
Development of a Whole-body Work Imitation Learning System
by a Biped and Bi-armed Humanoid

Yutaro Matsuura1, Kento Kawaharazuka1, Naoki Hiraoka1, Kunio Kojima1, Kei Okada1, Masayuki Inaba1

Abstract—
Imitation learning has been actively studied in recent years.

In particular, skill acquisition by a robot with a fixed body,
whose root link position and posture and camera angle of view
do not change, has been realized in many cases. On the other
hand, imitation of the behavior of robots with floating links,
such as humanoid robots, is still a difficult task. In this study,
we develop an imitation learning system using a biped robot
with a floating link. There are two main problems in developing
such a system. The first is a teleoperation device for humanoids,
and the second is a control system that can withstand heavy
workloads and long-term data collection. For the first point, we
use the whole body control device TABLIS. It can control not
only the arms but also the legs and can perform bilateral control
with the robot. By connecting this TABLIS with the high-power
humanoid robot JAXON, we construct a control system for imi-
tation learning. For the second point, we will build a system that
can collect long-term data based on posture optimization, and
can simultaneously move the robot’s limbs. We combine high-
cycle posture generation with posture optimization methods,
including whole-body joint torque minimization and contact
force optimization. We designed an integrated system with the
above two features to achieve various tasks through imitation
learning. Finally, we demonstrate the effectiveness of this system
by experiments of manipulating flexible fabrics such that not
only the hands but also the head and waist move simultaneously,
manipulating objects using legs characteristic of humanoids,
and lifting heavy objects that require large forces.

I. INTRODUCTION

In the field of teleoperation, there is also limited research
on the manipulation of heavy objects. For instance, even in
the research by Ishiguro [1], manipulation was limited to
short periods. There are even fewer examples of learning
for heavy object manipulation. Therefore, in this study,
we combine low-cycle posture generation, which includes
whole-body joint torque minimization for high-load work
and long-term data collection, with high-cycle posture gener-
ation, which focuses on the constraints for tasks that require
tracking the operator’s command posture. While there exists
an optimization method [2] that generates a sequence of key
poses considering the manipulated objects, this study focuses
on data collection for imitation learning and implements
an optimization calculation with a narrowed number of
constraints for remote piloting.

Using a system for a humanoid robot with the above
two features, we collect data and realize various motions by
imitation learning [3]. We will demonstrate the effectiveness
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Fig. 1. Imitation learning of whole-body tasks by humanoid

of this system through experiments of manipulation of a
flexible cloth, which requires simultaneous movement of the
head and waist as well as the hands, manipulation of a
trash can using the legs characteristic of humanoids, and
manipulation of a heavy object that requires a large force
to move the hands, waist, and knees at the same time.

In recent years, imitation learning has been extensively
studied and the acquisition of diverse movements became
possible. In particular, various skill acquisitions have been
accomplished by dual-armed robots [4], [5]. In these studies,
the body is fixed, and there is no change in the pose of the
robot’s root links or the camera angle during operation. Con-
versely, research on floating-link robots such as humanoid
robots remains a challenging task with few studies [6].
Therefore, this study aims to develop an imitation learning
system for floating-link bipedal robots. There are two main
problems in developing such a system for a biped humanoid
robot with bipedal locomotion.

The First is the development of a control device capa-
ble of operating humanoid robots. The second is a robust
control system that can withstand long-term data collection
in floating-link systems. For the first issue, typically, robots
are controlled using VR devices, 3D mice, GUI, and so on.
Some studies have utilized dynamic neural network models
to learn the object manipulation behavior of small humanoid
robots and reproduce appropriate movements according to
the environment [7]. Other studies have automatically created
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models that consider multiple modalities by directly instruct-
ing small humanoid robots [8]. However, this direct teaching
of actions can be non-intuitive and only achievable in robots
with high back drivability. Although simple movements can
be replicated using motion-capture-based remote control [9],
this approach is not adaptable for tasks that require contact
force control with the environment due to the lack of haptic
feedback to the operator. Approaches to achieving tasks
such as folding cloth have been proposed [10], but these
do not consider using humanoid-specific legs or camera
angle variations. Therefore, in this study, we utilize the
TABLIS device developed by Ishiguro [1]. This device is
a cockpit-like exoskeleton control device that can control
both arms and legs and achieve bilateral control with a task-
executing robot. We connect this TABLIS with the humanoid
robot JAXON [11] to construct a control system capable of
collecting data for imitation learning.

