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Abstract—Computational Intelligence (CI) techniques are be-

ing increasingly used for automatic monitoring and control

systems, especially regarding industrial and environmental ap-

plications, due to their performance, their capabilities in fusing

noisy or incomplete data obtained from heterogeneous sensors,

and the ability in adapting to variations in the operational

conditions. Moreover, the increase in the computational power

and the decrease of the size of the computing architectures

allowed a more pervasive use of CI techniques in a great variety

of situations. In this paper, we propose a brief review of the most

important CI techniques applied in each step of the design of a

monitoring and control system for industrial and environmental

applications, and describe how these techniques are integrated

in the development of efficient industrial and environmental

applications.

Keywords—Computational Intelligence, Neural Networks, In-

dustrial monitoring, Environmental monitoring, Control system.

I. INTRODUCTION

CI techniques represent enabling technologies for the design

of innovative intelligent systems for industrial control and

environmental monitoring. In fact, traditional systems are often

based on physical models or statistical analysis, designed by

experts of the field. In case of complex phenomena and pro-

cesses, these models might not be easy to devise and might be

incomplete or inaccurate. Moreover, changes in the observed

processes (e.g. due to the machinery aging or updates of

manufacturing specifications) often require manual adjustment

of the monitoring and control systems. Noisy data acquired

in non-ideal conditions can also increase the complexity of

designing and applying mathematical models in real scenarios.

Differently from traditional monitoring and control meth-

ods, under proper conditions, CI techniques allow to learn

the desired behavior of the system from examples, adaptively

updating their knowledge during system operation, mitigating

the negative effects of noise data, and reducing costs and

efforts needed to design and maintain the system. In fact,

thanks their robustness to data noise, examples of suitable CI

techniques for industrial and environmental applications are

artificial neural networks, fuzzy logic methods, Support Vector

Machines (SVM), and evolutionary algorithms [1].

The number and variety of scenarios in which monitoring

and control systems based on CI are used is constantly
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growing, thanks to the continuous increasing of computational

resources and size decreasing of computing architectures.

Examples of applications in industrial scenarios are quality

control [2], robot control [3], production monitoring [4],

and detection of machinery faults [5], [6]. In environmental

applications, CI techniques are mostly used to forecast [7],

[8] and monitor [9] physical phenomena.

Despite wide differences in application scenarios, monitor-

ing and control systems share the same basic architecture

(Fig. 1). They are composed by the following modules:

acquisition sensors, preprocessing of the acquired data, feature

extraction and selection, data fusion, estimation of the class

or continuous values describing the evaluated phenomenon. In

the literature there are studies that apply CI techniques in each

module [10], [11]. Moreover, there are methods that use CI to

optimize the performance of existing systems [12], [13].

This paper presents a brief review of recent advances in

CI applications for environmental and industrial scenarios. In

particular, we first present an overview of applications of CI

techniques in such contexts. Secondly, we propose an analysis

of the literature on CI methods designed for each component

of the monitoring and control systems. In particular, this paper

is organized as follows. Section II describes applications based

on CI for industrial and environmental scenarios. Section III

presents a design methodology for intelligent monitoring and

control systems, by depicting the architecture of monitoring

and control applications and showing the use of CI techniques

in every module. Finally, Section IV concludes the work.

II. APPLICATIONS OF INDUSTRIAL AND ENVIRONMENTAL

MONITORING

The increase in the computational capacity of processing

architectures, as well as the decrease of their size, allows the

use of automatic monitoring and control systems in numerous

scenarios [14], [15]. In particular, portable general-purpose

processing architectures with high computational power, bat-

tery life, and networking capabilities [16], as well as robust

and long-range vision systems that can be deployed using

low-cost equipment [17], [18], enable the implementation of

numerous monitoring and control systems able to work also

in harsh conditions, such as industrial [14] and environmental

applications [15]. In this context, CI techniques have been

researched in order to fuse noisy or incomplete data from

multiple sensors and learn the relationship between the data
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Fig. 1. Outline of an intelligent monitoring system for industrial and environmental applications

and the observed phenomenon, while adapting to different

operational conditions, to increase the accuracy, reliability, and

speed in detecting possible problems [2], [19].

In industrial applications, vision-based monitoring and con-

trol systems are often employed to perform a touchless, non-

invasive, and non-destructive supervision of the process, and

as a low-complexity alternative to the use of several sensors

for measuring different characteristics of the raw materials or

the final product, such as granulometry [20]–[22], volume [23],

and surface defects [24]. Moreover, Wireless Sensor Networks

(WSNs) are being increasingly used for industrial monitoring

due to their low cost, ease of installation, adaptivity, and self-

organization [6], [25]. In industrial applications, CI techniques

can be used to map the features extracted from the images or

from the sensors to the observed quantities [20], [21], [23],

[24], and they can be used as a general approach to monitor

the quality of the industrial production process, by learning

the relationship between the features of the raw materials and

the quality of the obtained product [26]–[31], or to detect

faults in the machinery by learning from the normal operating

parameters [5], [6], [32]–[34].

