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Abstract—The most evolved living organisms are characterized
by having a sophisticated central nervous system with memorizing
capabilities. In its structure are the neuronal cells. Cognitive
memory allows the recording, storage, renewal and reading of
information. In this work, memory is characterized by its
functional and structural aspects and the main mechanisms for the
learning and storage processes are also presented. A hierarchical
model based on artificial neural networks is proposed as a
conceptual model of information transfer between short and long-
term memory. Inspired in recent studies, this model is based on an
hierarchized structure, composed by layers of neurons with an
appropriated topology and learning mechanism suitable for the
retention of information in an organized way. A set of simulations
is performed to test and evaluate the performance of this neuronal
structure, particularly on how the information is distributed.

Keywords—Hierarchical memory, Self-organizing map, PCA,
clustering

I. INTRODUCTION

The human brain is the most complex and extraordinary
structure ever known. This organ is capable, among many other
functionalities, of receiving information from the sensory
organs of the peripheral nervous system (hearing, sight, smell,
etc.), analysing it, processing it, and generating output stimuli.
If necessary, it can store this information for future use [1]. It is
imperative for the achievement of cognitive intelligence [2],
participating in pattern recognition tasks and facilitating the
organization of relevant information, making it available in
different ways (speech, writing, movement, among others). All
of these processes involve cellular, electrical and chemical
neuronal changes in the central nervous system, which are
carried out dynamically and at different temporal scales [3][4].
When subjected to new excitation signals, these structures may
be strengthened, weakened or changed, by creating new
synapses [5].

Recent studies revealed in more detail the structure of the
human brain [6], which contains billions of neurons, many of
them connected to ten thousand other neurons, by synapses, that
together form a neural network. The mechanisms of
memorization at the level of neuronal cells also begin to be
understood [7]. But the way as the brain processes information,
compiles and distributes it through the neural network of
memory is still poorly understood, namely the connection
between its short and long memory.

One of the most recent theories of the organization of long-
term memory (LTM) is Connectionism. Its principle is that
mental phenomena can be described by interconnected
networks of elementary units of processing (neurons) strongly
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interconnected (by synapses), within prevailing the approach of
a parallel distributed processing mechanism, spreaded through
the networks [8][9]. In this structure, units or nodes represent a
concept while connections between them represent learned
associations. Without fault of generalization principle, in this
paper these concepts are materialized by the weight vector of
units, contextualized by its localization in the network. The
learning mechanism explores the network interconnections and
the adjustment of weighted units to expose the concepts, taking
in account that the activation of a node will activate other nodes
associated with it, which could work together to process a single
memory. Although this model does not need necessarily to be
biologically realistic, it has interpretable similarities and
behaviour [10].

This study aims to show the structure of the brain related to
the cognitive processes of memorization. Moreover, this
approach is supported by recent evidences that suggest the
memory is organized in a hierarchical way [11][12].

Its main objective is to propose a memory structure:
Hierarchized Memory Structure (HMS), which represents a
conceptual model of the memory processes. This is partly
motivated by how visual, auditory or other sensory information
is diffused and retained throughout the separated parts of the
cerebral cortex in the human brain [8]. Its structure comprises
two levels. The first consists in a hierarchical structure
organized into layers of neurons and inter-layered connections.
The second level is formed by the arrangement of neurons and
intra-layer connections, which obey a semantic typology, with
some similarities to Self-Organizing-Maps (SOM) [13] [14].
The goal of unsupervised learning in the HMS is to cause
different parts of the network to respond similarly to certain
input patterns, which is a very useful tool in discovering
knowledge from data. However, this activation map is now a
three-dimensional visualization for the resulting groups.

This model was tested in some examples. The results show
that HMS is able to recognize and memorize information in the
form of patterns while organizing and distributing it through
different layers that retain certain characteristics of the data.

This paper is organized as follows. In the following section,
cognitive memory of human brain is reviewed and its main
features presented. In Section 3 the HMS is presented and its
hierarchical structure and topology are analysed. Next, a
learning algorithm for the HMS memory model is proposed.
The results of the computational tests of the HMS network are
presented in section 5, where they are analysed and discussed.
Finally, in the last section the main conclusions are presented.
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II. MEMORY

Memories are stored distributed throughout the brain [15].
When it performs a remembering task, the brain is able to gather
all the relevant stored fragments, even if they are scattered in
the most diverse places of the brain, uniting them and giving it
meaning. The result is usually complete and organized
information. However, these mechanisms are still badly
understood [16][17].

