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Abstract—The emergence of resistive non-volatile memories
opens the way to highly energy-efficient computation near- or
in-memory. However, this type of computation is not compatible
with conventional ECC, and has to deal with device unreliability.
Inspired by the architecture of animal brains, we present a
manufactured differential hybrid CMOS/RRAM memory archi-
tecture suitable for neural network implementation that functions
without formal ECC. We also show that using low-energy
but error-prone programming conditions only slightly reduces
network accuracy.

I. INTRODUCTION

Emerging nonvolatile memory technologies such as resis-
tive, phase change and spin torque magnetoresistive memories
offer considerable opportunities to advance microelectronics,
as these memories are faster than flash memories, while
being compact and compatible with the integration in the
backend-of-line of modern CMOS processes , . Howeyver,
although these technologies are usually more reliable than
flash memories, they remain considerably less reliable than
volatile charge-based random access memories. Strategies for
reducing errors due to device variation and limited endurance
involve costly materials and technology developments [3],
energy-consuming special programming strategies [4], and
quite universally, the reliance on advanced multiple error
correcting codes (ECC) [1]l, [3], requiring large area and
energy hungry decoding circuitry [6].

The existence of errors in emerging memories is also a
severe limitation for the development of in or near-memory
computing schemes, which aim at achieving highly energy effi-
cient computation by eliminating the von Neumann bottleneck
(1], (7). In or near-memory computing schemes are indeed
hardly compatible with ECC, as computation is performed
with multiple row selection or in the sensing circuit [8]], [9].
These constrains are in sharp contrast with animal brains,
which function with vastly unreliable, redundant, memory
devices (synapses) without using formal error correction [10],
[11].

In this work, we show through an example that in computing
architectures inspired by brains (neuromorphic architectures),
memory device variability can to a large extent be ignored, and
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even embraced, and that this attitude can provide important
benefits. We first present a differential memory architecture
optimized for the ECC-less in-memory implementation of
biarized neural networks. We show based on experimental
measurements on a fabricated CMOS/RRAM hybrid chip and
on network simulations that this architecture can mostly ignore
device variation, and investigate the benefits of accepting
errors. Based on a modeling study, we show that the same
methodology could be transferred to MRAM.

II. AN IN-MEMORY COMPUTING MEMORY BLOCK THAT
FuNCTIONS WITH ERROR-PRONE DEVICES
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Fig. 1. (a) Simplified schematic of our in-memory computing hybrid
CMOS/RRAM test chip. (b) Electron microscopy image of an RRAM cell
integrated in the backend-of-line of a 130 nm commercial CMOS technology.
(c) Photography of the die.

In this work, we propose the use of a memory architecture
where each bit is stored in a two-transistor/two-resistor (2T2R)
cell. We implemented a kilobit version (2,048 devices) of this
architecture in a 130 nm CMOS technology, with hafnium
oxide-based RRAM fully embedded in the backend-of-line
(Fig. 1). This test chip was initially introduced in [§], [9]|. Bits
are stored in a differential fashion between the two devices
to reduce errors. Doing so, during the read phase, a high
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Fig. 2. Circuit of the precharge sense amplifier (PCSA) used in the test chip
of Fig. |I| (a) Standard version, (b) version augmented with XNOR operation,
initially proposed in [12].
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Fig. 3. (a) Bit error rates (BER) measured using the PCSAs of the test

chip as a function of 1TIR BER in the same conditions. (b) For comparison,
improvements of BER obtained using standard Single Error Correction Double
Error Detection (SECDED) ECC. Figure adapted from [9].

resistive state (HRS) is always compared to a low resistive
state (LRS), doubling the memory read window with regards
to the conventional comparison to a reference value between
HRS and LRS, as is used in one-transistor/one-resistor (1T1R)
architectures [§]. This differential read scheme is operated by
on-chip precharge sense amplifiers (PCSA), whose circuit is
presented in Fig. 2(a). These sense amplifiers can also be
augmented to directly perform logic operations during read
operations [12]. An example where a PCSA has been aug-
mented to perform exclusive NOR (XNOR) operation is shown
in Fig. 2(b). Such in-memory computing augmentations, while
approaching logic and memory, make our system incompatible
with conventional ECC scheme.

Extensive experimental measurements on our test chip
showed that the 2T2R strategy indeed reduces bit errors when
compared to the classical 1TIR approach. RRAM devices
error rate is directly linked to the current used during the
programming operations, offering a knob of error rate tuning
depending on the application requirements. Fig. 3(a) compiles

statistical measurements on the fabricated test chip, taken
with diverse programming currents, allowing evaluating the bit
error rates (BER) benefits of the 2T2R approach in different
conditions. It is apparent in this Figure that the 2T2R strategy
always reduces the amount of bit errors, with the highest
benefits seen at lower BERs. The detailed methodology for
obtaining Fig. 3(a) is presented in [9].

Quite interestingly the error reduction benefits of the 2T2R
approach are similar to the one of a Single Error Correct-
ing Double Error Detecting ECC (SECDED, or extended
Hamming), but without the high peripheral circuit overhead
required by this ECC [6], and associated read performance
degradation (Fig. 3(b)). Moreover, this result is obtained
considering the same memory capacity (2T2R without ECC
versus 1T1R plus extra bit for correction code storage).

