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Fig. 1: Hardware design and software architecture of CREPES. The hardware consists of an IMU, an UWB, IR LEDs and a Camera.
The Raw Relative Pose Estimation software module collects neighbors’ ID (from ID Extraction), directional measurement (from Relative
Direction), distance (from UWB) and IMU information to get the raw estimation. Then an ESKF module filters the result using the IMU
information. When multiple neighbors are around, a PGO module is employed to further improve the performance.

Abstract— Mutual localization plays a crucial role in multi-
robot cooperation. CREPES, a novel system that focuses on
six degrees of freedom (DOF) relative pose estimation for
multi-robot systems, is proposed in this paper. CREPES has
a compact hardware design using active infrared (IR) LEDs,
an IR fish-eye camera, an ultra-wideband (UWB) module and
an inertial measurement unit (IMU). By leveraging IR light
communication, the system solves data association between
visual detection and UWB ranging. Ranging measurements
from the UWB and directional information from the camera
offer relative 3-DOF position estimation. Combining the mutual
relative position with neighbors and the gravity constraints
provided by IMUs, we can estimate the 6-DOF relative pose
from a single frame of sensor measurements. In addition, we
design an estimator based on the error-state Kalman filter
(ESKF) to enhance system accuracy and robustness. When
multiple neighbors are available, a Pose Graph Optimization
(PGO) algorithm is applied to further improve system accuracy.
We conduct enormous experiments to demonstrate CREPES’
accuracy between robot pairs and a team of robots, as well as
performance under challenging conditions.

I. INTRODUCTION

Recently, multi-robot systems have received increasing
attention due to their high efficiency in many fields, such as
collaborative mapping, exploration [1], monitoring [2] and
search and rescue [3]. For an efficient multi-robot system,
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mutual relative localization is the key to accomplishing
tasks cooperatively. Stable, accurate and fast relative pose
estimation between robots can significantly improve the qual-
ity of collaboration. For instance, robots can continuously
transform neighbors’ perceptions into their frames to acquire
a robust collaborative perception.

One common practice for relative localization is using
robots’ odometry in a global reference frame, like satellite-
based global positioning system (GPS) [4], motion capture
system (MCS) [5] and UWB system with multiple anchors
[6]. The relative poses can be calculated from the subtraction
between agents’ global states. However, these systems rely
on pre-installed infrastructure or require time-consuming
calibration, and not applicable to robots in unknown envi-
ronments. Simultaneous localization and mapping (SLAM)
can provide each robot with the odometry in its global
reference frame. Relative transformations between multiple
robots can be estimated by matching common features in
their maps, either centralized or distributed. Nevertheless,
they usually need high computational resources and com-
munication bandwidth. By equipping robots with specially
designed structures, such as AprilTags [7] and LEDs [8], the
relative pose can be estimated from direct robot-to-robot ob-
servations in many systems. However, short detection range,
strict viewpoint requirements and sensitivity to ambient light
limit their application in multi-robot systems.

To overcome difficulties of dependence on the infras-
tructure and environment, high computational cost and low
adaptability, we design a Cooperative RElative Pose Estima-
tion System (CREPES) for multi-robot systems. CREPES,
which can obtain instant 6-DOF relative poses to all the
neighbors in a large-scale environment, consists of a novel
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hardware design and supported software. The hardware con-
sists of active IR LEDs, an IR fisheye camera, an IMU and
an UWB. The system can produce a raw estimation of the
relative pose between two robots from one single frame of
mutual observations. To cope with multiple sources of sensor
noise, we establish a relative motion model and apply an
adapted ESKF [9] where the reference frame is in motion.
A pose graph optimization strategy is applied when two or
more neighbors are around to further improves the accuracy.
In summary, our contributions are as follows:

1) We propose CREPES, a novel relative pose estimation
system that produces accurate relative position and
orientation within one-shot mutual observations.

2) We design and implement the hardware prototype con-
sisting of active IR LEDs, an IR fisheye camera, an
IMU and an UWB.