In environmental applications, monitoring and control sys-

tems can be broadly classified based on their architecture

as centralized, distributed, or remote sensing systems [4],

[15]. In particular, centralized systems include vision-based

monitoring systems based on a single point of observation,

which are often used in situations requiring long range

detection, such as wildfire detection [35], [36]. Distributed

systems composed by WSNs, on the other hand, are used

for numerous environmental monitoring applications due to

their self-organizing capability, long battery life, and the

possibility of being deployed automatically on large spaces

[19], [37]. Examples of applications include the monitoring of

water quality [38]–[40], climate change [41], meteorological

data [7], structural health monitoring [42]. Lastly, remote

sensing systems can exploit satellite imagery for large-scale

environmental monitoring of planetary phenomena, such as

pollution [9], [43], weather forecasts [8], seismic activity [44].

In environmental applications, CI techniques are often used

to detect the phenomenon of interest by fusing data obtained

from heterogeneous environmental sensors (e.g, temperature,

humidity, chemical concentration, vibrations) [19], [39], [41],

[42], by classifying the distinctive features extracted from one-

dimensional or two-dimensional signals [8], [9], [35], [43],

[44], and by performing forecasts based on time series analysis

[7], [38].

III. DESIGN METHODOLOGY FOR INTELLIGENT

MONITORING AND CONTROL SYSTEMS

The design of a generic monitoring and control system, ap-

plied to industrial or environmental applications, encompasses

different tasks [2] (Fig. 1):

A) Data acquisition, e.g., signals and images;

B) Data preprocessing, which is performed to enhance the

acquired data, by reducing noise or separating the pattern

of interest from the background;

C) Feature extraction and selection, which is performed to

obtain a synthetic representation of the raw data out of

the characteristics that mostly relate to the monitoring

application;

D) Data fusion, which is performed to reduce uncertainty

and increase accuracy, by combining information from

sets of heterogeneous acquisition sensors;

E) Classification, regression and clustering of the observed

phenomenon, which is performed for quality estimation,

fault detection, prediction, etc.;

F) System optimization and testing, which is performed to

improve the overall performance, by tuning the param-

eters of the system or by exploring the test cases.

A. Data acquisition

The first activity of a monitoring system is data acquisition.

The acquired data can be one-dimensional signals or multi-

dimensional signals (e.g., images, frame sequences, or three-

dimensional models).

There are sensors that acquire signals representing all the

five human senses and sensors that acquire signals describ-

ing different physical quantities, such as distance, pressure,

temperature, humidity, and the presence of chemicals.



CI techniques are frequently employed to calibrate the

sensors [45]–[47] in order to obtain more accurate results

with respect to traditional algorithms. Another application of

CI techniques is the sensor fault detection [48]. In particular,

most of the studies in the literature regarding this step are

based on supervised learning approaches, like feed-forward

neural networks [45], [46] and SVMs [47]. Some approaches

are also based on fuzzy logic [49] and evolutionary algorithms

[50].

B. Data preprocessing

The aim of data preprocessing is to remove the noise

eventually captured during acquisition or transmission, and to

enhance the quality and readability of data. In fact, sensors

used in industrial and environmental applications can be af-

fected by adverse conditions like illumination and temperature.

Also, interferences in the channel used for transmission can

alter the signal.

Filters can be designed to effectively improve one- and

multi-dimensional signals (e.g., two-dimensional images), by

reducing noise in the spatial domain or in the frequency

domain (e.g., the Fourier transform of the signal). Moreover,

when degradations of the signal occur, as image blur, filters can

be used to restore the original signal. In this context, many CI

approaches can be used to perform this kind of tasks, including

neural networks [51], [52], fuzzy systems [53], evolutionary

algorithms [54], or SVMs [55].

In addition, in many application domains it is necessary

to perform operations to separate the pattern of interest from

the background, to normalize it, and to define a compact

representation [1], [56]. In the case of images, these operations

are useful to enhance some characteristics of the image for

human visual inspection. For instance, recent works have

proposed to use neural networks to segment suitable areas

for bee foraging in satellite images [57] or fuzzy methods

to segment time-series in chemical processes [58] or wood

particles in panel production images [20].