For the second issue, we will build a system that can
operate heavy objects and collect long-term data based on
optimization of torque and contact force, and still be able to
move not only the robot’s limbs but also the head and waist.
simultaneously. Research has been conducted on mimicking
human movements that include balance constraints such as
standing on one leg [12], as well as cloning human dual-
arm work based on the learning of essential movements
and optimization of movements such as avoiding collision
through observation of human works [13]. However, there
are some learning issues, and the robot does not manipulate
the environment, or only imitates dual-arm tasks for a short
period.

II. SYSTEM IN THIS STUDY

A diagram of the entire system from the operator and the
control device TABLIS to the real robot JAXON is shown in
Fig.2. The overall system consists of two major components.

The first is a teleoperation system for work teaching
including TABLIS. It takes as input the operator’s hand and
foot positions and posture obtained from TABLIS and the
trigger values of the hand controller. It generates JAXON’s
whole body joint angle sequences through two posture gener-
ators, OPG (Opt Pose Gen) and HFPG (High Freq Pose Gen).
We will explain in detail how TABLIS works, the overall
data flow, the posture feedback correction in the Whole Body
Controller (WBC), the hand controller triggers, and the use of
button inputs in Sec. III. The details of the posture generation
method, including torque minimization, which contributes to
long-term behavior, are described in Sec. IV.

The second is a system of imitation learning. The learning
is performed using the output angle sequence from the HFPG
in the teleoperation system and the sensor values from the
actual robot. After acquiring a model, the target joint angle
sequence for the next step is sent to the actual robot based
on the robot status and sensor values during work execution.
The specific application of this method to humanoids will be
described in Sec. V.

In this study, we conducted experiments with a life-size
humanoid JAXON equipped with a highly durable hand,

Fig. 2. System overview

MSL HAND [14]. This hand has three fingers and five
degrees of freedom, and the angles of two fingers can be
geometrically fixed. This allows the hand to withstand loads
of 1000 N or more with one hand. This locking function was
also used in an experiment to lift a heavy box. In addition
to the high output whole body joints, the durability of the
hand, which is the point of contact with the environment,
was also increased to achieve a hardware configuration that
enables data collection over long periods.

III. HUMANOID TELEOPERATION SYSTEM FOR
WHOLE-BODY WORK TEACHING

A. Configuration and data flow of teleoperation system

We describe the configuration of a teleoperation system
for teaching. First, the hand and foot positions and posture
pppcontrol obtained from TABLIS are input to the Target Pose
Generator (SubSec. III-C) and output as the target position
posture ppptgt. The two whole-body pose generators, described
in Sec. IV, receive this ppptgt and generate a sequence of
whole-body angles. The final θθθ hfpg is sent to WBC (SubSec.
III-F), which modifies it based on the wrench and joint
information of the actual robot, mainly considering balance,
and gives it to the actual robot. When performing foot
manipulation, θθθ hfpg is also sent to Foot Step Commander
(SubSec. III-E), where switching control of the contact state
based on the difference in foot height is performed. Finger
angle command and button input for teaching are controlled
by TABLIS Interface (SubSec. III-D).

B. Whole body control device TABLIS

TABLIS is a boarding-type full-body exoskeleton cockpit
for humanoids and has 7-DOFs for each arm, 1-DOF for the
trunk, and 6-DOFs for each leg, totaling 27-DOFs. In this
research, we used the acquisition of 6-DOFs of position and
posture of the four end-effectors in the operator’s hands and
feet, and the feedback of force sensor values of the real robot.
We mounted a controller with five buttons and one trigger
on the TABLIS hand tip. The trigger is used to maneuver
the hand, and the buttons serve to switch modes, etc.

C. Target Pose Generator

Target Pose Generator takes as input the 6-dimensional
positional posture pppcontrol of the limbs obtained from TABLIS
and outputs the target positional posture ppptgt for the actual



whole body posture generation. This system uses the relative
displacement from the start of the maneuver to perform
the maneuver. At the start of maneuvering, pppcontrol and the
position posture of JAXON’s limbs are acquired and saved as
initial values. After the start, the target positional posture ppptgt
is calculated by multiplying the relative difference from the
operator’s initial positional posture by a constant value that
reflects the difference in proportions between TABLIS and
JAXON. The scale of the robot’s movement can be tuned
by this constant value. In addition, the target position and
posture can be output according to the task, such as fixing
the target value of a specific link by command from the Tablis
Interface or rotating the target posture for easy maneuvering.