3) We design a relative pose estimator based on ESKF,
where the reference frame is in motion.

4) We propose a PGO-based algorithm to improve the
accuracy when multiple neighbors are around.

II. RELATED WORK

While many infrastructure-based systems (e.g. GPS, MCS,
UWB with anchors [5, 10]) circumvent the mutual localiza-
tion by using global poses, we focus on real-time relative
pose estimation for autonomous navigation in an unknown
environment. We classify current systems into direct and
indirect methods depending on whether the relative pose can
be estimated instantaneously.

A. Indirect Methods

Multi-robot SLAM is a typical indirect method in which
agents estimate the relative transformation between robots’
map frames by matching common features in their maps,
either in a centralized or distributed fashion. Centralized
works [11], [12], [13] usually require a powerful central
server to collect keyframes from all agents and optimize
their trajectories through the global bundle adjustment in a
common coordinate frame. The relative information between
agents can be acquired from the server directly. Distributed
methods [14], [15] rely on inter-robot loops to estimate
relative poses between robots’ coordinate frames in a dis-
tributed manner. In these works, robots need to exchange
map feature descriptors for inter-robot loop detection. More
importantly, the feature descriptors should be generated from
similar viewpoints to improve accuracy.

Mutual observations, such as relative ranging or bearing,
are applied to help reduce the high dependency on the
environment and inter-loop detection. Cao [16] proposes an
efficient method by combining the visual inertial odometry
(VIO) system with mutual UWB ranging measurements
between robots and an anchor. Wang [17] utilizes trajecto-
ries of Unmanned Aerial Vehicles (UAVs) and anonymous
bearing measurements to formulate mutual localization as
a mixed-integer quadratically constrained quadratic problem
and obtain a certifiably global optimum. Xu [18] fuses om-
nidirectional visual inertial SLAM and UWB measurements

with global graph-based optimization. Overall, these methods
may suffer from degeneration due to the reliance on SLAM
systems in the feature-less environment.

Researchers also explored ranging/bearing only systems
to further reduce environmental dependency. Zhou [20] pro-
vides theoretical proof that the minimum number of distance
constraints required for 3-DOF relative pose estimation is
five. Guo [21] proposes an infrastructure-free cooperative 3-
DOF relative localization system with UWB measurements
and applies it to real-world UAV formation control. Trawny
[19] puts forth an algebraic algorithm using ten range mea-
surements to estimate 6-DOF relative pose. However, these
methods usually require enough motion excitation over long
trajectories in practice.

B. Direct Methods

Although direct methods typically need customized hard-
ware, the self-sufficiency, stability, efficiency and accu-
racy still attract enormous attention. Cutler [22] proposes
a lightweight solution for estimating ranging and bearing
relative to a known marker, which consists of three IR LEDs
in a fixed pattern. Faessler [23] utilizes four infrared LEDs
structures following certain rules and uses the Perspective-n-
Point (PnP) algorithm to calculate the relative pose between
a quadrotor and a ground robot. When coming to the multi-
robot scenario, active markers [24] or active LEDs coded
board [8] is designed to encode ID information either by
pulsating capabilities or LEDs arrangements. However, since
the utilization of the PnP algorithm, these methods usually
work at a short distance to keep the LED light spots
distinguishable in the image. By using Ultraviolet LEDs and
estimating the bearing vector and distance, Walter [25] has
dramatically improved the detected range, with a maximum
working distance of 15 meters.

UWB is getting popular in multi-robot systems due to its
low cost and good ranging accuracy. Fishberg [26] provides
an inter-agent 3-DOF relative pose estimation system for
robots in a 2D plane, where each agent is equipped with four
UWB modules. The relative pose is calculated by modeling
observed ranging biases and systematic antenna obstructions
in a nonlinear least squares optimization. Cossette [27]
presents a method for computing optimal formations for
relative pose estimation, during which both the relative
position and relative heading of the agents with two UWB
modules are locally observable. An on-manifold gradient
descent procedure is used to determine optimal formations
for improving estimation. Since the noise property of UWB,
the baseline distance between multiple UWB modules should
be far to acquire good performance, which limits the platform
size to use these systems.

