=0

xijk = 0 =⇒ yik = 0 (14)

Task j starts at the arrival time of the last robot to join
the coalition, denoted by ymax

j .

∀j\{0} ymax
j = max

i
(yij) (15)

To calculate the arrival time yik of robot i at a task k, it
is sufficient to sum the time of completion of the previous
task j with the travel time from task j to task k (denoted by
tijk). The constraint is then

∀i∀j\{m+ 1}∀k\{0} xijk = 1 =⇒
yik = ymax

j + tej + tijk + tsjk (16)

where tej is the execution time of task j and ymax
j indicates

the starting time of the same task. The stochastic buffer time
between the task j and k is given by tsjk which will be
covered in Sec. III-B.4. A pictorial representation of this
calculation is reported in Fig. 2.

4) Stochastic travel times: In the quest for a problem for-
mulation that incorporates as many realistic aspects as pos-
sible, we include the possibility for travel times to be known
only probabilistically. To model travel times as stochastic
processes, we assume that the delay can be captured as
Gaussian noise G(µ, σ). More specifically, if we denote with
t the ideal travel time between two tasks, then

t∗ = t+ G(µ, σ). (17)

For each robot in a coalition, we can express the need to
arrive at the task as

P (t < t̄) ≥ ϵ (18)

where t̄ is the hypothetical starting time of the task. We can
develop Eq. (18) as follows:

t∗ = t+ G(µ, σ) ≤ t̄

G(µ, σ) ≤ t̄− t

σ2G(0, 1) + µ ≤ t̄− t

P
(
σ2G(0, 1) + µ ≤ t̄− t

)
≥ ϵ

P

(
G(0, 1) ≤ t̄− t− µ

σ2

)
≥ ϵ

Φ

(
t̄− t− µ

σ2

)
≥ ϵ

where Φ(·) denotes the cumulative distribution function of
G(0, 1). Therefore, indicating with Φinv(·) the inverse of Φ(·),
we can write (

t̄− t− µ

σ2

)
≥ Φinv(ϵ)

t̄− t ≥ µ+ σ2Φinv(ϵ)

This calculation allows us to introduce the symbol ts defined
as follows:

ts = µ+ σ2Φinv(ϵ) (19)

which indicates a “safety margin” to arrive on time at a task
with probability ϵ given the mean and standard deviation µ, σ
of the road to that task.

5) Objective: The cost function we aim to minimize is
the total time taken by the robots to complete the tasks.
This corresponds to the arrival time of the last robot at task
(m+ 1). The objective is therefore

min ymax
m+1 (20)

6) Solving: We use Gurobi [30] to solve the optimization
problem. This software is well-known to efficiently produce
optimal solutions for convex problems. However, our prob-
lem is non-convex, and the objective function (Eq. (20)) hints
that multiple equally good solutions will exist.



C. Greedy formulation

The previously discussed method produces an optimal
result, but experimental evaluation reveals that it takes a long
time to reach a solution. This motivates the need for another
method that can solve the same problem quickly, although
at the cost of optimality. We propose a simple, but effective
greedy solver that produces a quick but sub-optimal result.

Algorithm 2 The proposed greedy algorithm
1: while Any task is unsatisfied do
2: (i1, k1), ...← Robot-task pairs with max contribution
3: (ic, kc)← The earliest robot-task pair from(i1, k1), ...
4: Assign task kc to the robot ic using Algorithm 3
5: while Unaddressed skill at task kc do
6: id1, ...←Robots with max contributions from remaining

skills at kc

7: id ← The earliest robot from id1, ...
8: Assign task kc to the robot id using Algorithm 3
9: end while

10: ymax
kc ← max

i
yikc

11: end while

Algorithm 3 Assign task k to robot i
1: j ← The current task of robot i
2: xijk = 1
3: yi,k ← ymax

j + tej + tijk + tsjk
4: Update the list of unaddressed skills at task k

1) Methodology: In this work, we assume that task exe-
cution can only start when all the required skills are fulfilled
simultaneously. Thus, a coalition might cause its robots to
wait idly until the last robot in the coalition arrives. It is thus
desirable to have as small coalitions as possible with robots
that cover as many skills as possible. On the other hand, only
seeking a solution with small coalitions might require few,
powerful robots to spend significant time travelling across the
environment to attend the assigned tasks. In such a scenario,
the generated paths for the robots are not optimal due to
the absence of any mechanism to shorten the robots’ travel
path. Motivated by these observations, we propose a greedy
algorithm that promotes forming small coalitions while also
minimizing the distance traveled by the robots.

