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Abstract— From construction materials, such as sand or
asphalt, to kitchen ingredients, like rice, sugar, or salt; the
world is full of granular materials. Despite impressive progress
in robotic manipulation, manipulating and interacting with
granular material remains a challenge due to difficulties in
perceiving, representing, modelling, and planning for these
variable materials that have complex internal dynamics. While
some prior work has looked into estimating or learning accurate
dynamics models for granular materials, the literature is still
missing a more abstract planning method that can be used
for planning manipulation actions for granular materials with
unknown material properties. In this work, we leverage tools
from optimal transport and connect them to robot motion
planning. We propose a heuristics-based sweep planner that
does not require knowledge of the material’s properties and
directly uses a height map representation to generate promis-
ing sweeps. These sweeps transform granular material from
arbitrary start shapes into arbitrary target shapes. We apply
the sweep planner in a fast and reactive feedback loop and
avoid the need for model-based planning over multiple time
steps. We validate our approach with a large set of simulation
and hardware experiments where we show that our method is
capable of efficiently solving several complex tasks, including
gathering, separating, and shaping of several types of granular
materials into different target shapes.

I. INTRODUCTION

Many real-world tasks require the manipulation of gran-
ular materials, such as gravel or grit in construction or
rice in cooking. While robotics has come a long way
in manipulating rigid objects, highly deformable materials,
including granular materials, still pose a large challenge due
to the difficulty of accurately modelling how the material
moves in response to a given manipulation action [1]. In
their recent survey on manipulating multiple objects, ranging
from a few large objects to piles of small objects/particles,
Pan et al. [2] summarise the major challenges that apply to
manipulating granular materials as: Perceiving the material
of interest, potentially under partial occlusion, efficient state
representation of such a high dimensional material, accurate
and efficient models for these complex materials that are
simple to estimate and plan with, and the need for many
different manipulation actions to solve a higher level task,
such as scooping, dumping, pushing and so on.

While manipulation of granular materials is still at its
infancy, several works have attemped to learn models of
materials for planning purposes, or directly learn a particular
manipulation action, either with reinforcement learning or
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Fig. 1: ETH written with granular grit stones using our
proposed approach.

learning from demonstration. While having good models of
materials is key for planning precise manipulation actions on
a control level, we argue that the state of art in manipulating
granular materials could benefit from a higher-level planning
layer that can, independently of the actual material being
manipulated, plan manipulation actions to achieve a higher
level goal in terms of shaping the distribution of the material.

A. Contributions

Our contributions can be summarised as follows: In this
work, we show that the mathematical theory of Optimal
Transport (OT) is a promising framework for planning ma-
nipulation actions that require transportation and volumetric
shaping of granular materials on a high level, without re-
quiring exact model knowledge of the material. While OT
ignores robot motion constraints, we propose an efficient
way of incorporating it into a heuristics-based sweep planner,
allowing volumetric shaping for arbitrary input and output
distributions. We show that this higher-level shape planner
works for a wide variety of tasks and granular materials
without requiring an accurate model of material dynamics.
Since we can forego computationally expensive models, the
proposed approach can run in a reactive feedback loop
on a real robot arm using only a height map as input.
We support our claims by an extensive simulation study
and real-world experiments for different materials and tasks
that require reasoning about how to efficiently re-distribute
granular material.

II. RELATED WORK

We here categorize related work based on the type and
fidelity of the model used. While an exhaustive survey of
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modelling approaches for granular dynamics is beyond the
scope of this work, we summarize the findings of [3], [4],
[5], and [2].