III. RELATIVE POSE ESTIMATION SYSTEM

Our novel system includes a compact hardware design and
supported software. As shown in Fig. 1, the hardware system
includes IR LEDs, an IR fisheye camera, an IMU, and an
UWB, and the software contains the ID Extraction module,
raw relative pose estimation module, ESKF filter module,



and PGO module. ID Extraction module establishes the data
association between ranging measurement and directional
information by using the IR camera and a disc-shaped IR
LED board. The raw relative pose estimation module gets
direct relative position and orientation. Then, we design
a relative movement model and adapt ESKF to filter raw
estimations. For systems with more than two robots, the PGO
module launches to further improve accuracy.

A. Hardware

Fig. 1 shows an overview of sensor components and their
physical settings. A disc-shaped board with six 950nm IR
LEDs is designed to transmit ID information. We program
an ARM Cortex-M3 STM32 microcontroller to control the
flickering of LEDs for ID encoding. Correspondingly, we use
a MV-SUA133GM camera made by MindVision, equipped
with a 950 nm IR filter, to decode the ID information. The
camera has a fisheye lens with a 185 degrees field of view
(FOV) and is set to a frame rate of 200 Hz (maximum
245 Hz), with a global shutter. We use a DW1000-based
UWB module from NoopLoop to provide mutual ranging. It
uses a dongle antenna to get relatively good omnidirectional
ranging and a maximum range of 500 meters, with a standard
deviation of 5 centimeters. In addition, a 6-DOF low-cost
MEMS IMU module is used to provide accelerations and
angular velocities at a frequency of 100 Hz. The accelerom-
eter noise density is 183.3µg/

√
Hz and the gyroscope noise

density is 0.021◦/s/
√
Hz. In practice, we use imu-tk [28]

to perform calibration to correct imprecise scaling factors
and axes misalignments. Lastly, we use an Intel NUC with
i5 processor as the computation platform and its onboard
WiFi as the communication medium. Note that we configure
the WiFi network card into a self-organizing MESH mode
(BATMAN network 1) to remove the dependence on a central
router.

B. ID Extraction

The ID information for each node is encoded into the
LED pulsating control. IR LED boards are programmed
with designed duty rates using a 50ms period. Benefitting
from the infrared filter, all lighted IR LED boards are easily
distinguished from natural features in a captured image.
First, we convert the image into binary with a threshold and
perform circle detection using Hough transform to obtain
pixel coordinates of the centers of detected spots. Next, the
detected spots are associated with previous ones according
to a distance constraint, and the duty rates are calculated.
Finally, IDs are decided by comparing the calculated duty
rates with elements in an ID library. At the same time, the
pixel coordinates of the detected spots’ centers work as the
directional measurement for pose estimation.

C. Raw Relative Pose Estimation

The raw relative pose estimation uses mutual directional
measurement from the camera (described in the above

1https://www.open-mesh.org/projects/open-mesh/wiki/BATMANConcept
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Fig. 2: The pipeline of the raw relative pose estimation algorithm.
(a) We use the DS fisheye camera reprojection model to compute
two-unit directional vectors BpuA and ApuB . (b) By using the
gravity alignment, we get the expressions B̄puA and ĀpuB of
the two-unit directional vectors under the two intermediate frames
Ā and B̄. (c) we project B̄puA and ĀpuB onto the x-o-y plane
and compute the angles between each projected vector and the
corresponding x-axis.

section), UWB ranging, own IMU and neighbor’s IMU
measurements, as shown in Fig. 1. The working pipeline
of how we estimate raw mutual relative pose is shown in
Fig. 2, taking robots A and B as an example (B as the
observer). Firstly, when two robots observe each other in
their image frame, they extract ID and pixel coordinates from
the ID extraction module. Based on the Double Sphere (DS)
projection model of the fisheye camera [29], we get the unit
directional vector BpuA ∈ R3 for detected robot A in robot
B’s frame. The relative position of robot A in B’s frame Bp̃A
can be calculated by

Bp̃A = dAB ∗ BpuA (1)

where dAB is the ranging measurement from UWB between
robots A and B.