D. TABLIS Interface

Based on the trigger and button inputs obtained from
the hand controllers, Tablis Interface controls the hand and
mode switching for work teaching. We show the inputs
from the controller and functions in Table.I, where Lb-1
indicates left-hand button 1 and Rt-1 indicates right-hand
trigger input. Note that L/R denotes left and right hand,
and b/t denotes button and trigger. We send a command
to HFPG and stop sending commands to the robot. When
resuming work we send commands to HFPG,OPG,HFPG to
resume command sending with the initial values of TABLIS
and JAXON’s posture at that time. For finger maneuvering,
the one-dimensional value of the trigger is converted to the
joint angles of the three fingers (index, middle, and thumb)
and integrated with the sequence of joint angles other than
the fingers at HFPG. The start and end commands for data
collection are also controlled by this node.

TABLE I: Button control

button or trigger name function
Lb-1 pause control

Lb-2 + Lb-3 reset robot pose
Lt-1 control left finger angle
Rb-1 restart control

Rb-2 + Rb-3 send record trigger
Rt-1 control right finger angle

E. Foot Step Commander

Foot Step Commander is a component for changing the
foot contact state. It obtains the angle sequence θθθ hfpg from
HFPG and calculates the foot posture. It sets a threshold
value for the difference between the heights of the two feet
and switches to the free foot mode if the difference is greater
than the threshold value. The following is performed here.

• It changes the target link for the contact force constraint
of OPG to one foot or both feet.

• It changes the target link for the force balancing task of
OPG.

• It Specifies the target foot position from that of the
generated posture and send it to WBC.

The third function sends the positions of both feet in the
generated posture to WBC at first, and then controls the foot

(a) OPG (b) HFPG

Fig. 3. Example of result pose of Opt Pose Gen and High Freq Pose Gen

transition between one-leg standing and both-leg standing in
WBC, taking balance into consideration.

F. Whole Body Controller
The following is performed with θθθ hfpg, imu values, force

sensor values, and joint encoder values from the robot as
inputs.

• It updates the target exerted force of the hand tip based
on the sensor values.

• It overwrites the center of gravity position based on the
exerted force and current foot position.

• It fixes the target position of the link in contact with the
environment.

• It calculates the target exerted force of the foot and
output the target joint torque.

WBC adds together the target joint torque obtained from the
joint angle obtained above, the target joint torque obtained
from the target exerted force, and the gravity compensation
torque, and converts them into a current value to generate
a command to the motor. For the foot switching command
from Foot Step Commander, the current position posture of
the foot and the received target position posture are used to
generate a trajectory that takes the transition of the center of
gravity into account and controls the foot movement.

IV. WHOLE-BODY POSE GENERATION WITH TORQUE
MINIMIZATION FOR LONG TIME DATA COLLECTION

A. Integration of two posture generators with different con-
trol cycles

By integrating two stages of pose calculation, low-cycle
optimized pose generation and constraint-focused high-cycle
pose generation, we aimed to achieve both whole-body
torque minimization and maneuverability. Both of them
receive the target positional posture of the limbs in Target
Pose Generator and generate the whole-body joint angles.
First, the joint angles are computed in OPG, taking into
account multiple tasks and constraints (Fig.3(a)). The cycles
are approximately 5 to 10 hz. Based on this angle sequence,
a forward kinematics calculation of the upper body using
the target positional posture of the hand tip is performed at
about 30 Hz by Fig.3(b), and the angles are slightly modified
(Fig.3(b)). This corresponds to tasks such as manipulation,
which require fine manipulation of the hand tip. The details
of these two pose generators are explained in the following
sections.



B. Whole body posture generation including torque opti-
mization (OPG)

This section describes in detail how to generate postures
by optimization calculations, taking into account the torque,
force balance, collision avoidance, and other constraints. An
example of the generated posture is shown in Fig.3(a). The
coordinates of each limb are the target position posture of the
end-effector. The pink sphere near the feet is the calculated
center of gravity of the robot. The coordinates near the root
link represent the target posture of the root link. The position
is not considered for this link.