III. BENEFITS AT THE NETWORK LEVEL
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Fig. 4. Schematization of a full digital system implementing a Binarized
Neural Networks using in-memory computing blocks of Fig. |I|

Binarized Neural Networks (BNNs) [14]], or the highly
similar XNOR-NETs [I5], are a recently proposed type of
neural network, where synaptic weights and neuron states can
take only binary values (meaning 1 and —1) during inference
(whereas these parameters assume real values in conventional
neural networks). Therefore, the equation for the activation A
of a neuron in a conventional neural network

A=f Zwixi : (1)
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Fig. 5. Impact of the BER of memories on applications of Binarized

Neural Network: handwritten digit recognition (MNIST), image recognition
(CIFAR-10, ImageNet TOP-1 and TOP-5). Details about the neural network
architectures are provided in [9].
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Fig. 6. Number of errors on a one kilobit array using the 2T2R strategy
(with PCSA) for different programming conditions (compliance current I,
RESET voltage VyppReset, and programmming pulse duration 5, ). Error
bars represent the minimum and the maximum number of errors over five trials
of the experiment. Figure adapted from [9].

(where X; are inputs of the neuron, W; the synaptic weights
and f its nonlinear activation function) simplifies into

A = sign (POPCOUNT (XNOR (W, X)) = T) . (2)

POPCOUNT is an integer function that counts the number
ones. sign is the sign function, and 7' is the threshold of
the neuron, obtained during training by the use of the batch-
normalization technique [16].

BNNs can achieve surprisingly high accuracy in vision
(5], or signal-processing tasks. BNNs have highly
reduced memory requirements with regards to real neural
networks, and have the added benefit of not requiring any
multiplication, as this operation is replaced by XNOR logic
operations. These advantages make BNNs outstanding candi-

dates for in-memory computing [[19]-[26].
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Fig. 7. Mean programming energy (per bit) of RRAM cells in the (a) SET
and (b) RESET processes for the programming conditions shown in Fig. 6.
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Fig. 8. Endurance measurement for two devices (bit line BL and bit line bar
BLb), programmed in weak conditions (VyppRreset = 1.5V, Ic = 200uA,
tpulse = 1us). Figure adapted from [EI]

The architecture of Fig. 1 is particularly adapted for the
ECC-less implementation of such neural networks. For ex-
ample, Fig. 4 shows a full system using memory circuits of
Fig. 1 to implement a BNN. The architecture uses the sense
amplifier of Fig. 2(b) to implement XNOR operations
directly in each memory circuit during the read phase, whereas
the POPCOUNT operation, as well as neuron activation are
performed on foot of array columns using fully digital circuits.
Refs. [9], describe this architecture in detail, as well as
some its variations, and show that this architecture features
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Fig. 9. Accuracy on the CIFAR-10 image recognition task of a 28nm-
technology MRAM based Binarized Neural Network, as a function of MRAM
programming energy (varying programming time). Computed using the model
of [13]], considering or ignoring MOSFET and magnetic tunnel junction device
variation.

outstanding energy-efficiency properties.

We now evaluate the impact of errors in memories in
this architecture. Fig. 5 shows simulations of the architecture
programmed to perform several tasks: the classic MNIST
handwritten digit recognition task [28], the CIFAR-10 image
classification task [29], and the challenging ImageNet clas-
sification task, which consists in classifying high-resolution
images into 1,000 classes [30]. The detailed architecture of
the BNNs used on these three tasks in presented in [9]]. All
these tasks were simulated with various bit error rates on the
memory devices. Quite astonishingly, we see on all these three
tasks that bit error rate as high as 10~2 can be tolerated with
little consequence on the accuracy of the implemented neu-
ral network. This highlights that when implementing BNNss,
memory perfection is far from being required. Some dedicated
training strategies could enhance this error tolerance even
further [31]].

The combination of the fact that the 2T2R approach allows
reducing the amount of bit errors, and that the BNN appli-
cation features inherent tolerance to bit errors has important
consequences in practice. It allows us to use RRAM devices
in regimes where they are extremely unreliable. This can
provide important energy savings: we can use devices with
very weak programming conditions (low current and voltages,
short programming time), where they feature high amounts
of bit errors. Figs. 6 and 7 show statistical measurements of
our test chip in various conditions, and highlight the energy
benefits of accepting more errors. Finally, operating devices in
high BER regimes allows using conditions where they feature
outstanding endurance. Fig. 8 for example shows endurance
measurements of two devices programmed with low RESET
voltages (1.5V). An endurance of more than 100 cycles is
seen, which is particularly high for such technology. This type
of high cyclability opens the way to the possibility of training
neural networks on chip, as seen in the results reported in
[32]. A more detailed analysis of the energy benefits (which

can reach a factor ten) of embracing bit errors in RRAM-based
BNNSs, and of the associated endurance benefits, is presented
in [9].

The strategy reported in this work is not limited to RRAM,
and can be applied to other types of memories. Fig. 9 shows,
based on neural network simulation, the energy that could be
saved by varying the programming time of 28 nm Spin Torque
Magnetoresistive RAM (ST-MRAM) using the same approach
as the one presented here. We see that high energy savings can
be achieved. The methodology and model for obtaining these
results are presented in [[13]].

IV. CONCLUSION

Digital computing usually assumes and requires perfection
in the memory bits, and this accuracy comes at important
costs in terms of area and energy consumption. In contrast,
neuromorphic circuits, including fundamentally digital ones
such as binarized neural networks can get away with imperfect
memory cells. In this work, we use a differential approach to
reduce errors and to be compatible with in or near-memory
computing. This differential coding, in combination with the
inherent tolerance of neural network, shows that it is possible
on one side to embrace memories as ‘“non ideal” without
noticeable impact on neural network accuracy, and on the other
side to get important benefits in terms of tuning of operating
conditions (endurance, energy), opening the way to on-chip
learning.
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