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Abstract—This work proposes a new and simple algorithm for
unconstrained numeric optimization over continuous spaces. A
population of candidate solutions styled as a herd of kudus per-
forms a succession of jumps through the search space in order to
find the best solution (the kudu is a species of antelope). The logic
of this algorithm is quite different from that of most population-
based algorithms, as the individual solutions are moved together
in a herd-like fashion. Performance comparisons are conducted
with the Artificial Bee Colony, Differential Evolution, the Genetic
Algorithm and Particle Swarm Optimization on benchmark
functions. The kudu herd seems to perform well in the early
stages and on high-dimensional problems.

I. INTRODUCTION

Numerical optimization is an active research field with
a wide range of applications. Ever since the emergence of
evolutionary computation in the 1960s, much progress has
been made in stochastic optimization techniques that make few
assumptions about the function being optimized, in particular
not requiring it to be continuous or differentiable. Exciting
recent developments include Particle Swarm Optimization
(PSO) [9], the Artificial Bee Colony algorithm (ABC) [8], both
based on nature-inspired behaviour, and Differential Evolution
(DE) [13]. These evolutionary algorithms have proved to yield
good results on benchmark and real-life problems.

The present contribution introduces a new algorithm named
Kudu Herd Optimization. It can be thought of as mimicking
the behaviour of a herd of kudus that jump their way through a
solution space to find the optimal point. The kudu is a species
of antelope present in sub-Saharan Africa, that mostly lives in
herds and is known for its ability to jump high and far [3].
The kudus were not the original inspiration for the algorithm,
but provide a convenient and entertaining way of presenting
its workings and logic. The algorithm tries to find an opti-
mal point by iteratively changing a population of candidate
solutions. However it does not rely on evolutionary principles
or swarm intelligence, but rather on herd-like behaviour with
centralized decisions. Results indicate that it performs well
on a number of classic benchmark problems taken from the
literature.

The rest of this paper is organized as follows. Section
2 describes the KHO algorithm, first through an illustrative
story, then more formally. Section 3 presents the experimental
protocol and the results of performance comparison between

KHO, ABC, DE, Genetic Algorithm (GA), and PSO. Section
4 contains some concluding comments.

II. DESCRIPTION OF THE ALGORITHM

A. Illustrative story

The logic of KHO is best understood through a story. Let
us state first that the behaviour of the kudu herd we describe
is purely fictional - apart from the fact that they are often
found in herds and that they are good jumpers, we claim no
knowledge of kudu behaviour. Let us then imagine a herd of
kudus jumping around their habitat in search of the location
containing the best food - a kudu finding itself in any point in
space can give it a real-valued mark, indicating food quality.
Most kudus in our herd are fairly unimaginative, and they all
follow one intelligent leader-kudu in their jumps. The herd
moves in the following way:

• The leader jumps to a given location, and all the other
kudus jump to random positions around the leader.

• The kudus then report their new positions and the corre-
sponding quality to the leader. Based on this information,
the leader determines the direction of its next jump (by
computing the covariance of a function of picnic-quality
with the position coordinates).

• The leader’s jump distance grows smaller if two consec-
utive jumps are in opposite directions, otherwise it grows
larger.

• Several jumps are performed in this fashion, and the size
of the scatter region around the leader can be reduced
over time to exploit information from narrower regions.

• The herd remembers the single best location it has found
so far.

B. Formal description and pseudo-code

Formally, we try to find the point that minimizes a real-
valued cost function over a given bounded D-dimensional real-
valued search space:

argminx cost(x), x ∈ S
S = [lb1, ub1]× . . .× [lbD, ubD]

For this purpose we use a population of P kudus (D-
dimensional vectors representing candidate solutions), of
which one is the leader. The algorithm iterates over four
steps: place the leader in the search space, randomly place



the other kudus in an area around the leader, evaluate the cost
function for each kudu, and use these evaluations to compute
the leader’s next position.

Introducting some notations, let:
•
−−−−→
leader be an D-dimensional vector containing the
leader’s position,

• A be a P×D matrix whose first row is
−−−−→
leader and whose

remaining rows contain the other kudus’ positions,
•
−−−→
rank be a P -dimensional vector containing the cost-
ranking of each of the kudus,

•
−−−→
jump be an D-dimensional vector giving the direction
of the leader’s jump,

• jlength be a scalar value representing the leader’s jump’s
length,

• scatter be a scalar value controlling how close to the
leader the kudus will be scattered,

• η+ and η− be scalar values used to automatically
lengthen or shorten the jumps,

• mlength be a scalar value representing the minimal
allowed jump length.