1) Formulation as an inverse kinematics optimization
problem considering statics: First, we describe the optimiza-
tion method. Let qqq∈RNq be the configuration to be designed.
Nq and Ne are the dimensions of the configuration and task,
respectively. The robot motion generation problem is defined
as obtaining a task function eee(qqq) : RNq → RNe satisfying qqq.

eee(qqq) = 000 (1)

Since Eq.1 is a nonlinear equation, it is difficult to find a
solution analytically. Therefore, we generally consider an
optimization problem such as Eq.2 and find the optimal
configuration of Eq.1 by performing iterative calculations
using numerical methods.

min
qqq

F(qqq) (2a)

where F(qqq) :=
1
2
∥eee(qqq)∥2 (2b)

We express this as more general linear equality and linear
inequality constraints as follows. We generate the robot
posture by analytically solving this equation as a constrained
nonlinear optimization problem using sequential quadratic
programming.

min
qqq

F(qqq) s.t. AAAqqq = b̄bb (3)

CCCqqq ≥ d̄dd (4)

2) Design variables: The search variable qqq consists of the
joint angle θθθ and the contact wrench www. Here, θθθ is the joint
angle of the whole body plus 6 dimensions of the position
and posture of the root link. Also, www is a vector of forces
and moments for each link in contact with the environment.
Njoint is the number of whole body joints and Neom is the
number of contact force targets.

qqq :=
(

θθθ
T wwwT

)T
(5)

θθθ ∈ R6+Njoint Joint angles [rad] [m]
www ∈ R6NEom Contact wrench [N] [Nm]
3) Objective function: The objective function of the

optimization calculation is defined as follows. Here we
considered the kinematic goal, the force-moment balance,
the whole-body torque balance, and the center-of-gravity
position goal as objective functions to be satisfied. The NKin
denotes the number of kinematic constraints.

eee(qqq) :=
(

eeeKin(θθθ) eeeEom(θθθ ,www) eeeTrq(θθθ ,www) eeeCom(θθθ)
)T

(6)

eeeKin(θθθ) ∈ R6NKin Kinematic task [rad] [m]
eeeEom(θθθ ,www) ∈ R6NE om Wrench task [N] [Nm]
eeeTrq(θθθ ,www) ∈ RNjoint Torque task [Nm]
eeeCom(θθθ) ∈ R3 COM position task [m]
4) Kinematic objective function: The kinematic objective

functions are as in Eq.7,Eq.8.

eeeKin(θθθ) := (eeeKin
1 ,eeeKin

2 , ...,eeeKin
Ntgt)

T (7)

eeeKin
m := Kweight ∗

(
ppptgt

m − ppptgt cur
m

a(RRRtgt
m ∗RRRtgt cur

m
T
)

)
(8)

The eeeKin
i denotes the error between the target position-

posture and the current position-posture of the link of in-
terest. ppptgt

m is the mth target position, ppptgt cur
m is the current

position of the mth objective link, RRRtgt
m is the mth target

posture matrix and RRRtgt cur
m is the current posture matrix of the

mth objective link. a(RRR) is a function to extract the angular
axis vector of the rotation matrix RRR.

Kweight is the one-dimensional weight of each target link,
where ∗ is the Adamar product. By setting different weight
values for each link, it is possible to determine which link
has a smaller error. We considered the positional posture of
the limbs as the kinematic goal in this study and gave the
posture of the root link and the head link according to tasks.
For the root link and head link, we add a small weight for
the posture only.

5) Balance of forces and moments: For simplicity
eeeEom(θθθ ,www) was replaced by the error function of the
force eeeeomforce(θθθ) in Eq.9 and the moment error function
eeeeommoment(θθθ ,www) in Eq.10.

eeeEomforce(www) :=
Ntgt

∑
m=1

fff m −Mggg (9)

eeeEommoment(θθθ ,www) :=
Ntgt

∑
m=1

{[(ppptgt
m − ppproot)×] fff m +nnnm}

+ [(−Mggg)×](pppcom − ppproot) (10)

fff m is the target exerted force at the mth objective link, nm
is the target exerted moment, M is the robot weight [kg], g
is the gravitational acceleration [m/s/s], ppptgt

m is the mth target
position, ppproot is the current position of the robot root link,
ppproot is the current position of the robot’s center of gravity.