a) First-principle Methods: Understanding the underly-
ing physics of granular materials has been of great interest to
the research community. The discrete element method (DEM)
is known to be the most accurate method for modelling
granular materials [3], [6], [7], where each grain is modelled
as an individual particle that interacts through contact with its
neighbouring particles. Unfortunately, due to its particle-level
discretization, DEM does not scale well for large volumes
and small grain sizes and cannot be run in real-time as
suggested by the results in [5] and [7]. Furthermore, several
hyperparameters such as grain size and shape have to be
defined [6], [7], which can be difficult to impossible for real,
heterogeneous granular materials encountered in the field.
Matl et al., [6] leveraged the DEM method to perform real-to-
sim transfer for pouring granular materials into target shapes
with a robotic manipulator. However, as they optimized
their model parameters by matching the macroscopic pouring
behaviour, it remains unclear how well the estimated model
transfers to other manipulation tasks and interaction types.

b) Simplified Models: Because of the computational
complexity of accurate physics models, many simplified
methods have been developed. Position-based dynamics by
Macklin and Mueller [8] is one popular method that trades
off physical accuracy for visual fidelity and real-time perfor-
mance [4]. A PBD simulator was used by Zhang et al. [9]
to train an RL agent for manipulating gathering, spreading,
and flipping granular and viscous materials. However, no
real-world experiments were shown. More recently, Tuo-
mainen et al., [10] train a graph neural network from a
simulator that uses the material-point-method for learning
the dynamics of pouring actions and use this to plan pouring
trajectories that minimizes the Wasserstein distance between
the poured and target shape. Others used task- and action-
specific representations, such as Martinez et al. [11] who
cluster dirt particles into elliptical regions, learn how these
elliptic regions change during pushing actions and then plan
trajectories for collecting dirt on a table. Similarly, Leidner et
al. [12] employ a hand-crafted heuristic model for a cleaning
task, where affected dirt particles are simply placed at the
end of each sweep when planning the cleaning trajectories.

c) Differentiable Physics: Simulators that represent
physical models in a differentiable architecture hold promise
for fast parameter estimation and optimization-based plan-
ning and control [4]. Li et al. [13] proposed the DPI-Net
architecture to learn the behaviour of soft objects and liquids
from data, in their case generated by the PBD-based FleX
simulator from Nvidia. While this line of work holds a lot of
promise, it is still in its infancy [4], and ready-to-use models
that can be quickly adapted to different environments, tasks,
and manipulation actions still seem to be missing.

d) Visual Predictive Models: Visual predictive models
do not attempt to model the granular material in a first-
principle fashion, instead, they directly learn how the sen-
sory feedback will change for a given manipulation action.

Schenck et al. [14] propose a visual-predictive model for
scooping pinto beans from a source container and dumping
them into an empty target container for different target
shapes, where the model is learned from real-world training
examples. Elliott et al. [15] learn a visual-predictive model,
based on pixel-level classifiers, for predicting the outcome
of a push-motion to dirt lying on a table and then use A*
to plan sweeping trajectories for cleaning the table. Suh et
al. [16] investigate the impact of the network architecture
on the quality of the learned visual predictive models.
They find that simple linear predictive models outperform
deeper neural networks, and demonstrate their model in an
impressive experiment where they can gather small carrot
pieces into letter-shaped target regions. Tsuruta et al. [17]
train a GAN to predict future sand state (elevation map) when
given an input elevation map and a tool path (perpendicular
spatula). By directly working in the space of the sensory
input, visual predictive models avoid the difficult problem
of estimating the state of the granular material and also
offer an intuitive interface to define the environment and
target shape. However, as they are learned for one specific
material-environment-action combination it remains unclear
how well these models generalize to different materials
and actions or unseen environments. Also, in the case of
image-based models, it is often difficult to represent more
complex material distributions that go beyond binary state
representations (no-material/material).

e) Model-free Methods: Besides model-based methods,
there have been several works that have shown impressive
real-world results without requiring any type of model. One
line of work uses learning from demonstration, such as in
[18], [19], [20], or [21] to solve gathering, cleaning, and
shaping tasks that involve granular materials. While these
methods can be well suited for repetitive tasks in known
environments, they have not been shown to generalize to
new environments, materials, or tasks. Finally, Jud et al.
[22] use a heuristics-based planner for digging and dumping
with an excavator, it is able to execute digging cycles until
the currently seen elevation map approximates the target
elevation map of a digging site.