Memories can reside in the short-term "buffer" for a limited
time [18]. These type of memories are processed in the front of
the brain, in a highly developed region called the prefrontal
lobe. If needed they can be converted into LTM by the
hippocampus and migrate to deeper areas of the brain. The LTM
have two major headings: explicit (or declarative) memory
and implicit (or procedural) memory [19]. The first one is
encoded by the hippocampus, entorhinal cortex, and perirhinal
cortex, but consolidated and stored elsewhere in a not fully
defined region of the medial temporal lobe of the brain [20].
The second is encoded and it is presumably stored by
the striatum and other parts of the basal ganglia [21].

In this work we are focused in LTM by combination of two
headings: hierarchic and semantic networks in the same
structure. This contains interconnected nodes and each node
represents a concept. These conceptual nodes are connected or
linked according to their relationship. Concepts may represent
physical objects, events, attributes, or abstractions. In the
hierarchical perspective, they are usually arranged from general
to more specific classes or from simple to complex. Otherwise,
in the semantic perspective, memory is now organized into
loosely connected concepts where certain triggers activate
associated memories according to their relationship. Although
it has similarities to hierarchies, semantic networks are more
random and less structured than true hierarchies. They have
multiple links from one concept to others. Concepts within
semantic networks are not limited to specific aspects, but
perhaps based on the meaning and relationships that you have
learned through experiences. New memories are formed by
adding new nodes to the network and information needs to be
linked to existing networks memory. Therefore, new
information is placed in the network by connecting it to the
appropriate nodes. If information is not associated with existing
information it is forgotten.

III. THE HIERARCHIZED MEMORY STRUCTURE

The LTM encodes information semantically for storage
through a process referred as Synaptic Consolidation, where
items are transferred from short-term memory (STM) to LTM
[22]. Memory traces in the cortex are embedded into a feed-
forward and recurrent connectivity that is a functional
hierarchical structure. The consolidation of information into
memory network depends on repetitive and off-line processes.
It is recognized the role of sleep state or during restful waking
brain activity in this task [23]. However, free to not present here
an unequivocal answer about these subjects, it will be presented
in this work a memory based conceptual solution using an
hierarchized structure with knowledge layers. For this structure
an algorithm, which rules determine how information is
distributed along the network memory in an unsupervised
manner, is proposed. For reasons of simplicity of analysis, this

network will be not implemented with feedback-learning
strategy.

A. Hierarchized Memory Structure

The HMS is an unsupervised neural network that maps a set
of n-dimensional vectors (input vector x) into to a three-
dimensional topographic map structured with L layers, each one
with nodes arranged into a regular grid in a finite two-
dimensional region. Each node (or neuron) i of kth layer is
associated with a "weight" vector, Wik, with the same
dimension of the input vector X, that is a position in the input
space, Pik , generally fixed, ensuring the topological shape of
the map space. The number of connected neurons inside the
layer is finite and determined by the maximum influence radius
of intra-neurons, rl, and the metric space considered (for
example, plane, cylindrical or spherical). Likewise, the inter-
neuron radius of influence, rL, determines the connections
between consecutive neurons layers.

Fig. 1 shows a three layers HMS model with a hexagonal
topology and a grid of [10 x 6] and [3 x 3] nodes, respectively,
for the second and third layer.

level

Fig. 1. Topology of HMS model, with L=3 layers.

During the memorization process the weight vectors are
moving towards the input data, while Pik’s are static. Due to the
dynamics of inherently competitive unity in each layer, the
winner takes everything to assimilate as much information as
possible. The remaining part of information transits to the next
layers of the hierarchical structure to be assimilated. This way,
the information is distributed over the network, each layer
retaining a directional component of the information. The kind
of information retained by each layer depends on the learning
method and similarity measure used in that layer.