6) Balance of whole body joint torque: The equation for
the balance between the drive torque and the required torque
is shown in Eq.11.

eeeTrq := τττ
ref − τττ

grav(θθθ)+ τττ
cnt(θθθ ,www) (11)

τττ ref is the target joint torque, τττgrav is the self-weight torque
by gravity, and τττcnt is the torque by contact force. By
adopting a 0 vector as τττ ref, we can optimize the whole body
exerted torque as close to 0 as possible.

7) Center of gravity objective function: The equation for
the center-of-gravity position target is shown in Eq.12.

eeeCom(θθθ) := ppptgt
com − pppcur

com (12)

ppptgt
com corresponds to the target position of the center of

gravity and pppcur
com to the current center of gravity position.



We can set weights for this target task as well as others, and
smaller weights have the role of improving the symmetry of
posture and exerted force.

C. Constraints

As constraints, we considered the following. We can set
weights for each of them, and by adjusting the relative
magnitude of the weights, we can adjust the importance of
each constraint and change the posture.

1) Upper and lower limits of joint angle: The constraint
equation for the joint upper and lower limits is shown in
Eq.13.

θθθ min ≦ θθθ ≦ θθθ max (13)

The upper and lower limits (θθθ min,θθθ max) are set considering
the upper and lower limits of hardware and the angle margin
for balance control.

2) Upper and lower limits of joint torque: The constraint
equation for the joint torque upper and lower limits is shown
in Eq.14.

τττmin ≦ τττ ≦ τττmax (14)

The motor ratcheting torque with a margin is set as
τττmin,τττmax. It is possible to suppress tooth skipping of har-
monic gears.

3) Collision avoidance constraints: The collision avoid-
ance constraint equation is shown in Eq.15.

dddmargin ≦ ||ppp1 − ppp2|| (15)

We set the constraint to make the distance between the two
specified links greater than the margin. dddmargin is the margin
and ppp1,ppp2 are the positions of the nearest neighbor points of
the two links.

4) Height of root link constraints: The constraint equation
for the height of the root link is shown in Eq.16.

ppproot
z + poffset ≦ min(pppr−hand

z , pppl−hand
z ) (16)

ppproot
z is the z value of the root link position and poffset

is the height offset. pppr−hand
z and pppl−hand

z are the z values
of both hand positions. The values of both weights are
important because they are basically in conflict with the
torque optimization task. In this case, the height of both
hands was used as the criterion for lowering the center
of gravity since the maneuver was performed using the
positional posture of both hands.

5) Foot contact force constraints: The constraint equation
for the foot contact force is shown in Eq.17.

0 ≦ AAARRRTwww (17)

AAA is a 12-row matrix, which includes the conditions that the
forces in the x- and y-axis of the sole should be within the
static friction force, that the force in the z-direction should
be positive, and that the center of gravity should be within
the specified range. RRR is the orientation matrix to the end-
effector, which is transposed and multiplied by www from the
left to transform the coordinate of the target wrench.

Fig. 4. Network structure and whole system of imitation learning

6) End-effector exertion force constraints: Constraints for
generating a posture that satisfies the desired exerted force
at end effectors are shown in Eq.18.

www = wwwref (18)

wwwref denotes the target exerted wrench of the limb. You can
set weights for each value of the 6-axis wrench for each link.
By adjusting each weight, the link to be considered can be
changed.

D. High frequency pose generation (HFPG)

HFPG modifies the joint angles based on the inverse
kinematics of the upper body using the positional posture
of both limbs obtained from Target Pose Generator and the
whole body joint angle sequence from OPG. HFPG ensures
maneuverability in situations such as manipulation tasks,
which require detailed maneuvering of hands. The target
joints include the joints of the trunk and both arms, but not
the legs. Calculations are performed at a period of about 30
Hz, depending on each task. An example of the generated
posture is shown in Fig.3(b).

V. IMITATION LEARNING FOR HUMANOID ROBOTS

The proposed system is used for work teaching, and the
skills are acquired through imitation learning [3].

A. Overview of imitation learning methods

The basic formula for learning is shown in Eq.19. We
also show the overall system in Fig.4. Here t represents the
current time step, sss the sensory state of the robot, uuu the
control input to the robot, ppp the parametric bias, and hhh the
prediction model including the network weight W . In this
study, sss is the camera images and force sensor values of the
robot, and uuu is the joint angle sequences of the whole body.
It is a recursive network with 10 layers in total, 4 of which
are the Fully Connected (FC) layer, 2 of which are the Long
Short Term Memory (LSTM) layers [15], and 4 of which
are FC layers. The activation function is Hyperbolic Tangent
and the optimizer is Adam [16]. The sss and uuu are normalized
values and a two-dimensional parametric bias ppp is used.