C. Feature extraction and selection

Data sensed and preprocessed can be represented through

a set of features extracted from the data, of which the

most discriminative can be selected, to produce a synthetic

representation of the observed phenomenon, which can help

the monitoring and control system for measurement purposes

or for decision-making. Both feature extraction and selection

steps have the purpose of reducing the dimensionality of the

original data to limit the complexity of the problem while

retaining its discriminative characteristics, allowing the use of

simpler classifiers with a lower computational complexity and

less prone to overtraining effects [59]. Examples of features

extracted in industrial and environmental applications can be

the anomalies in the frequency ranges of a signal to predict

the quality of the production process [11], [26], the gray-level

variations of the image used for estimating the granularity of

a surface [60], and the shape of the moving area in a frame

sequence to identify smoke [35].

In particular, feature extraction methods have the purpose

of finding a reduced space by transforming the original feature

space. In this context, traditional methods include the Principal

Component Analysis (PCA), Linear Discriminant Analysis

(LDA), Independent Component Analysis (ICA), Multidimen-

sional Scaling, and polynomial approximation [1]. Moreover,

CI techniques have also been used for feature extraction,

including Feed-Forward Neural Networks [61]–[63], Self-

Organizing Maps (SOM) [64]–[66], and deep learning [67].

Regressive models based on Radial Basis Function (RBF)

Neural Networks have also been used for feature extraction

[68].

Furthermore, feature selection methods perform a dimen-

sionality reduction of the original data by selecting the subset

of the extracted features producing the smallest classification

error. While the exhaustive search in all possible subsets of

the original feature set may be computationally impractical,

suboptimal subsets of features can be obtained by methods

such as the Sequential Forward (Backward) Selection and the

Sequential Floating Search [1]. In this context, evolutionary

algorithms have been proposed to address feature selection

problems due to their global search ability [69]–[71].

D. Data fusion

The fusion of different sensor signals/features can provide

a way to obtain more significant information that can be

exploited to monitor and control industrial and environmental

processes. Data fusion offers several advantages, such as

reducing uncertainty or increasing accuracy [72]. However, it

also has to face several challenges, such as conflicting data,

outliers or data imperfection [73]. CI techniques can offer

solutions to these challenges, for instance, by using fuzzy

methods, neural networks or SVMs.

The first approach for which CI can be useful is multi-sensor

fusion, in which the measurements coming from different

sensors are combined to create new information. In this way it

is possible to reduce ambiguity or to increase reliability, confi-

dence and detection [73]. In industrial applications, the fusion

of information coming from different sensors through neural

networks can detect the wearing of tools [74]. In fact, the

fusion using SVMs has demonstrated its suitability to detect

motor faults [34], while neuro-fuzzy systems can be used to

detect anomalies in resilient hybrid energy systems [33]. There

are also many examples of applications in environmental areas.

For instance, fuzzy systems have been applied to characterize

landslides fusing geophysical data [75], and fuzzy systems,

neural networks and SVMs have demonstrated their ability to

fuse data to detect flooded areas [76].

Another area in which CI has demonstrated its utility for

fusion is in WSNs. This kind of network aggregates the infor-

mation of distributed autonomous devices that cooperatively

monitor industrial processes or environmental conditions. CI

methods can improve the robustness and flexibility of WSNs

by providing adaptive methods that favor the emergence of

intelligence [19]. These networks are widely diffused for

environmental monitoring, for instance using fuzzy methods to



aggregate temperature measurements [77], or SOMs to mea-

sure flood levels [78]. Nonetheless, there are also applications

to industrial scenarios, such as, using fuzzy approaches to

perform fault detection [79].

CI can also be used to create virtual or soft sensors. This

kind of sensor can measure physical quantities without actually

sensing the measured quantity. Virtual sensors offer interesting

advantages such as lower costs, easy retuning or real-time

estimation [80]. However, when a model of the physical

process is not available or it is too complex, the use of CI

techniques can produce adaptable models that are obtained

by learning from examples. In industrial scenarios, there are

many examples of virtual sensors created using CI, for instance

using RBF neural networks in a chemical reactor, or neuro-

fuzzy systems to monitor the safety of a hydrogen electrolyzer

[81]. CI-based virtual sensors have also been studied for

environmental monitoring, for instance, to find odour source

localizations using a neuronal approach [82].

E. Classification, regression and clustering

The classification, regression, and clustering steps have the

objective of producing a model that can discover unknown

patterns in the extracted features, by classifying the samples,

predicting a necessary value, or grouping them. In these steps,

the use of CI techniques can provide flexible and adaptive

approaches, which can work on noise-affected or incomplete

data. In this way, it is possible to obtain approximate solutions,

which are robust and have a limited computational complexity.