Then in pseudo-code the KHO algorithm operates as fol-
lows:

1) Initialization
a) Initialize the leader to a random point in the search

space.
b) Initialize the (P −1) other kudus to random points

in a region around the leader, with parameter
scatter controlling the size of this region.

c) Evaluate the cost function at each of the P points.
d) Rank the costs and store the result in

−−−→
rank.

e) Store the lowest cost and the associated position.
f) Compute the jump direction according to the fol-

lowing formula:

∀i ∈ [1, D],
−−−→
jumpi = cov(

−−−→
rank,A.i) (1)

where
−−−→
jumpi denotes the i-th element of the jump

vector and A.i denotes the i-th column of matrix
A.

g) Initialize jump-length variable jlength to the max-
imal distance between the leader and the other
kudus.

2) Loop (until termination criterion is met)
a) Update the leader’s position according to the fol-

lowing formula:

−−−−−−→
leadert+1 =

−−−−→
leadert − jlengtht

‖
−−−−→
jumpt‖

−−−−→
jumpt

b) Update the other kudus’ positions by randomly
placing them in a region around the leader, the size
of which is controlled by parameter scatter.

c) Evaluate the cost function at each of the P points.
d) Rank the costs and store the result in

−−−→
rank.

e) Store the lowest cost and the associated position if
it is lower than the stored best.

f) Compute the jump direction according to formula
(1).

g) Update the jump-length variable: if the new jump
is made a direction opposite to that of the last
jump (ie if

−−−−−−→
jumpt+1 ·

−−−−→
jumpt < 0) then multiply

jlength by η−, else multiply it by η+. If this
makes jlength smaller than mlength, set it to
mlength.

h) Update the scatter parameter.

C. Parameters and taxonomy
The algorithm essentially takes 3 parameters: the population

size P , the scatter-range scatter, and the minimal jump-length
mlength. Their role is easily understood: P is the number
of cost-function evaluations at each iteration, which should
affect the quality of jump direction (more evaluations at each
iteration means a better “understanding” of the topology of the
cost-surface around the leader) and the intensity of exploitation
of each visited area (more evaluations give a better probability
to pick a good point in the local search-area). The scatter-
range controls “how local” the search is at each iteration: a
lower scatter value will let the random evaluations occur in a
narrower region around the leader. The minimum jump-length
is used to avoid convergence to local optima. In section 3 we
try to apprehend the influence of P , scatter and number of
iterations on performance.

Parameters η+ and η− are directly inspired by those of
Riedmiller and Braun’s RPROP algorithm [12] for the training
of feedforward neural networks. The idea, paraphrasing the
original article, is that two consecutive jumps in opposite di-
rections (which in KHO is detected by a negative dot product)
indicate that the last jump was too long and the algorithm has
jumped over a local minimum; jump-length is then decreased
by factor η−. Otherwise, jump-length is slightly increased
(by factor η+) in order to accelerate convergence in shallow
regions. Although our setting is quite different, we used the
original values of both parameters, η− = 0.5 and η+ = 1.2.
No attempt has been made as yet to assess their influence on
performance.

We chose to use the rank of costs instead of costs to compute
the jump direction. This makes the algorithm invariant to any
increasing transformation of the cost function. Preliminary
results seem to indicate that using ranks instead of cost does
not significantly affect performance on benchmark functions.
Other choices are of course possible, for instance using log-
rank, exp-rank or squared rank to give more importance to
lower or higher costs, and this choice might affect perfor-
mance. Another discussable choice concerns the random place-
ments around the leader. For the experiments of section III the
kudus were uniformly distributed inside a hyperparallelepiped
centered on the leader, according to the following formula:

∀(i, j)∈[2, P ]× [1, D],

aij=
−−−−→
leaderj+ (rij − 0.5)× scatter × (ubj − lbj)

where aij denotes element (i, j) of matrix A,
−−−−→
leaderj is the

leader-vector’s j-th element, scatter is a scalar value chosen



Table I
BENCHMARK FUNCTIONS F1-F10 DEFINITION, RANGE AND CHARACTERISTICS

Function Name Definition Range Unimodal Separable Easily optimized
dimension by

dimension

F1 Ackley 20 + e − 20 exp(−0.2
√

1
D

∑D
i=1 x

2
i ) −

exp( 1
D

∑D
i=1 cos(2πxi))