To estimate the relative orientation, we introduce interme-
diate frames Ā and B̄. We use Z − Y −X Euler angles to
define roll, pitch and yaw, and extract roll and pitch angles
using the gravity constraint. As shown in Fig. 2 (b), by
rotating the roll and pitch angles to align the z-axis of robot
B’s body frame opposite gravity’s direction, we get the new
B̄ frame. The unit directional vector BpuA in the B̄ frame
is expressed as B̄puA, where

B̄puA = RB
pitchR

B
roll

BpuA (2)

RB
pitch and RB

roll are obtained from robot B’s IMU mea-
surements. As shown in Fig. 2 (c), we project B̄puA to the
X-O-Y plane to get an angle B̄ψA between the projected
vector and the positive direction of the x-axis. In the same
way, we take robot A as the observer and can also get ĀψB .
Therefore the relative yaw angle ψ can be defined as,

ψ = B̄ψA − ĀψB + π (3)



After all, we calculate the relative orientation matrix BR̃A

by

BR̃A = RB
roll

T
RB
pitch

T
Ryaw {ψ}RA

pitchR
A
roll (4)

where Ryaw {ψ} is the rotation matrix corresponding to
ψ, RA

pitch and RA
roll are extracted from robot A’s IMU

measurements.
Similarly, by taking robot A as the observer, we can also

calculate the relative position Ap̃B and relative orientation
AR̃B in robot A’s frame.

D. ESKF Filter

To improve the estimation quality, we adapt an ESKF to
filter the raw relative pose estimations. Compared to the
typical state estimation in a normal inertial system, our
ESKF model takes extra consideration of the reference frame
motion. Same as the above section, we keep robot B as the
observer.

1) Prediction Model: In a static reference frame W , we
define Wq(·), Wp(·) and Wv(·) as the quaternion, position
and velocity of the robot (·), respectively. For robots A and
B, the relative state can be calculated by

BpA = RT
{
WqB

}
(WpA −WpB) (5a)

BvA = RT
{
WqB

}
(WvA −WvB) (5b)

BqA = Wq
∗
B ⊗WqA (5c)

where R {q} and R {θ} are the rotation matrices associated
with the quaternion q and the angular vector θ, respectively,
RT {·} is the inverse matrix of R {·} and ⊗ represents
the quaternion product. It should be noted that BvA is not
the time rate of the change of BpA and the relationship is
revealed in equation (9a).

For simplicity, we write BpA, BvA, and BqA as p, v,
and q, respectively. We define that x is the nominal state,
xt is the true state and δx is the error state,

x =

 p
v
q

 xt =

 pt
vt
qt

 δx =


δp
δv
δθA
δθB

 (6)

where δθ(·) is the small local angular error used to parame-

terize an error quaternion of the robot (·), δq(·) ≈
[

1
δθ(·)

2

]
.

The true state can be computed with nominal-state and error-
state by

xt = x⊕ δx (7)

pt = RT {δθB} (p + δp) (7a)

vt = RT {δθB} (v + δv) (7b)
qt = δq∗B⊗q⊗δqA (7c)

where δq∗B is the conjugate quaternion of δqB .
We take the robot (·) IMU acceleration measurements

am(.) and gyroscope measurements wm(·) as the ESKF filter
input um. The input noise vector un consists of acceleration

noise an(.) and gyroscope noise wn(·). an(·) and wn(·) are
modeled by white Gaussian processes.

um =


amA
wmA
amB
wmB

 un =


anA
wnA
anB
wnB

 (8)

We have the system model of the nominal-state as

p← RT {wmB∆t} (p + v∆t+
1

2
(R {q}amA − amB)∆t2)

(9a)

v← RT {wmB∆t} (v + (R {q}amA − amB)∆t) (9b)
q← q∗ {wmB∆t} ⊗ q⊗ q {wmA∆t} (9c)

where← stands for a discrete time update, ∆t is the discrete
time interval and q {θ} is the quaternion associated with the
angular vector θ.