In fact, CI methods can be trained using a finite number

of samples [1], allowing them to mimic human reasoning

and generalization. This is particularly important, since the

increase in complexity of the model does not guarantee an

increase in performance, and it is preferable to use simpler

models [28].

In classification, a class label is given to a set of samples that

are similar or share some characteristics to differentiate them

from samples belonging to a different class [83]. CI techniques

have been extensively applied to classification problems in

industrial and environmental applications. Relevant examples

include quality prediction in diverse production processes

using neural networks [26], [27], evolutionary fuzzy systems

[84] or SVMs [31], or fault detection using neuro-fuzzy

systems [33], or SVMs [34]. Good examples of environmental

applications include the use of neural networks to detect

pollution problems [9], or natural disasters [35], [44].

Regression tasks try to find a function that exploits the

extracted features to calculate a real value, instead of a class.

This kind of task is usually necessary in environmental appli-

cations, and in this context CI techniques have demonstrated

their ability to produce successful approaches. For instance, CI

methods, such as SVMs, swarm methods or neural networks,

have been used to predict city air quality [85] or river water

quality [38], [40]. The use of CI regression in industrial

applications is also widely extended, given its capability to

obtain models robust to noisy or incomplete data. Many

applications can be found in the literature, such as the use

of neural networks, neuro-fuzzy systems or SVMs to predict

energy consumption [86], quality parameters [87] or to obtain

soft sensors [81], [87], [88].

Clustering permits to group similar samples together and

separate dissimilar samples, without a-priori knowledge about

their class. For this reason it is also called unsupervised

learning. CI-based clustering algorithms offer higher flexibility

than traditional methods, for instance, by permitting a sample

to belong to more than one cluster. This kind of technique has

been commonly applied to industrial scenarios, for example to

group energy demand using fuzzy methods [89], or to predict

the necessity of performing maintenance of machinery [90].

We can also find many works that apply CI clustering methods

to environmental applications, such as the interpretation of

seismic tomographies using neural clustering [91] or the detec-

tion of redundant information in pollution detection networks

using fuzzy clustering [92].

F. System optimization and testing

The design of monitoring and control systems for industrial

and environmental applications requires to combine many

modules that, at the same time, contain numerous parameters.

The tuning of these parameters is a complex process, because

they interact in unknown ways. In most cases the traditional

approach of trial and error tuning can only obtain sub-optimal

solutions, because it is practically impossible to exhaustively

explore all parameters combinations [2]. CI optimization tech-

niques, such as evolutionary algorithms or Particle Swarm

Optimization (PSO), can provide effective strategies to find

high quality solutions to this kind of problem, even under

changing conditions [93]. Recent applications of this kind of

approach include the use of advanced evolutionary algorithms

to optimize the parameters in milling operations [13] or the

whole set of system parameters of a multigeneration energy

system [12].

The testing of the different modules that compose the

system is also an important task that can improve the overall

performance by avoiding costly errors. In most cases, the test-

ing is carried out by humans, because the domain of potential

test cases is very large, and it is not possible to perform an

exhaustive exploration. However, the lack of automation can

increase the costs if the quality of the test is low and they

cannot find important errors. A recent alternative consist in

the application of testing techniques based on evolutionary

algorithms, which have demonstrated their ability to generate

effective test cases [94]. For instance, this kind of approach

has been applied to test complex control systems [95], [96].

IV. CONCLUSIONS

Industrial and environmental monitoring and control sys-

tems have to deal with complex phenomena and processes,

which makes their design and development a complicated

task. Traditional approaches try to cope with these problems

using physical models or statistical analysis. However, these

models may not be easy to devise and may be incomplete or

inaccurate. Furthermore, they can have problems when they



have to face noisy or incomplete data. CI approaches, such

as neural networks, fuzzy systems, SVMs, and evolutionary

algorithms, offer a good compromise alternative, since they

provide approximate solutions, which are robust to incomplete

and noisy data, have limited computational complexity, and are

able to adapt to different operational conditions.

This paper presented a brief review of recent advances in

CI applications for environmental and industrial scenarios. In

particular, we presented CI techniques that cover all the steps

of the design of a monitoring and control system for industrial

and environmental applications, including data acquisition,

data preprocessing, feature extraction, data fusion, classifica-

tion, regression, clustering and system optimization, to provide

a complete design methodology for intelligent monitoring and

control systems.

The proposed review illustrates the suitability of CI tech-

niques for increasing the performance and robustness with

respect to traditional approaches, and that several CI ap-

proaches can be exploited to improve the different design

steps of industrial and environmental applications. We believe

that recent developments in CI field, such as deep learning or

hybrid systems, will gain research attention and provide new

alternatives to further increase performance and adaptability.
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