[−32, 32]D N Y Y

F2 Bohachevsky
∑D−1

i=1 (x2i + 2x2i+1 − 0.3 cos(3πxi) −
0.4 cos(4πxi+1) + 0.7)

[−15, 15]D Y N N

F3 Griewank
∑D

i=1
x2
i

4000
−

∏D
i=1 cos(

xi√
i
) + 1 [−600, 600]D N N N

F4 Rastrigin
∑D

i=1(x
2
i − 10 cos(2πxi) + 10) [−5, 5]D N Y Y

F5 Rosenbrock
∑D−1

i=1 (100(x2i − xi+1)
2 + (xi − 1)2) [−100, 100]D N N Y

F6 Schaffer
∑D−1

i=1 (x2i + x2i+1)
0.25(sin2(50(x2i +

x2i+1)
0.1) + 1)

[−100, 100]D Y N Y

F7 Schwefel 1.2
∑D

i=1(
∑i

j=1 xj)
2 [−65.536, 65.536]D Y N N

F8 Schwefel 2.21 maxi{|xi|, 1 ≤ i ≤ D} [−100, 100]D Y N N
F9 Schwefel 2.22

∑D
i=1 |xi|+

∏D
i=1 |xi| [−10, 10]D Y Y Y

F10 Sphere
∑D

i=1 x
2
i [−100, 100]D Y Y Y

in [0, 1], ubj and lbj are respectively the upper and lower
bounds of dimension j, and rij is a random value uniformly
drawn from [0, 1]. A better choice might be to generate normal
deviates from

−−−−→
leader.

The KHO algorithm uses a population of candidate solutions
that it changes and evaluates at each iteration. This property,
which is shared by population-based algorithms such as ABC,
DE, GA and PSO, makes parallelization of these algorithms
easy, a very desirable property when evaluations are time-
consuming. Whether KHO can be called a population-based
algorithm is, however, discussable. In KHO the individual
solutions that make up the population have no autonomy, as
all main decisions are centralized (jump direction and length
are computed by the leader using the information provided
by the whole population). At each iteration these individuals
are randomly placed around the leader, so that contrary to the
algorithms cited above different individuals never simultane-
ously explore wildly different regions. Furthermore their new
coordinates do not depend on previous individual coordinates.
This lack of autonomy sets KHO apart from most population-
based algorithms, as its population moves through the solution-
space in a herd-like fashion. This and the lack of inheritance
in the transformation process also means that KHO does not
belong to the family of evolutionary algorithms, and does not
make use of swarm intelligence (as defined in [10]).

III. EXPERIMENT AND RESULTS

A. Experimental design
In order to test the performance of the KHO algorithm we

use the unshifted expression of 10 classic benchmark functions
as specified in [6]. As can be seen in table I their expressions
and properties differ, but they are all scalable to any number
D of dimensions, and all offer at least one global minimum
of value 0.

Performance was compared to that of ABC, DE, GA, PSO
and a random search. Comparing optimization algorithms in

a rigorous way is a notoriously difficult and time-consuming
exercise, but we have tried to make the results as objective
and reproducible as possible. Each algorithm was tried with
varying population size (20, 50, 100, 200) and number of
iterations (50, 100, 200, 1000), and each cost function was
tried with varying number of dimensions (10, 20, 50, 100,
200). Each combination was run 100 times. The algorithms
are compared through cost medians and standard deviations,
on a basis of same problem dimension, population size and
number of iterations. Lack of space forbids the presentation
of all the detailed results, but a summary is given in subsection
III-C.

B. Algorithms and settings

All trials were run using R version 2.13.1. Following is a
brief description of the algorithms and settings used.

1) Artificial Bee Colony: The ABC algorithm was proposed
by Karaboga in 2007 [8] as an optimization technique in-
spired by the foraging behaviour of honey bees. Candidate
solutions are called food sources. The population is divided
into employed bees and onlooker bees. In each iteration each
employed bee tries to find one better food source than its
previous one, applying a greedy selection if it succeds. Each
onlooker bee is then directed towards one of the existing
food sources, with a probability depending on the fitness of
these sources, and tries to improve it, again applying a greedy
selection. Each food source can only be exploited a given
number of times, after which it is abandoned and replaced
by a new random source.

The algorithm was implemented by plugging the C code
found on the official ABC website [1] into the Rcpp package
[5]. The limit parameter, controlling the number of maximal
exploitations per food source, was set to 100 for all runs.