III. METHOD
A. Overview

Here we present our framework for generating robot
motion plans to transform piles of granular material from
arbitrary source shapes into arbitrary target shapes via sweep-
ing motions, without assuming access to material properties
or models. To this end, we adopt an Eulerian viewpoint,
where the granular material is represented by its volume
distribution, in our case by a discrete height map (see [2]
for the difference between Lagrangian and Eulerian state
representations). We leverage discrete optimal transport, a
mathematical framework that provides tools for computing
distances and transformation maps between arbitrary prob-
ability distributions, providing a way to morph a source
distribution into a target distribution with the minimum
amount of work. We then propose a heuristics-based sweep



planner for bridging the gap between optimal transport and
the motion constraints of robot sweep.

B. Computational Discrete Optimal Transport

We here give a brief introduction to computational optimal
transport and motivate its applicability to plan manipulation
actions for transporting granular materials. Quoting from
Solomon’s survey on optimal transport on discrete domains
[23], “the optimal transport (or Monge–Kantorovich) prob-
lem involves the matching of probability distributions defined
over a geometric domain like a surface or manifold”. In the
following, we introduce a notation that is specific to our
use case of transporting granular materials, adapted from the
more general formulation in [23].

a) Discretization into height maps: We represent the
volumetric distribution of the granular material in the form
of a discrete height map H = (h,X), which has N entries
and where Xi denotes the 2D location of the centre of cell i
and hi denotes the (average) height of the granular material
in cell i.

b) Normalization into probability distribution: As op-
timal transport theory is formulated for probability distribu-
tions, we introduce a normalized height map h̃ = h∑(N)

i=1 hi

,

and similarly H̃ .
c) Source and target distributions: The goal of op-

timal transport is to compute the optimal transport solu-
tion to move the ”probability mass” from a source into a
target distribution. Hence, we will distinguish two height
maps/distributions: The current state of the granular material,
before applying any action, is denoted by HS and the desired
target height map as HT .

d) Ground Cost: OT finds the optimal way to transport
probability mass from H̃S into H̃T , where optimality is
defined with respect to the ground cost, which is a distance
metric on the geometric domain on which the distribution is
defined. The ground cost is captured by the matrix C whose
entries cij represent the cost required to transport one unit
of probabilistic mass from H̃S,i to H̃T ,j .

e) Transport Map: The transport map T ∈ RNS×NT

denotes a transport plan for how the probability mass in H̃S
should be re-distributed to H̃T . The entry Tij tells us how
much (probability) mass needs to be moved from H̃S,i to
H̃T ,j . Additionally, we require that mass cannot be destroyed
or created, only moved:{∑

j Tij = h̃S,i∑
i Tij = h̃T ,j

(1)

f) Solution as Linear Program (LP): The problem of
transporting the probability mass h̃src to h̃tgt that is optimal
w.r.t. the ground cost matrix C can then be efficiently solved
as a linear program, as shown in [23]:

OT (h̃S , h̃T ;C) =


minT

∑
ij (Tij cij)

s.t. T ≥ 0∑
j Tij = h̃S,i ∀i∑
i Tij = h̃T ,j ∀j

(2)

By solving this linear program, we get the optimal trans-
port map T ∗ as well as the optimal transportation cost
OT (h̃S , h̃T ;C) =

∑
ij (T

∗
ij cij).

g) Choice of Ground Cost: A common choice for the
ground cost is as follows:

cij,p = ‖XS,i −XT ,j‖1/p (3)

Using this ground cost, induces the so-called p-Wasserstein
distance [23]:

Wp(h̃S , h̃T ) = (OT (h̃S , h̃T ;Cp))
1/p (4)

In this work, we use the 1-Wasserstein distance. Inter-
estingly, the Wasserstein distance is also known as Earth
mover’s distance [24] in the computer vision literature, as
the problem of moving earth is often used as an example to
introduce the concept of optimal transport and it also hints
at its roots in the very first formalization of optimal transport
by Monge [25]. Hence, from now on we will use the term
Earth Mover’s Distance (EMD) as it fits the theme of this
work.