Our algorithm first finds the robots that can contribute the
most to a task and arrive the soonest. We define a robot’s
‘contribution’ as the number of previously unoffered skills it
can bring to a task. We identify all the robot-task pairs that
maximize the robots’ contributions to the tasks (Alg. 2, line
2). If multiple robots contribute equally, we choose the one
that can reach the task location first (Alg. 2, line 3). This
estimated time of arrival is calculated with the same logic as
in Sec. III-B.3.

We use Alg. 3 to add the task to the robot’s schedule
(line 2), update its arrival time (line 3), and update the task’s
requirements (line 4) to account for the skills provided by
the attending robot.

We now choose a robot coalition to fulfill the skills
required for task kc. If the task still requires additional skills

to start (Alg. 2, line 5) we select the robots that can offer
the highest number of the remaining skills (Alg. 2, line 6). If
multiple robots are tied, we choose the one that can reach the
task location first (Alg. 2, line 7). We then use Algorithm
3 to add the task to the robot’s schedule (Alg. 2, line 8).
We repeat this process until all of the task requirements
have been fulfilled (Alg. 2, line 5). We then update the task
start time for the chosen task kc according to the attending
coalition (Alg. 2, line 10).

2) Correctness of the algorithm: We assert that our al-
gorithm yields a feasible solution in which all tasks are
allocated to suitable robots. To establish this claim, we
demonstrate that the algorithm assigns each task to a set
of appropriate robots. Suppose there is an unassigned task
k with unfulfilled requirements, which means the sum of
its requirements is greater than 0. The solver must continue
until this task is assigned a group of robots that can fulfil all
of its requirements. Hence, eventually a robot will choose
this task, even if it can only provide a single skill. Once
the solver has found a robot for task k, it will search for
other robots to fulfil any remaining requirements. A feasible
solution requires at least one robot to contribute at least one
skill to the remaining requirements. As long as such a robot
exists, it will be assigned to task k. Moreover, the solver
will not choose a robot that cannot contribute to the task
as long as there is a robot that can contribute at least one
skill. Therefore, there can be no redundant robot assigned to
any task. We conclude that our algorithm always terminates
with a feasible solution. Therefore, we can conclude that the
proposed greedy algorithm for task allocation is correct and
produces a feasible solution.

IV. EXPERIMENTATAL EVALUATION

We conducted experiments with 4 robots and 8 tasks,
testing 3 configurations with 2, 4, and 8 skills. Each con-
figuration comprised of 30 unique setups that differed in
the location of the tasks, their skill requirements, and the
allocation of skills among the robots.

A. Experimental Setup

In our experiments, we define an effective area of 200 ×
200 units, and we assume that each robot can travel 1 unit
of distance per time unit. For each configuration setup, we
randomly assign the locations and skill requirements for each
task. The task execution time of each task is set uniformly at
random from the range [0, 100]. We also allocate skills to the
robots uniformly at random. We set the starting locations of
the robots to be evenly distributed around the center of the
experiment area. Specifically, the starting location (pix, p

i
y)

of the ith robot is calculated using the value r = 15 units as
follows:

(pix, p
i
y) =

(
r sin

(
iπ

n

)
, r cos

(
iπ

n

))
. (21)

We verify the validity of each generated experiment setup
by checking the following conditions:

1) Each robot is not allocated more than l/2 skills;



2) Every skill is present at least once in the robot pool;
3) Every robot possesses at least one skill.