(ssst+1,uuut+1) = hhh(ssst ,uuut , ppp) (19)



B. Teaching and Learning

First, we collect sss and uuu time sequence data. In this
study, we collect data by teaching using the system pro-
posed in Sec. III. Data are collected through multiple task
realizations in which the target environment is changed.
The pairs of time sequence data in each trial are defined
as Dk = {(sss1,uuu1),(sss2,uuu2), ...,(sssTk ,uuuTk)}(1 ≦ k ≦ K, K is the
number of total trials, Tk is the number of motion steps in
each trial). The images are pre-trained using Auto Encoder
[17] for dimensionality reduction and feature extraction.
128x96 RGB images were compressed into a 12-dimensional
vector and used for training. We use these vectors with
parametric bias Dtrain = {(D1, ppp1),(D2, ppp2), ...,(DK , pppK)} as
training data. The pppk is a value for each dynamic, in which
the operator’s movement style is embedded. The model is
trained using this data, and pppk is updated along with the
network weight W . The initial value of pppk is set to 0 and the
loss function is the mean squared error.

VI. EXPERIMENTS ON IMITATION OF WHOLE-BODY
TASKS

In this chapter, we describe work teaching experiments
using the proposed humanoid robot maneuvering system
considering whole-body torque and skill acquisition ex-
periments using imitation learning. Three types of tasks
were performed: manipulating a flexible cloth, maneuvering
legs characteristic of humanoids, and lifting a heavy object
requiring center-of-gravity movement. We present the results
and discussion of each experiment.

A. Experiments of flexible cloth manipulation

JAXON removing the flexible cloth by maneuvering with
TABLIS is shown in Fig.5. The left image is from an external
camera and the right image is from a camera on the robot’s
head. The operator sees the flexible cloth directly, reaches
out to grasp it, then removes it and drops it aside. During
this operation, the system recorded the RGB image and the
whole-body joint angle (θθθ hfpg) from the operating system.

The work after the training is shown in Fig.6. The upper
right is the camera image of the head, and the lower right
is the image decoded through Auto Encoder. The robot
successfully performed a series of tasks three times in a row:
removing a cloth, discarding it, a human repositioning the
fallen cloth, and repeating the same action. The data for one
time is here. Since the motion is performed by predicting the
next step image from the current RGB image, if a person
makes the initial state again after the work is completed
once, the removal motion is induced again. This is one of the
characteristics of imitation learning using images and joint
angles. To confirm whether the robot was able to imitate, we
compared the changes in finger angles during teleoperation
and during autonomous work after learning, and found that
the timing of angle changes and the maximum and minimum
angles were similar.

Fig. 5. Experiment of removing cloth with proposed teleoperation system

Fig. 6. Experiment of succeeded removing cloth with imitation learning

B. Experiments on manipulating objects with a foot

A humanoid opening a trash can using its legs is shown in
Fig.7. The right image is from a camera on the robot’s head.
First, the position of the operator’s feet is obtained and θθθ hfpg
is calculated by the proposed system. When the difference
between the heights of the two feet in the calculated posture
exceeds a threshold value (6 cm), the system stops the
maneuver and sends a trigger to the Whole Body Controller
from Foot Step Commander to switch from the biped walking
mode to the one-legged standing mode. After the transition,
the operator resumes control of the robot’s legs. In the one-
leg standing mode, the force sensor value is feedbacked to
the operator with a low gain, therefore allowing the operator
to recognize the contact with the trash can pedals and the
reaction force when operating the trash can. After opening
the trash can, the same procedure is reproduced in reverse,
returning the feet to the ground. Again, the difference in the



Fig. 7. Experiment of operating a foot with proposed teleoperation system

Fig. 8. Experiment of succeeded operating a foot with imitation learning

heights of the two feet is detected and the mode is switched.
The work after learning is shown in Fig.8. The upper right
is the camera image of the robot’s head, and the lower right
is the image decoded through Auto Encoder. The control
including the switching of the contact state of the feet was
successful.