C. Connecting OT with Robot Motion Planning

While OT at a glance seems very suitable for planning
robot motions that require manipulating granular materials,
it has seen very little practical application in this field.
Tuomainen et al., [10] use the Earth Mover’s Distance in their
robotic pouring problem as an error metric for the poured
granular material. However, instead of exploiting the easily
computable optimal transport map, they directly optimize on
a learned material model, which takes hours for each motion.
Schenck et al. [14] mention that the earth mover’s distance
as a possible error metric in their scooping and dumping
problem for granular material, but instead fall back to the L1
norm due to its computational simplicity. One major problem
is that Optimal Transport assumes that the (probability) mass
in each cell can be split up into infinitesimally small chunks
and moved individually to other cells without any extra cost.
While this might approximately hold for highly localized
actions like precise scooping and dumping, this is not the
case for manipulation actions, such as sweeping, that affect
a large region of the granular material distribution. In the
following, we leverage not only the error metric provided
by OT, but also the transport map T∗ for planning efficient
robot motion that requires transporting granular materials via
sweeping motions of a robot arm.

D. Assumptions

In the following, we will assume that the granular ma-
terial of interest is incompressible, has a grain size that
is much smaller than the end-effector, and have negligible
cohesive and adhesive effects which enables the use of
position-controlled sweeping trajectories. We will further
assume that the material is (and will remain) on a planar,
gravity-aligned, convex, and obstacle-free workspace that is
completely reachable by the robotic end-effector. Lastly, we
assume that the volume distribution of the granular material
is given in the form an occlusion-free, discrete height map.



E. Next-Best-Sweep Planner

To avoid computationally prohibitive sweep planning
based on accurate dynamics models of the materials, we in-
stead propose to use a next-best sweep planner that computes
promising sweep candidates based on the optimal transport
map T∗ between the current heightmap H̃S and the target
height map H̃T . We will first introduce a heuristic scoring
function g(T, a) that takes as input the transport map T and a
sweep primitive a to compute a proxy score on how well the
sweep agrees with the transport map. We will use g(T, a) to
rank a set of L candidate sweeps Asweep = {a1, ..., aL}
and choose the sweep a∗ with the best score such that
g(T, a∗) ≥ g(T, ai), ∀ai ∈ Asweep.

a) Sweep Action Primitive: We will define the sweep
action primitive a(Xstart, Xend;wspatula) as a straight line
sweep with a perfectly perpendicular and plane-parallel spat-
ula, parameterized by the sweep start location Xstart, sweep
end location Xend, and the spatula width wspatula.

b) Simple Push Model: Before defining the proxy
score, we will first introduce the simple forward push model,
which has been inspired by [12], and [16]. The push model
is visually depicted in Figure 2, where all cells in the source
height map HS that fall inside the rectangular sweep patch
spanned by ai,start, ai,end, and wspatula, shown as black
cell, are predicted to end up at the end of the sweep, shown
as the cyan coloured cell. The sweep patch, called P , is
shown by the blue, directed rectangle in Figure 2. Further,
we introduce the corresponding displacement vector as ~tfw
and its normal vector ~nfw = ~tfw/||~tfw||

c) Proxy Score: We define a proxy score for a sweep
as the sum of the mass Tij that is supposed to be moved
according to the computed OT transport map, for all edges
starting inside the sweep patch XS,i ∈ P , weighted by a
heuristic function r(i, j),

g(T, a) =

NS∑
i=1

1P (XS ,i )

NT∑
j=1

Tij r(i, j).

Here 1P () is the indicator function for set P. The heuristic
r(i, j) is constructed to reflect how well the simple push-
model predictions ~tfw (shown in Fig. 2) for the sweep aligns
with the OT vectors ~tedge, where

r(i, j) = α+ max(~nfw · ~tedge, 0) + α−min(~nfw · ~terror, 0).