a) Stochasticity parameters: The value of the mean
travel time, denoted by µ, was set to 10% of the time it
takes for the robot to travel between tasks. The value of
the standard deviation, denoted by σ, was set as a random
fraction of µ. Specifically, a value was chosen uniformly at
random from the interval [0.05, 0.50] and multiplied by µ to
obtain the final value of σ. This ensured that the amount of
variability in the travel times was proportional to the mean
travel time. To make the experiment results repeatable, the
standard deviation value for each path is assigned at the
time of setup generation. This ensures that the same standard
deviation values are used throughout all the experiment runs.
Finally, the probability of a robot arriving at a task within a
given time window, denoted as ϵ, was set to 0.95 to allow
for some flexibility in task scheduling.

b) Computer specifications: The experiments were run
on a computing cluster with the following configuration
allocation: AMD EPYC 7543 processors, 22 CPU cores, 156
GB of RAM.

B. Discussion

To evaluate the performance of the two methods, we
analyze two key aspects of the solution. The first one is the
final cost of the solution produced. This tells us the quality of
the produced solution. The second aspect of interest pertains
to the wall clock time required to solve the problem. This
allows us to assess the efficiency of the two algorithms in
terms of the computational resources and time complexity.
A sample of optimal solution for a 2-skill, 4-robot, 8-task
setup is reported in Figure 3.

1) Optimal solver: Figure 4 presents the results for the
optimal solver. As we double the total number of skills
required, both the solution cost and the wall clock solving
time (WCST) increase. However, the notable increase is in
the WCST of the 8-skilled setups. This indicates a significant
increase in the computational resources required to solve the
problem at higher scale. In this configuration, some setups
required about 2,000 seconds and one of the setup required
5,000 seconds to declare the final solution as optimal. Based
on these results, it would not be realistic to solve a prob-
lem larger than the setup presented, as the computational
resources required would be prohibitively high.

2) Greedy solver: To analyze the greedy solver, we
compared its performance with the optimal solver. Figure
5 compares the performance of the greedy solver to that
of the optimal one. In Figure 5a we can see that for
the configuration with 2 skills, multiple points lie near 1.
This means that most of the solutions were very close to
the optimum. The median relative cost performance of the
greedy solver was 1.15.

The greedy solver performs very well in terms of compu-
tational efficiency, as shown in Figure 5b. In 2-skills setups,
the median log10 relative run-time is -3.57, indicating that
the greedy solver is more than three orders of magnitude
faster than the optimal solver. These results showcase the

Fig. 3: An example solution for a setup with 2 skills, 4 robots,
and 8 tasks. The two types of skills are represented by a
cross and a circle. The robots’ starting locations are shown
by green icons near the center of the area, and their end
locations are shown by red icons at the center. If a robot with
a cross skill starts at a location, a green cross is shown at
that location. Blue skill symbols indicate the skills needed for
each task at that location, and the tasks are randomly placed
in the simulation area. The solid lines show the schedule for
each robot, from its starting location to its end location.

fast nature of the greedy solver and its potential for use in
scenarios where real-time decision-making is required.

As we scale up the problem, the performance of the
greedy solver in terms of cost slightly degrades. For the
configuration with 8 skills, none of the experiments produced
a solution close to the optimum. As indicated by the median
cost performance of 1.36, the greedy solutions are off the
optimal solution by a significant margin. However, as shown
in Figure 5b, most solutions generated using the greedy
solver are produced within a factor of 10−5 of the time it
took to solve the same problem using the optimal method,
demonstrating the efficiency of the greedy solver. Although
the quality of the solutions generated by the greedy solver
may not be very good for larger problem sizes, the method is
extremely fast and can be useful for scenarios where quick,
“good enough” decision-making is prioritized over solution
optimality.

3) Optimal solver’s first solution: It is interesting to
analyze the time taken by the optimal solver to reach its
first solution, neglecting the time needed to verify whether
it is optimal. As shown in Figure 6a, for the configuration
with 8 skills, the solver rapidly produced a feasible but sub-
optimal solution. However, it took a significantly longer time
to reach the optimal solution and even more time to prove
its optimality. This is further illustrated in Figure 6b, which
displays the time taken by the solver to obtain the first
feasible solution. The optimal solver consistently produces



(a) Optimal costs for each con-
figurations

(b) Wall clock solving time
(WCST) for each configurations

Fig. 4: Optimal solution cost and solving times for three
different set of configurations with varying number of skills.
We can see that as the number of skills increase, both the
solution cost and the solving time increases.