2) Differential Evolution: The DE algorithm, introduced by
Storn and Price in 1997 [13], is an evolutionary algorithm in
which the evolution of individual agents is based on sums and



differences between coordinates of existing agents. Its most
simple expression is the following: at each iteration, for each
member of the population x, three existing agents a,b and c
are chosen at random, and a new candidate solution is created
by crossover between x and a+F × (b−c), using a crossover
probability CR and ensuring that at least one coordinate of x
is conserved in the new candidate. A greedy selection is then
applied between x and the new candidate solution.

The tests were run using the R package DEoptim version
2.1-2 [11]. We used the classical DE/rand/1/bin strategy, and
the package’s standard values for F and CR, respectively set
to 0.8 and 0.5.

3) Genetic Algorithm: GA has a long history of usage in
many different settings since its introduction by Holland in
1975 [7]. The basic principle is to evolve children solutions
from a population of parent solutions by the use of selection,
crossover and mutation operators.

We used the real-vector version of GA implemented in
function rbga of R package genalg version 0.1.1 [14]. Except
for the population size and number of iterations, we used
the package’s standard parameters: mutation probability of
1/(D+1) where D is the number of dimensions, and elitism
of about 20% of the population size.

4) Particle Swarm Optimization: PSO was introduced by
Kennedy and Eberhart in 1995 [9] and is inspired by the
flocking behaviour of birds and fish. A population of candidate
solutions called particles is flown around the search space in
the following way. At each iteration, each particle’s position
is changed by adding to it a random velocity vector which
is a function of the previous velocity, of the difference vector
between the particle’s present position and its remembered best
position, and of the difference vector between the particle’s
present position and the remembered best position of a set of
informant particles.

We used the psoptim function provided by R package pso
[2], which follows the “standard pso 2007” specification by
Clerc et al. [4]. Except for the population size and number of
iterations, the default settings were used: exploitation constant
of 1/(2 log(2)), local and global exploitation constants both
set to 0.5 + log(2), random order of particle processing, no
restarting, no clamping of velocity, and average percent of
informants for each particle of 1− (1− 1/popsize)3.

5) Random Search: In order to detect bad performance
we included a random search algorithm, which is simply the
best solution found among iter × popsize random guesses
uniformly distributed over the search space.

6) KHO: The algorithm was run as described in section
II-B, with a minimal jump length of 1e − 20. It should be
noted that for a same population size and number of iterations
the KHO algorithm performs more operations than the other
algorihtms, as for each iteration it has to compute covariances
of the solution ranks with the population’s coordinates.

The algorithm was coded in C++ and integrated in the R
environment using the Rcpp package. Five different scatter
parameters were tried: in four implementations the parameter
is constant over all the iterations (0.3, 0.1, 0.01, 0.001) and

in the fifth implementation the parameter is linearly decreased
from 0.1 to 0.001 over the iterations.

C. Results

Tables II through V show some of the results obtained
on the benchmark functions for 10 and 200 dimensions.
These tables reflect the main results of the experiment: KHO
finds a relatively good solution very fast (as can be seen
in tables II and IV it often gets much better results than
the other algorithms after 50 iterations), but seems unable to
make significant progress in subsequent iterations. After many
iterations (typically 200 in low dimensions and 1000 in high
dimensions) the other algorithms are able to catch up with it
and attain better solutions. This double result is observed in
nearly all settings for functions F1, F2, F3, F5, F6, F8 and
F10. It is unclear whether KHO gets stuck in local optima or
whether it is unable to exploit the good regions it has found to
the fullest. The example of function F10, which is unimodal
and has no local “traps”, and on which, in low dimensions,
KHO is bested by PSO and ABC for 200 iterations or more,
indicates that good exploitation is indeed an issue.

The results clearly indicate that the scatter parameter plays
a crucial role in KHO’s performance, and that the optimal
value depends on the considered problem. An extreme example
of this is function F1, on which KHO performs well when the
parameter is set to 0.1 or linearly decreased from 0.1 to 0.001,
but gives very bad results - equivalent to or worse than those of
a random search - when it is set to 0.01 or 0.001. On the other
hand, on F10 the best parameter is always the lowest, 0.001.
Letting the parameter decrease with each iteration seems to be
a good choice in many settings. An auto-adaptive scheme for
this parameter might give good results.