We write the differential equations of the error-state as

δx← f(x, δx,um,un) = Fx(x,um)δx + Fiun (10)

δp← RT {wmB∆t} (δp + δv∆t) (10a)

δv← RT {wmB∆t} (δv +α∆t) (10b)

δθA ← RT {wmA∆t} δθA −wnA∆t (10c)

δθB ← RT {wmB∆t} δθB −wnB∆t (10d)

where α = −R {q} [amA]×δθA + [amB ]×δθB −
R {q}anA + anB and the definition of the cross-product
matrices [ ]× can be found in [9].

We define Fx and Fi are the Jacobians of f with respect
to δx and un, Fx and Fi are calculated by

Fx =
∂f

∂δx

∣∣∣∣∣
x,um

, Fi =
∂f

∂δun

∣∣∣∣∣
x,um

(11)

Then the prediction equations can be written as

δ̂x← Fx(x,um)δ̂x (12)

P← FxPFx
T + FiQiFi

T (13)

where δx ∼ N (δ̂x,P) and Qi is the covariance matrix of
un.

When IMU data is received, we follow equations (9a) ∼
(9c), equations (12) and (13) to update the nominal-state,
error-state and error-state covariance matrix, respectively.

2) Measurement Model: We take the raw calculation
results in section III-C as measurements z,

z =

 Bp̃A
Ap̃B
Bq̃A

 (14)

where Bq̃A corresponds to BR̃A. Since the same sensors’
observations are used to compute BR̃A and AR̃B , we
only need to select one of them as the measurements. The
relationship between the measurements z and the true-state



is written as

z = h(xt) + v (15)
Bp̃A = pt + pnA (15a)
Ap̃B = −RT {qt}pt + pnB (15b)
Bq̃A = qt + qn (15c)

where v = [pnA,pnB ,qn]
T ∼ N (0,V) is a white Gaussian

noise with the covariance V.
The true state estimation can be calculated by x̂t = x⊕δ̂x.

As the error-state mean δ̂x = 0, we have x̂t = x. Therefore,
we take x as the evaluation point and the Jacobian matrix of
the measurement model H is

H =
∂h

∂δx

∣∣∣∣∣
x

=
∂h

∂xt

∣∣∣∣∣
x

∂xt
∂δx

∣∣∣∣∣
x

(16)

The correction equations can be written as

K = PHT (HPHT + V)
−1

(17)

δ̂x← K(z− h(x̂t)) (18)
P← (I−KH)P (19)

We use equation (18) and equation (19) to compute the
observed error and update the error-state covariance matrix,
respectively.

3) Error Injection and Reset: When the measurements
update is finished, we add the observed error to the nominal
state by

x← x⊕ δ̂x (20)

After the error injection step, we reset the error state for
the next iteration by

δx← g(δx) = δx	 δ̂x (21)

δp← RT
{

ˆδθB

}
(δp− δ̂p) (21a)

δv← RT
{

ˆδθB

}
(δv − δ̂v) (21b)

δθA ← − ˆδθA +

(
I−

[
1

2
ˆδθA

]
×

)
δθA (21c)

δθB ← − ˆδθB +

(
I−

[
1

2
ˆδθB

]
×

)
δθB (21d)

We define G as the jacobian matrix of the error reset
function (21), G can be computed by

G =
∂g

∂δx

∣∣∣∣∣
δ̂x

(22)

Finally, we update the error-state mean δ̂x and its covari-
ance matrix P by

δ̂x← 0 (23)

P← GPGT (24)

Mutual Measurement

0
1

2

3

Fig. 3: An illustration of PGO of 4 robots

E. Pose Graph Optimization

From the above sections, we get the refined relative
pose estimation between two robots. When multiple robots
are around, we propose a PGO-based algorithm to further
improve the mutual localization accuracy. Unlike the classic
PGO using multi-frame measurements in the continuous
time domain, our PGO formulation is for any single frame
of mutual measurements. As shown in Fig. 3, each robot
represents a node in the graph and the edge is the mutual
relative pose between two robots.