B. Learning Algorithm

In the HMS, the goal of learning is to cause different parts
of the network, one for each layer, to respond similarly to
certain input patterns. In the first step, input x is presented to
second layer of the network, after going through the first layer
with (one) transparent(s) neuron(s). Each data, randomly
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chosen, is presented, one by one, to the input HMS until the data
train set is exhausted. So, at discrete time t, x(t), with t =
0,1,...,1is presented to the network and all weight vector,
wik(t) are tuned, for k=2,....,.L layers. The winner node Sk of
the kth layer is the one which has the closest weight vector,
Wsk, to the input vector Xsk. For the second layer, k=2, this
similarity is determined using Euclidean distance, i.e.
s, = min|x()-W,, (0] .

i , while for the upper layer this is done
by using the maximum cosine similarity value,

S = m?x(@k (t)-|VViZ(t)xk—] (t)|)

, where “-1is the output of the

winner neuron of the previous layer and P (Z) is the weight
inter-layers of the neighbourhood function. Usually, the initial
values of the wik are chosen from the data set or by tanking a
small random vector value. Their weights and of its surrounding
nodes are adapted recursively using equation (1):

W, (t+D) =W, (O +a(t)p,O[xO-W, 0] (1)

e N(s,) for the second layers (k=2)
and t is the current time, a(1) is the learning rate and P () is
the intra-layer neighbourhood factor of the ith neuron of the
winning neuron, sk.

In equation (1),

For the next layers, the inputs are the remaining part of the
network input that was not “memorized” by the winner neurons
of the previous layers. So, the input of the ith neuron of k+1
layer is given, for k=2, by equation (2):

Xi kel (t) = ¢i:,k (t) [xk (t) - VVsk (t)] (2)

or, for k£>2, by equation (3).

X (0= 8, (O T=W (O, (1) ], (0) 3)

In equation (3) B (0) is the neighbourhood interlayer
factor between the winning neuron, sk, of the kth layer and the
ith neuron of the next layer. In the second layer, the error values
of the winner (the difference between the input vector and the
weight vector) transits to the next layer. Otherwise, it is an

orthogonal projection vector to the W (1) , with unit norm,
17l =1

The update of the weight vector is done, for k > 2 and
ieN(s) , by equation (4).

W t+D) =W, (O)+a(t)- o, O Ox, @) @

During the weight adaptation, the learning rate used is
reduced along iterations according to the total number of current

nodes, from a value a to b, i.e.: a(t)=a+(b—a)(1-7) , with

f:[/ tmax *

In this work the interlayer and interlayer neighbourhood are a
Gaussian functions, represented by equation (5) and equation
(6), respectively.

I S
%(’)—e p( (ZR:) +t-M _'Lk(s’l) (5)
Pk—l_I)ik ’ ~ .
& (t):eXp(_S’(T;)"'H M-=L, (S’I)J (6)

In equation (5) and (6), L, (s,i) is the link weight intra-
layer, between the neurons s and i of the k™ layer, and L,_,  (s.i)

is the link weight inter layers, between the s neuron of k-1 layer
to the i neurons of layer k, which are logic values. M — o is
a parameter of high value that penalizes no linked neurons.
R, (¢)is the neighbourhood function that decreases during train,

from an initial value comparable to the dimension of the lattice,
Ruk, to a final value effectively equal to the width of a single
cell, Rox:

R (n)=R, + L(Rmk ~Ry) (7

max

This process is iteratively repeated for a sufficient number
of cycles, using all the data set. For each layer, the network ends
up associating their nodes with groups or patterns in the input
layer space, storing the maximum selective information
possible. The selectivity propriety of each layer is dependent on
the number of neurons, but essentially on topology, links intra
and inter layers and similarity measures used in each layer. The
remaining information of the present layers will be used as input
for the next layer until arriving to the last layer or non-
information exists to memorize. At the end of this learning
process, weight vectors are prototypes representing the input
data in the layer context. This process is repeated until the
output map converges to a stable or organized state, when the
average error falls below a pre-specified value or a certain
number of iterations have been reached.

IV. RESULTS

The HSM was tested with two examples. The first one aims
to memorize a set of data shown in Fig. 2. It is composed by 4

ellipsoidal clusters with angular orientation about £7/4 and
centres (0.5, £0.5). Each cluster has 200 elements in R2. The
main objective of the second layer of HMS is to identify the
clusters centres while the last layer finds their directions. The
data set was used, one by one element, repeatedly into 20
iterations to tune the W’s parameters. At the end of this learning
process, the positions of the weights memorize information’s
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features of data set. Fig. 3 shows the positions of W’s vectors in
the Euclidean space at the end of the memorizing process, layer
by layer.
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-0.5

1.5

25

level

0
A 05

Fig. 3. U matrix representation of HMS (layer by layer) with inter and intra-
connections (blue lines).

