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ABSTRACT
The urban parking spaces for loading/unloading are typically over-
occupied, which shifts delivery operations to traffic lanes and pave-
ments, increases traffic, generates noise, and causes pollution. We
present a data analytics based routing optimization that improves
the circulation of vehicles and utilization of parking spaces. We
formalize this new problem and develop a novel multi-vehicle route
planner that avoids congestions at loading/unloading areas and
minimizes the total duration. We present the developed tool with
an illustration and analysis for the urban freight in the city of
Barcelona, which monitors tens of thousands of deliveries every
day. Our system includes an effective evaluation of candidate routes
by considering the waiting times and further delays of other deliv-
erers as a first class citizen in the optimization. A two-layer local
search is proposed with a greedy randomized adaptive method for
variable neighborhood search. Our approach is applied and vali-
dated over data collected across Barcelona’s urban freight transport
network, which contains 3,704,034 parking activities. Our solution
is shown to significantly improve the use of available parking spaces
and the circulation of vehicles, as evidenced by the results. The
analysis also provides useful insights on how to manage delivery
routes and parking spaces for sustainable urban freight transport
and city logistics.

1 INTRODUCTION
Higher consumption of goods and services increases the demand
for urban freight distribution. According to European Environment
Agency, urban freight demand has increased ∼ 34% from 1995 to
2014 on road freight transport [1]. Urban deliveries, which are
typically made in small loads and frequent runs, increase traffic
and generate noise and pollutant emissions. Lack of enough load-
ing/unloading areas shifts delivery operations to traffic lanes and
pavements which leads to congestion and poses a threat to the
safety of other road users [7].

The provision of dedicated loading1 areas has been recognized
as the most effective policy for organizing last-mile delivery opera-
tions [7]. The city of Barcelona also follows this common approach
and controls the delivery parking spaces, allowing the vehicles to
take a specific slot in real time in these areas, which are locally
known as AreaDUM (Distribució Urbana de Mercaderies in Cata-
lan). However, the available loading areas can not absorb rapidly
increasing urban transport demands. The parking places are over-
occupied and there is not much room left to improve the urban
transport and parking infrastructure.

1We use "loading" in short while referring to both loading and unloading activities.

In this paper, we present our data science based solution to
improve the planning of freight transport, in collaboration with
the city of Barcelona. We analyze mobility data from Barcelona’s
regulated delivery areas, and develop a technology to improve the
utilization of their loading/parking areas. Barcelona has around
9,000 parking spaces for freight deliveries across 2,200 areas that
are designated for freight transport. There are thousands of vehicles
visiting these areas every day which cause congestions both in the
edges (roads) and in the nodes (loading areas).

We propose a novel approach of planning multiple vehicles’
routes with a collective optimization task, as opposed to traditional
solutions that merely compute individually optimal routes for each
vehicle. We formally define the problem and mathematical model
of multi-vehicle route planning, which is shown to be NP-complete.
We present a variant of the Hamiltonian Path Problem (HPP) where
each deliverer visits a set of loading areas while her route choice
affects the delay of other deliverers due to the limited capacity of
the areas. The waiting times at parking/loading areas are consid-
ered as a first-class citizen. This is a practical factor which is not
addressed by traditional approaches that aim to minimize travel
time only. Deliverers tend to seek routes that minimize their own
travel time, which leads to congestions at the parking areas and
thus additionally increases duration of delivery routes.

Our approach of targeting a global objective in identifying the
set of delivery routes improves mobility and minimizes the time
spent in the loading areas. It trades individual sub-optimal routes
when they together minimize the overall aggregate travel costs, and
avoids cascades of delays due to the limited capacities of loading
areas. To efficiently compute the total time cost of a route arrange-
ment including travel and waiting times, we use a priority queue
structure to maintain arrivals and departures of vehicles. The queue
waiting time at all loading areas, which depend on different deliv-
ery durations and routes in the system, is computed efficiently in
O(n loд(n)) time, with n being the total number of deliveries.

We analyze freight transport data collected from citizens and
deliverers, and illustrate our system within the urban freight trans-
portation in the city of Barcelona. The dataset contains 3,704,034
parking information for 49,172 deliverers. The results confirm that
the multi-vehicle delivery planner improves the circulation of vehi-
cles and avoids congestions at the loading areas. Our paper makes
the case and show the need for a collective planning of urban freight
transportation with a global optimization task and fairness to all
deliverers in the system.

The rest of this paper is organized as follows. In the next section
we define the proposed multi-vehicle route planning problem. In
Section 3 we present our solution and discuss its design details.