Additionally, the heuristic function contains a penalty term
for overshoot (~nfw ·~terror) (see Fig. 2) so that material is not
pushed further than where it was supposed to go (green cell).
Here α+ and α− are two scalar, positive hyperparameters
tuned by a simple parameter sweep in simulation.

d) Sampling Sweeps: We compute the next-best sweep
to execute by generating a set of candidate sweeps A and
computing the proxy score g for all of them and choosing the
highest-ranking sweep. For sampling the sweeps to evaluate,
we use the transport map T as it gives us a strong prior
where to look for sweeps that move a lot of probability
mass. First, we sample an edge pair from the probability
distribution induced by T as (i, j) ∼ T which we use to

Fig. 2: Simple forward push model used for computing the
sweep score.

define the start of the sweep Xstart = XS,i and the end
of the sweep Xend = XT ,j , while discarding very short
sweeps where ||Xend − Xstart|| < δmin. For covering a
larger range of potential sweeps, for example for sweeps that
start at Xstart but do not have to go all the way to Xend, we
generate further samples by linearly interpolating the sweep
end between Xstart and Xend at a step size of δrefine. We
repeat this sampling L times to generate our set of candidate
sweeps A.

IV. EXPERIMENTS AND RESULTS

In the following we demonstrate the effectiveness of our
proposed method. First we show extensive quantitative re-
sults in simulation on different tasks, comparing our method
against two baselines evaluated using the earth mover’s
distance. Then we show the ability of our approach to handle
varied real-world granular materials by performing multiple
shaping tasks with a Panda robot arm.

A. Simulation Setup

We use Nvidia’s Isaac simulator1 because it supports
simulating granular material in real time. The Isaac simulator
leverages the Position-Based Dynamics approach by Macklin
et al. [8] to simulate fluids and granular materials. The
environment consists of a simulated Franka-Emika Panda
arm with a 7 cm wide spatula as end-effector, a 0.5m ×
0.5m large workspace fully reachable by the robot arm.
The depth measurements from the rendered depth camera
are converted to a point cloud and fused into a discrete
height map at a resolution of 2 cm with the approach from
Fankhauser et al. [26], [27]. After computing the straight

1https://developer.nvidia.com/isaac-sim



(a) Simulation setup (b) Hardware setup

Fig. 3: Experimental setup for a) simulation, and b) hardware
experiments.

Fig. 4: Examples for target shapes: GATHER, SEP-2, SEP-3,
SEP-4, LETTER.

line sweeps, the motions are executed by feeding way points
along the sweep to the RMPFlow controller [28] that ships
with Isaac. See Figure 3a for a visualization of the simulation
setup. We use the ’Python Optimal Transport’ toolbox by
Flamary et al., [29] for computing the optimal transport map
T and the earth mover’s distance.

B. Simulation Tasks

We will show the usefulness of Optimal Transport as a
general tool for planning earth-moving operations and the
effectiveness of our proxy-score heuristic planner for pushing
granular material into many different shapes. We will use
three different tasks to show the validity of the above claims.

a) Gathering: The gathering task is the simplest task,
where scattered material should be collected into a single
small target region, as shown in [11], [12], [16], [20].

b) Separation: Separating granular material into dif-
ferent blobs is more complex than simple gathering, as
already shown in [9]. Here the robotic agent needs to reason
about how to efficiently re-distribute the granular material
from the source distribution into the target distribution. We
differentiate between different separation tasks and denote
SEP-N as the task of separation into N cluster of equal size.

c) Letter: Sweeping granular materials into more com-
plex target shapes is an even more difficult task that requires
precise reasoning about the material distribution and plan-
ning the appropriate robot motions. We choose letters, which
was also used in [16] as examples of complex shapes.

We also use five different initial distributions for the
PBD material in the gathering and separation tasks, shown
in Figure 5. These vary in terms of scatter across the
whole workspace to demonstrate the generalizability of our
approach across different initial conditions.