We conclude that weights of second layer of HMS
represents the centers of clusters of data (located around the
following 4 positions: (+0.5,+0.5). Even more, the weight
vectors of 3" layer, with values [-1;-1] and [1;1], are the
principal component of data cluster distribution, with
orientation values around *7/4 rads. So, the first layer

memorizes centres of clusters while the 27 layer stores its
orientation.

In the second test example, the HMS has a 4% layer
structure, with a configuration topology of 4 x 4 neurons, for
the /=2, 3 and 4, as shown in fig. 5. The data set used has a
distribution on a two-dimensional space with a triangular shape
(see Fig. 4). Their edges are dispersive data points according
three directions.
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Fig. 5. Topology of HMS structure.

After one hundred iteration cycles of train, the weight of
neurons in each layer migrates to capture the most possible
information according to the similarity used. For the 2nd layer
the Euclidean distance was used while for the 3rd and 4th layers
we used the cosine similarity measure. The results of this
process is presented in Fig. 6. Fig. 7 shows the neuron activity
for the data set (with one thousand points).

From Fig. 7 is possible to observe that neurons 6 and 10 of
the 2nd layer are not used (and so available to be used for
memorize other kinds of information). Weights of the 2nd and
3rd layers are, respectively, the principal component vectors of
the distributed data around the neighbourhood region of
neurons of 2nd layer.
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Fig. 6. U matrix representation of neuros weight, for the 4 layers.

2" Layer
100 ! !
2
=
5 50
<
0 2 4 6 8 10 12 14 16
Neuron number
3th Layer
T T
2
S 0.1
5
<
0
1 2 3 4 5 6 7 8 9
Neuron number
4th Layer
T T T T T T
2
Zoaf 1
S
<
0

Neuron number

Fig. 7. Activity of neuros for each layer (for the thousand data size of test
example).

Fig. 8. Weights of 2nd Layer (points) and of 3rd (vectors).

In Fig. 8 is aggregated in one figure the data distribution (to
memorize), the weights of the 1st layer (by blue circles) and the
vectors (shorted to magnitude 0.2) of weight vector of the 2nd
layer (red vector) and 3rd layer, respectively, by red and
magenta line colours. Vectors represent the weights of last layer
while the points represents the weights of previously layer. As
observable, these vectors are pointing in the direction of the
maximum variation of data or in its orthogonal direction.

Taking the results of these two examples, HMS may be
considered a nonlinear generalization of Principal Component
Analysis (PCA). The second layers found the centers of clusters
while the upper layers done successively the principal,
secondary, and so on, component vectors of the clusters
correlation matrix. During the training phase, weights of the
whole neighborhood are moved in the same direction, similar
items tend to excite adjacent neurons. So, HMS forms a
semantic hierarchized map where similar features of samples
are mapped close together and dissimilar ones apart. As was
shown in fig. 8, W’s are discrete approximation of the
distribution of training samples.

TABLE L. ANGLES OF WEIGHTS VECTORS OF THE 2SD AND 3RD LAYERS
AND ITS ACTIVITY (VALUES INSIDE PARENTHESIS).
Neuron n°
Layer
1 2 3 4 5 6 7 8 9
3 272 -83 -26.1 42.8 9.3 -44.0 72.9 -87.4 69.5
(38%) (0%) (25%) (0%) (6%) (6%) (0%) (18%) (6%)
4 458 64.2 81.4 209 -63.3 -80.7 25 -17.4 -46.9
(6%) (25%) (6%) (6%) (31%) (0%) (25%) (0%) (0%)

V. CONCLUSIONS

Firstly, this paper summarizes the actual knowledge about
the brain memory process, at the level of cell neurons and at the
field of neurology . Two main memory types are identified: the
STM and LTM. Their main mechanisms and characteristics
were briefly described. Based on these results and hypothesis
about how the memory is processed in the brain, it was proposed
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an Hierarchical Memory System with a learning algorithm to
store information into a distributed and stratified layers
structure. This model was validated by two example tests. In
both, it shown good performance to memorize information
contained into numerical vector data set. Our experiments
demonstrated the basic effectiveness and adaptability of the
HMS into the clustering task and in memorizing objects into a
distributive and stratified hierarchical structure. The HMS
supported by appropriate topology, distance and similarity
measures can memorize properly, with layers to reveal features
of data or of information. Thus, the HMS appears to be a useful
technique to decompose and consolidate information, but also
to memorize it into an organized way. It can also to be used to
cluster or recognize objects.
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