Currently, each robot runs the PGO algorithm in a dis-
tributed manner after receiving all the available mutually
measured poses from the neighbors. For an arbitrary robot,
we denote its coordinate frame as C, the pose of robot i
in C as Xi = (Ri, ti) ∈ SE(3), the measured relative
pose between robot i and robot j as T̂ij = (R̂ij , t̂ij) ∈
SE(3), i 6= j, and the PGO problem can be formulated as
follows

min
X∈O

∑
(i,j)∈L

ρ(rij(Xi,Xj , T̂ij)) (25)

where O is the set of robots, L is the set of robot couples,
ρ() is the kernel function, and rij(Xi,Xj , T̂ij) is defined as

rij(Xi,Xj , T̂ij) = ‖T̂ij · (X−1
j ·Xi)− I‖2F (26)

We use open-sourced GTSAM [30] to solve the graph
optimization.

IV. EXPERIMENT

To show the accuracy and features of our system, we
design a series of experiments with UAVs and Unmanned
Ground Vehicles (UGVs). MCS and RTK are introduced as
ground truth. We use the error evaluation method in [31] to
demonstrate the mutual localization accuracy of our system.
Our experiments contain two parts: 1). Accuracy comparison
in two-robot and multi-robot scenarios. 2). Feature validation
experiments. Considering the computation time firstly, the
ID extraction takes less than 2 ms per image, raw relative
pose estimation and ESKF iteration takes less than 1 ms, and
the PGO needs around 3 ms. The selected computation plat-
form, Intel NUC-i5, is proven to have sufficient computation
resources.



(a) (b)

(d)(c) (e)

Fig. 4: Two robots mutual localization. (a) shows our experimental scenario. (b) shows trajectories in 3D while UAVs are in manual
control. Trajectories in (c)(d)(e) are shown in the top view while UAVs are programmed to fly autonomously.
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Fig. 5: Boxplot of the position error (a) and orientation error (b)
for experiments shown in Fig 6.

A. Accuracy Comparison

1) Two-Robot Mutual Localization: Experiments are im-
plemented indoors, and MCS is used as ground truth. As
shown in Fig.4, to demonstrate the robustness of our system,
we conduct one manual control and multiple autonomous
control experiments with two UAVs. To effectively visualize
the comparison, we calculate the estimated trajectory of
UAV1 by adding the relative pose estimations on the ground
truth of UAV0, the observer. Experiments show that our
system can consistently and stably provide relative pose
estimations. We can see from Fig.5 that our system achieves
high relative pose estimation accuracy. For all experiments,
the median of mutual position estimation errors is in the
range of 0.102 to 0.161 meters, and the median of mutual
orientation errors is in the range of 0.733 to 1.517 degrees.

TABLE I: Accuracy comparison of four-robot mutual local-
ization experiment in UAV0 body frame

without with Improvement
PGO PGO

Traj. Lengths of UAV1, UGV0,1 (22.0, 17.7, 11.6) m∑
ATEpos(X0

i )/n 0.089m 0.073m 0.016m∑
ATErot(X0

i )/n 0.884◦ 0.879◦ 0.005◦

2) Multi-Robot Mutual Localization: Four robots, two
UGVs and two UAVs, are prepared to prove the multi-robot
mutual localization accuracy, as shown in Fig.6 (a). Different
from the above experiments, we add PGO to improve multi-
robot mutual localization performance. Fig.6 (b) shows the
estimated trajectories of other robots with respect to the
UAV0 frame (as the observer). Table I shows the average
Absolute Trajectory Error (ATE) [31] for n robots in the
UAV0 body frame, under the condition of with and without
PGO. Results show that PGO improves the accuracy of
position and orientation estimation, albeit by a small amount
in the clear condition.