KHO has relatively bad results on functions F7 and F9.
Interestingly, on function F4 KHO obtains very bad results
in 10 to 50 dimensions (similar to random search or worse),
but gets much better in 100 and 200 dimensions (again
finding good solutions comparatively fast, but being bested
after many iterations). More generally, the algorithm performs
comparatively better in high dimensions: it still finds good
solutions after only a small number of iterations, and keeps
its relative advantage to other algorithms much longer than
in lower dimensions (most algorithms struggle with high
dimensions and require a great number of iterations to attain
good solutions).

IV. CONCLUSION

Kudu herd optimization is a simple algorithm that seems
to perform well on many difficult problems. Performance
comparisons with well-known population-based algorithms
give encouraging results: KHO seems to find good solutions
faster than other agorithms, and to respond comparatively well
to the problem of scalability. It seems, however, to suffer from
a lack of exploiting behaviour when run with a large number
of iterations.

Future research could improve the algorithm in many di-
rections. We suspect that using normal deviations instead



Table II
MEDIAN COST OBTAINED BY ABC, DE, GA, PSO, KHO AND RANDOM SEARCH ON THE TEST SUITE, 100 TRIALS (FIVE DIFFERENT CHOICES FOR

KHO’S SCATTER PARAMETER : FIXED AT 0.3, 0.1, 0.01, AND 0.001, AND LINEARLY DECREASED FROM 0.1 TO 0.001)
DIM=10, POPSIZE= 50, ITER= 50 (STANDARD DEVIATIONS IN PARENTHESES, BEST MEDIAN IN BOLDFACE).

f1 f2 f3 f4 f5
ABC 5.042 (1.645) 1.712 (1.133) 0.9627 (0.2855) 10.76 (3.433) 1172 ( 6766)

DE 8.543 (0.8296) 23.58 (5.953) 3.54 (0.9653) 29.01 (4.866) 1.577e+06 (1.274e+06)
GA 10.31 (1.359) 48.52 (17.22) 7.829 ( 2.98) 23.52 (5.906) 1.422e+07 (2.02e+07)

PSO 3.639 (0.4723) 6.328 (1.156) 1.239 (0.1309) 40.54 (7.666) 2.213e+04 (2.443e+04)
Random 17.76 (1.042) 380.9 (83.04) 59.07 (12.65) 78.2 (9.346) 5.822e+08 (2.918e+08)

KHO 0.3 2.674 (0.5356) 4.903 (1.698) 1.074 (0.06662) 35.46 (10.16) 1.859e+05 (4.627e+05)
KHO 0.1 1.016 (5.283) 1.217 (0.562) 0.987 (0.07092) 84.21 ( 26.1) 1.033e+05 (2.977e+05)

KHO 0.01 19.58 (0.497) 5.209 (1.526) 0.08589 (0.06632) 84.94 (25.36) 868.6 (7.693e+04)
KHO 0.001 19.53 (0.3751) 6.136 (1.762) 0.07859 (0.293) 91.04 (23.19) 3887 (1.311e+05)

KHO 0.1-0.001 0.2189 (7.238) 0.2944 (0.2159) 0.4287 (0.1646) 78.84 (24.58) 6134 (1.895e+05)
f6 f7 f8 f9 f10

ABC 10.16 (1.415) 1177 (492.9) 28.33 (7.541) 0.3464 (0.2068) 0.819 (5.719)
DE 12.56 (1.384) 1256 (378.7) 24.75 (4.241) 3.745 (0.6137) 309.2 (110.4)
GA 11.87 ( 2.02) 827.6 (371.8) 24.77 ( 5.08) 4.827 (1.224) 753.9 (396.3)

PSO 14.83 (2.538) 171.9 (104.3) 5.09 (1.158) 1.366 (0.3425) 24.99 (12.02)
Random 22.84 (3.386) 2739 (657.9) 43.4 (5.171) 22.95 (3.975) 6463 ( 1473)

KHO 0.3 16.15 (4.581) 1559 (957.2) 0.9454 (0.3826) 8.75 (7.622) 8.853 (5.141)
KHO 0.1 19.6 ( 4.64) 388 (271.3) 0.3334 (0.5184) 29.59 (24.23) 1.015 (0.6104)

KHO 0.01 14.5 ( 5.1) 493 ( 1025) 45.42 (14.08) 63.53 (229.7) 0.01107 (0.006097)
KHO 0.001 14.44 ( 10.8) 956.4 ( 9190) 73.32 (12.44) 51.15 (28.71) 0.0002638 (0.001495)