Fig. 5: Different initial distributions for the PBD material:
1-blob, 2-blobs, 4-blobs, Gaussian, Uniform.

C. Methods

We will compare our proposed planner against two other
baseline methods MAX-OT and DIFF-MAP, which are
briefly summarized in the following:

We will assume that both H̃S and H̃T cover the same
area, which is required for the DIFF-MAP methods to work.

a) OURS: We deploy our proposed OT-based sweep
planner with α+ = 1.0, αerror = 100.0, Lsamples = 10 and
δrefine = 0.02. The high value α− = 100.0 leads to the
planner approaching the target shape more conservatively,
resulting in it overshooting less and removing material that
was already in place. The same parameter set was used for
all tasks, both in the simulation experiments as well as the
physical experiments.

b) MAX-OT: The first baseline computes the optimal
transport map T∗ = OT (H̃S , H̃T , C) and then selects the
next-best sweep as the strongest non-trivial edge in the
transport map a = (XS,i, XT ,j) where {(ij) | Tij =
max(T ) ∧ XS,i 6= XT ,j}. This reflects a naive application
of OT to the problem that does not respect the motion
constraints of a sweep.

c) DIFF-MAP: Our second baseline does not use op-
timal transport at all and is instead inspired by the heuristic
planner from [22]. We construct two new height maps
H̃excess, where h̃excess = max(h̃S − h̃T , 0.0) and H̃lack,
where h̃lack = max(h̃T − h̃S , 0.0)

We then sample the start of the sweep from the first
probability distribution as,start ∼ H̃excess and the end from
the latter as,end ∼ H̃lack

D. Simulation Results

We generated 10 randomized gathering targets by ran-
domly choosing the centre of the circle and 9 randomized
separation targets (three each for SEP-2/SEP-3/SEP-4) in a
similar fashion. We let each of the methods perform for 30
iterations on the simpler start environments (1-blob, 2-blobs,
Gaussian) and for 50 iterations on the more challenging
(more scattered) environments (4-blobs, Uniform). In total
we let each method solve 95 different sweeping tasks, each
with a different start and end configuration. In addition, we
ran six runs with 50 sweeps in the 1-blob environment for
shaping the letters ”E, T, H, A, S, L”. The results for the
gathering tasks are summarized in Table I and the results for
separation are summarized in Table II and they are separated
by the chosen initial condition. The reported values are the
earth mover’s distance scaled up by 10−3, given as the
median and the 5% and 95% quantiles in the subsequent
brackets. We see that our method consistently outperforms
the two other baseline methods, with only a few cases where
the 95% quantiles overlap with the 5% quantile of one of the



INITIAL OURS MAX-OT DIFF-MAP

1-blob 2.9 1.2 2.7 3.7
[10.6, 23.1] [1.5, 2.9] [5.2, 9.5] [5.4, 8.1]

2-blobs 15.7 1.8 10.0 6.9
[22.8, 32.7] [2.5, 3.8] [11.9, 17.8] [8.9, 13.4]

4-blobs 28.6 2.1 16.8 12.1
[35.5, 45.3] [2.6, 3.6] [22.0, 29.5] [14.6, 21.1]

Gaussian 9.7 1.6 10.2 7.8
[16.7, 26.7] [2.2, 3.0] [15.9, 24.2] [10.6, 16.5]

Uniform 14.6 1.0 16.0 10.0
[21.3, 30.8] [1.8, 2.7] [22.6, 32.6] [12.2, 16.4]

TABLE I: Simulation results for methods (columns) on
gathering tasks, using five different source shapes (rows) and
ten random target shapes.