B. Feature Validation

1) Dark Scenario: As shown in Fig.7 (a), we test the
system in an almost totally dark environment, which is
challenging for VIO-based indirect methods. Similar to the
two-UAV experiments, the observer can consistently estimate
the relative pose of the other UAV as shown in Fig.7 (c).
This experiment verifies that the proposed system can work
in environments with low-light conditions.

2) Long-Range Scenario: As shown in Fig.7 (b), we
conduct the long-range experiment outdoors with a UAV and
a UGV. During the experiment, the UGV is static, and the
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(b)

Fig. 6: Multi-robot mutual localization

(a) (b)

(d)(c)

Fig. 7: Dark and Long-Range Scenarios Experiments.

UAV is flying under manual control. Since MCS can’t be
deployed in the outdoor environment, we use RTK GPS as
our ground truth for comparison. Fig.7 (d) shows the system
can stably estimate peer poses far from 27.5 meters, which
shows better support in large areas than works [8] [22]–[24]
using active LEDs (relative pose estimated within 6 meters
distances).

3) Aggressive Motion Scenario: To testify our system
under extreme conditions, we perform an aggressive motion
experiment with large roll/pitch/yaw angular changes. The
experiment is conducted via two handheld devices as it is
difficult to control UAVs/UGVs to perform such large rota-
tion angular excursions, either manually or autonomously.
Two people walk around a circle (with a diameter of 4
meters) and move the two devices’ attitudes randomly. As
the absolute poses shown in Fig. 8(a) and Fig. 8(b), the
maximum changing range for pitch angle reaches 87 degrees,

Fig. 8: Aggressive Motion Experiment. Sub-figure (a),(b) show the
ground truth orientation changes of robot0 and robot1. (c) shows
the ground truth relative pose between the two robots. From (a),(b),
and (c), we can see aggressive motion between robot0 and robot1.
Then (d) shows the relative pose estimation errors.

for roll angle reaches 138 degrees and for yaw reaches 360
degrees. The relative poses also vary over large angles as
shown in Fig. 8(c). From Fig. 8(d), we see the relative
position error is below 0.4 meters with a median of 0.174
meters and the angle error is below 6 degrees with a median
of 1.48 degrees.

Fig. 9: Occlusion experiment. We conduct experiments with five
robots in two scenarios with different levels of occlusion. (a) shows
the position and orientation errors of robot1 in robot0 frame under
an isolated obstacle occlusion condition. (b) shows the remapped
trajectories of robot0’neighbors into its own frame in a complex
environment, compared with neighbors’ ground truth trajectories.

4) Cooperative Localization in Occluded Scenario: Oc-
clusion can not be avoided when deploying robot teams in
real-world applications, which could fail the relative pose
estimation between two robots as the lack of mutual visual
measurements. In this situation, the PGO-based algorithm
could be used to recover the relative poses through cooper-
ative localization in certain conditions. Firstly we compare
the accuracy under occluded and non-occluded conditions.
We move a group of five robots in an environment with
an isolated obstacle, where robot0 and robot1 happen to
be occluded by the obstacle at some points as shown in



the left of Fig.9 (a). The right of Fig.9 (a) shows the
estimation error and we can see the error is slightly larger
when occlusion happens, which is acceptable considering
there’s no direct measurements between robot1 and robot0.
Secondly, we conduct the other experiment in a much more
complex environment with many obstacles as shown in Fig.9
(b). We can see the estimated trajectories match well with
ground truth trajectories.

V. CONCLUSION

This paper introduces CREPES, a novel, robust and ac-
curate solution for multi-robot mutual localization. We have
conducted extensive experiments to show the performance
of CREPES in two-robot and multi-robot situations, even in
dark or large-scale environments, with aggressive motion or
under occlusion conditions. Our relative pose estimation sys-
tem can achieve a median of 0.13 meters position accuracy
and a median of 1.16 degrees orientation accuracy in clear
conditions.

Although we testify our system under occlusion conditions
and show similar accuracy, we find there are much more
outliers than in clear conditions. In future research, we
will tackle this challenge from the perspective of multi-
robot cooperative optimization in continuous time domain.
In addition, we will iterate the hardware to make the system
smaller for robotic applications.
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