KHO 0.1-0.001 14.98 (4.579) 236.2 (462.2) 0.08873 (5.924) 32.74 (17.65) 0.08066 (0.08757)

Table III
MEDIAN COST OBTAINED BY ABC, DE, GA, PSO, KHO AND RANDOM SEARCH ON THE TEST SUITE, 100 TRIALS (FIVE DIFFERENT CHOICES FOR

KHO’S SCATTER PARAMETER : FIXED AT 0.3, 0.1, 0.01, AND 0.001, AND LINEARLY DECREASED FROM 0.1 TO 0.001)
DIM=10, POPSIZE= 50, ITER= 1000 (STANDARD DEVIATIONS IN PARENTHESES, BEST MEDIAN IN BOLDFACE).

f1 f2 f3 f4 f5
ABC 7.105e-15 (2.672e-15) 0 ( 0) 6.874e-08 (0.006576) 0 ( 0) 0.8951 (2.486)

DE 7.416e-14 (3.253e-14) 0 ( 0) 1.127e-08 (1.331e-05) 0 ( 0) 0.5597 (0.6756)
GA 0.405 (0.4804) 0.2636 (0.4649) 0.2788 (0.1285) 0.06823 (0.2336) 309.8 (560.2)

PSO 3.109e-15 ( 0) 0 ( 0) 0.02987 (0.02224) 2.985 ( 1.95) 0.8642 (8.623)
Random 15.36 (1.047) 206.5 (49.24) 33.45 (6.986) 60.85 (6.156) 1.502e+08 (7.715e+07)

KHO 0.3 2.755 (0.5298) 4.997 (1.529) 1.077 (0.07309) 25.42 (6.288) 1.262e+05 (3.999e+05)
KHO 0.1 0.9013 (4.576) 1.153 (0.5725) 0.9808 (0.08427) 82.34 (28.73) 3.638e+04 (1.986e+05)

KHO 0.01 19.54 (0.3989) 4.828 (1.667) 0.06546 (0.04697) 86.67 (24.38) 156.1 ( 2742)
KHO 0.001 19.47 (0.4189) 5.781 ( 1.45) 0.03901 (0.05073) 84.57 ( 22.1) 9.54 (6.669e+07)

KHO 0.1-0.001 0.1539 (5.095) 0.3468 (0.2488) 0.09367 (0.1925) 78.67 (24.82) 322.4 (1.712e+05)
f6 f7 f8 f9 f10

ABC 2.659 (0.7143) 10.94 (12.08) 0.2239 (0.1311) 3.246e-16 (9.051e-17) 9.679e-17 (3.789e-17)
DE 3.572 (0.5385) 0.1085 (0.07433) 0.0002765 (0.0001027) 2.29e-15 (1.079e-15) 1.287e-26 (1.796e-26)
GA 4.604 (1.579) 8.19 (7.973) 1.813 (0.4921) 0.07912 (0.03888) 0.1653 (0.3744)

PSO 5.491 (1.258) 2.014e-14 (4.147e-13) 1.208e-15 (1.34e-15) 1.286e-21 (2.208e-21) 4.933e-41 (1.806e-40)
Random 16.42 (1.715) 1563 (318.9) 32.29 (4.444) 15.47 (2.288) 3414 (822.9)

KHO 0.3 12.52 (3.498) 662.9 (882.3) 0.8498 (0.3285) 8.441 (7.556) 8.929 ( 5.28)
KHO 0.1 16.21 (5.381) 145.6 ( 78.9) 0.2931 (0.1077) 21.72 (15.31) 0.9661 (0.5751)

KHO 0.01 13.45 (3.956) 2.344 ( 6085) 0.02826 (0.01003) 48.29 (35.19) 0.009647 (0.006323)
KHO 0.001 12.76 (8.224) 0.02768 (1.761e+04) 23.98 (11.83) 47.81 (10.38) 9.704e-05 (5.153e-05)

KHO 0.1-0.001 13.12 (5.149) 1.089 (2.798) 0.04958 (0.04955) 0.07108 (17.41) 0.006017 (0.04688)

of the uniform scattering might improve convergence and
exploitation. The role of parameters η+ and η−, and of the
score-ranking scheme should be investigated. Auto-adaptive
schemes for the adjustment of crucial parameter scatter might
enhance performance on many problems. The algorithm could
be adapted relatively easily to problems of constrained opti-
mization. Finally, the results seem to indicate a certain com-
plementarity of KHO with other population-based algorithms,
which should make it a good candidate for hybridization.
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