C. Whole-body heavy object manipulation

Here we worked on lifting a heavy box weighing ap-
proximately 16 kg. Bending with the knees and maintaining
balance by taking into account the reaction force of the hands
are important. Teaching by teleoperation is shown in Fig.9.
The robot starts work from the initial posture with the index
and middle fingers locked at 90 degrees. Both hands were
inserted into the box handles and lifted vertically when a
reaction force was felt, using teleoperation. Thanks to the
teleoperation system’s constraint on the height of the center
of gravity, when the height of the hand tip was lowered, the
robot bent its knees and tilted the root link to lower its center
of gravity. Since humanoid robots have the strong constraint
of standing on two legs, balance control, such as changing the

Fig. 9. Experiment of lifting a heavy box with proposed teleoperation system

Fig. 10. Experiment of succeeded lifting a heavy box with imitation learning

position of the center of gravity based on the external force of
the hand tip, is indispensable, especially when manipulating
heavy objects. In the proposed system, a constraint to keep
the center of gravity at the center of the foot flat is added
in the optimized posture generation, and the balance is
maintained by using feedback control to shift the center of
gravity position according to the sensor values of the hand
tip. To cope with the time delay caused by the low-pass
filter for the force sensor values, it was necessary to move
the hand slowly enough at the beginning of lifting, when the
external force on the hand tip changes significantly. The work
with the learning is shown in the Fig.10. By inserting both
hands against the handles and shifting the center of gravity
appropriately, the lifting task was successfully performed
while maintaining balance. In the experiment, even when
the first insertion motion failed and the box shifted from
the initial position, the robot autonomously reinserted its
hands into the appropriate position again. The robustness
of the imitation learning was also confirmed by the robot’s
autonomous recovery behavior.



VII. DISCUSSION
We discuss the limitations of this study in terms of

the teleoperation method, the control including optimization
calculations, and the learning method. First, regarding the
method of manipulation, in the present study, the operator
performed the work while looking directly at the object.
Ideally, however, a method such as presenting the robot’s
camera image through VR goggles should be adopted. On
the other hand, in such a case, the camera angle of view
would change significantly, and the generalization ability of
imitation learning might be significantly reduced. In addition,
since this system automatically determines the position and
posture of links other than the limbs, the operator cannot
control them. Therefore, it is difficult to bring the links
into active contact with the environment, such as pushing
an object with the waist. This problem can be solved by
acquiring the positional posture of the operator’s hips and
elbows, but it conflicts with optimization calculations and
autonomous balance control. In this system, we developed
the system from the standpoint that the tilt of the hips,
etc. should be determined automatically, and that individ-
ual environmental contacts, etc. should be handled by the
planner, not by the pilot. Furthermore, while MSLHAND
has 3 fingers and 5 DOFs, the maneuvering interface has
only 1 DOF. There are ways to control the fingers according
to the object from a software perspective or to improve
the maneuvering interface. Next, regarding the optimization
calculation, currently, the weight parameters for the objective
function and constraints are adjusted by a person according
to the task. Ideally, these parameters should be adjusted
automatically. It is thought that a generalized algorithm for
determining weights can be given by a person. A small
limitation also exists concerning balance control, which is
the need to switch modes. In the previous system by Ishiguro
et al., the legs could be moved in the same way as the
arms without switching modes. However, this system sends
a trigger when it becomes one leg. This is because the
contact state cannot be changed in the two-legged mode,
which has the function of fixing contact between both feet
and the ground to maintain balance and the autonomous foot
step-out function to avoid tipping over. This is a problem
related to the combination of the operator’s command and the
robot’s autonomous balance control, and this system gives
priority to autonomous balance control. This is one of the
issues that should be solved by devising the control theory
and interface. Finally, regarding the learning method, in the
present study, the robot learned by explicitly giving the start
and end points of the work, but ideally, the robot should be
able to automatically determine the breakpoints and learn.
To achieve this, for example, it is possible to segment the
work based on the position and posture of the object.

VIII. CONCLUSIONS
This study aimed to develop an imitation learning system

with a bipedal robot with a floating link. For this purpose,
we developed a teleoperation system that connects a bilat-
eral whole-body maneuvering device and a highly durable

humanoid robot. Here, we introduced a torque/contact force-
optimized posture generation method to make the system
capable of withstanding long hours of data collection. Using
this system, we successfully imitated flexible fabric manip-
ulation, object manipulation with feet, and lifting of heavy
objects where the pose change of the root link and center-
of-gravity shift are critical.
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