(a) Solution quality of the
greedy solver

(b) Relative speed of the
greedy solver

Fig. 5: Performance of the greedy solver as compared with
the optimal solver. We can see that the greedy solution gets
further away from the optimum solution as we increase the
number of skills. But it takes the greedy solver orders of
magnitude lesser amount of time, as compared with the
optimum solver

the first solution quickly, but it takes a long time to reach
the optimum and prove its optimality (Figure 4b).

We compared the performance of the greedy solver with
the first solution offered by the optimal solver in Figure 7. As
shown in Figure 7a, most of the solutions produced by the
greedy solver are better than the first solutions provided by
the optimal solver. While the optimal solver’s solutions are
superior half of the times with the 8-skill configurations, the
greedy solver is still faster. The greedy solver is consistently
more than two orders of magnitude faster than the optimal
solver, as shown in Figure 7b. The data clearly shows the
significant speed advantage of the greedy solver over the
optimal solver.

4) Large-scale experiments: To further investigate the
speed and scalability of the proposed methods, we conducted
a series of experiments on larger-scale configurations. We
set the number of robots at 32 and the number of skills at
64, and generated 30 setups for each of four task counts:
128, 256, 512, and 1,024. For such large scales, the optimal
solver failed to produce even the first solution after running
for three hours. Hence, we analyze only the greedy solver’s
performance in what follows.

(a) Solution cost progression
by the optimum solver for a
typical setup of 8 skills

(b) Time taken to produce the
first feasible solution by the
optimum solver

Fig. 6: Progression of the solution cost produced by the
optimum solver. The solver finds a sub-optimal solution
quickly, but then spends long time improving and proving
the solution as the optimal.

(a) Comparing greedy solver’s
and optimum solver’s first so-
lution costs

(b) Comparing greedy solver’s
and the optimum solver’s first
solution (FS) WCST

Fig. 7: Performance of the greedy solver as compared with
the optimal solver’s first solution. We can see that the greedy
solutions are mostly better than the first solutions offered
by the optimum solver. The greedy solver is also orders of
magnitude faster, as compared with the optimum solver.

Figure 8 displays the log10 of the wall clock times required
by the greedy solver to solve each of these configurations.
The results reveal that the log10 of the WCST required to
solve the larger-scale configurations increases by approxi-
mately 0.6 for each doubling of the number of tasks. In
other words, as the number of tasks doubles, the solve
times increase by a factor of approximately four. Despite
this increase, we consistently obtained solutions for the
configuration of 1,024 tasks within 45-50 seconds. These
results suggest that the greedy solver can handle large-scale
instances efficiently, making it a promising approach for real-
world scenarios with a large number of tasks.

V. CONCLUSION

In this work, we presented an approach to task allocation
in heterogeneous multi-robot systems. Our problem com-
bines coalition and scheduling of a heterogeneous swarm
of multi-skilled robots. Our problem formulation also in-
cludes stochastic aspects of travel between any two tasks.
We proposed two methods to solve this problem. The first



Fig. 8: Wall clock solving times (WCST) required by the
greedy solver for large set of tasks

produces an optimal solution at the expense of long run-
times. This method is onsly suitable for small-scale problems
where optimality is required. Our second proposed method
uses a greedy approach and it quickly produces sub-optimal
solutions.

We compared the performance of the two methods. We
found that the greedy solver is typically between 2x the
cost of the optimal solution, but it offers speedups in the
order of 105 with respect to the optimal solver. Further, the
greedy solver can tackle large-scale scenarios (32 robots, 64
skills, and 1,024 tasks) in less than a minute. This makes
the greedy solver a viable option for quick but best-effort
decision-making.

In future work, we aim to improve the performance of
the greedy solver by using better heuristics. We also aim to
make the system decentralized to promote parallelism.
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