INITIAL OURS MAX-OT DIFF-MAP

1-blob 8.1 1.4 3.0 3.4
[11.2, 22.0] [2.3, 3.7] [3.8, 9.0] [4.0, 5.9]

2-blobs 5.8 1.9 3.5 4.5
[17.4, 33.8] [3.5, 4.4] [7.0, 17.3] [6.4, 13.5]

4-blobs 10.2 1.8 6.4 6.9
[18.2, 31.2] [2.0, 6.5] [11.1, 20.6] [10.2, 18.3]

Gaussian 5.1 2.2 4.6 4.3
[10.1, 21.5] [2.9, 6.0] [8.6, 18.9] [6.0, 12.4]

Uniform 5.6 1.7 5.7 6.0
[10.8, 22.5] [2.5, 3.7] [10.8, 22.7] [7.8, 13.0]

TABLE II: Simulation results for methods (columns) on
separation tasks, using five different source shapes (rows)
and nine random target shapes.

baseline methods. The proposed method also consistently
has the lowest variance by a large margin. This becomes
obvious when looking at the evolution of the metrics over
time in Figure 6, where the median, 5% quantile, and 95%
quantile curves are plotted for OUR method and the two
baselines for gathering in Uniform, separation in Uniform,
and letter in 1-blob. The plots show that our method manages
to quickly decrease the EMD values to a low value with a
small variance. We have also plotted the Intersection-over-
Union to provide a second metric, that is not based on
optimal transport.

E. Hardware Setup

Our setup for the hardware experiment is shown in Figure
3b. The setup consists of a Franka-Emika Panda robot arm
to which we attach a brush as an end-effector, similar to
[15], for mechanical compliance when interacting with the
rigid ground or rigid particles. We use the Pico Monstar
Time-of-Flight camera from pmdtechnologies to get high-
accuracy point cloud scans, which are integrated by the
same elevation mapping framework by Fankhauser et al.
[26], [27] as for the simulation experiments. We use a
fixed scanning position that yields a complete scan of the
workspace. The PILZ Industrial Motion Planner, which ships
with the popular MoveIt2 planning framework, is used to
move the end effector on smooth linear trajectories.

2https://moveit.ros.org/

To show that our approach generalizes to different mate-
rials, we have chosen three different granular materials. Our
material selection consists of gravel (rounded edges), grit
(sharp edges), and wooden chips. The materials are shown
in Figures 7a, 7b, 7c.

F. Hardware Results

Similar to the simulation experiments, we will demonstrate
the functionality of our proposed planner in four different
tasks that consist of gathering to a single target, separating
into two clusters, separating into four clusters, and shaping
the letters ”E”, ”T”, ”H”. For the hardware experiments,
we do not additionally randomize the target distribution as
was done in the simulation experiments. Instead we use the
respective nominal target shapes shown in Figure 4.

However, we perform the three different tasks on all three
materials. The results from these nine runs are summarized in
the quantile plots showing the evolution of the median, and
the 5% as well as 95% quantile curves for both the EMD as
well as IoU in Figures 8a-8b, which show consistent progress
towards the target shape with small variance. For the letter
task, see Figure 1 for the qualitative results on shaping the
letters ”E”, ”T”, and ”H” with grit stones.

V. CONCLUSIONS

In this work, we proposed a material-agnostic planner
for transforming piles of granular material from arbitrary
initial shapes to arbitrary target shapes by means of sweeping
motions with a robot arm. We leverage the mathematical
framework of optimal transport and adapt it to sweep-based
planning through a reactive next-best-sweep sampling-based
approach and show that it is a promising avenue for granular
material manipulation in robotics. We have validated the
approach in large-scale simulation and hardware experiments
and compared them to two simpler baselines that tend to
work on simpler tasks, like gathering, but fail at more
difficult tasks that require more precise reasoning about how
to efficiently re-distribute the material. We have shown that
the proposed planner successfully generalizes to multiple
input shapes, target shapes, and granular materials without
requiring sophisticated or computationally expensive dynam-
ics models of the materials. Finally, while we assumed that
the state of the granular material is given as a volumetric
height map, this only works for larger particles that can be
picked up by the depth sensor. For small-grained materials,
like sand, one has to either use very high-precision depth
sensors or leverage other sensor modalities to estimate the
volume.
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