Figure 1: System components of the proposed multi-vehicle
route planner

Section 4 presents our implementation and experimental results on
data collected across Barcelona’s urban freight transport network.
In Section 5 we give an overview of the related work. Finally, we
conclude and discuss future work in Section 6.

2 PROBLEM STATEMENT
In this section, we summarize the main requirements and architec-
ture of the routing system, and define the underlying multi-route
optimization problem.

As illustrated in Figure 1, the developedmulti-route planning sys-
tem consists of (1) urban freight transport network, (2) routing en-
gine, and (3) route query set. The transport network represents the
underlying physical traffic network composed of loading areas and
roads between them. Naturally, the network can be formalized with
the aid of directed graph G(V ,E) whose node set V = {v1, ...,vN }
represent loading areas and edge set E = {ei j |vi ,vj ∈ V } shortest
path between them. Furthermore, vehicle capacity li and travel cost
ci j are assigned to each node vi ∈ V and edge ei j ∈ E, respectively.
Urban freight transport network, i.e., its graph model, is stored in a
graph database and accessed by the routing engine.

Definition 2.1 (Graph model). Let G(V ,E) be a directed graph
where V = {v1, ...,vN } is the set of nodes representing loading areas,
and E = {ei j |vi ,vj ∈ V } is the set of edges representing the shortest
paths between them. Each node vi ∈ V is assigned with the capacity
li representing the number of parking spaces at the loading area vi .
Each edge ei j ∈ E is assigned with the travel cost ci j .

The routing engine is the central component that consists of
our solutions for near optimal solving complex route optimization
problems. It takes as input a set of route queries Q = {q1, ...,qM }
assigned to delivery vehicles H = {h1, ...,hM }. Each query qk
consists of the vehicle hk ’s initial locationvks , delivery start time tks ,
set of delivery locations (i.e., loading areas) to be visited along the
planned route Dk , and estimated delivery durations dki ∀vi ∈ Dk .

Definition 2.2 (Route qery). Vehicle hk ’s route query qk is
composed of its initial position vks ∈ V , delivery start time tks , set
of predefined delivery locations Dk ⊆ V , and estimated delivery
durations {dki |vi ∈ Dk }.

Route queriesQ = {q1, ...,qM } are concurrent and their delivery
location sets Dk ∀qk ∈ Q can intersect. The loading areas are

limited in capacity, and thus can only accommodate limited number
of vehicles at the same time. This means that the route choice for a
particular vehicle affects the duration of routes planned for other
vehicles in the system. In other words, if a delivery area is at its
full capacity, other vehicles need to wait in a queue based on first-
come-first-served policy before being parked at the congested area
(Figure 2). Therefore, the goal is to build an optimal set of routes
P = {p1, ...,pM } (one for each query qk ∈ Q) which collectively
minimizes the total time cost in the transport system expressed as
the sum of the durations of all the routes pk ∈ P .

Definition 2.3 (Route duration). The duration of a single
route pk is computed as the sum of the travel times along pk , delivery
durations dki ∀vi ∈ Dk , and waiting timeswk

i ∀vi ∈ Dk . Formally,

cost(pk ) =
∑

vi ∈Dk

(
dki +w

k
i +

∑
vj ∈Dk

xki jci j
)
, (1)

where xki j ∈ {0, 1} is a decision variable defined to be equal to 1 if
edge ei j is traversed in route pk , and equal to 0, otherwise.

Recall that for a particular route pk , the travel costs ci j and
estimated delivery durations dki ∀vi ∈ Dk are known from the
graph modelG(V ,E) and route query qk , respectively. On the other
hand, the queue waiting time wk

i at each loading area vi ∈ Dk
needs to be explicitly computed. However, such computation is
not straightforward since it depends on other routes in the system,
while the delivery durations differ from route to route. Therefore,
in the next section we propose an efficient algorithm to compute
the total waiting time in O(n loд(n)) time.

We formally define the goal of the proposed multi-vehicle opti-
mization problem as follows:

Definition 2.4 (Problem goal). Given an urban freight trans-
port networkG(V ,E) and a fleet of vehiclesH = {h1, ...,hM } with the
corresponding set of route queries Q = {q1, ...,qM }, the goal of the
proposed problem is to determine the set of M routes P = {p1, ...,pM }
that collectively minimize the total time cost, while visiting all of the
planned nodes vi ∈ Dk ∀qk ∈ Q . We further formalize it as follows,

min f (P) =
∑
pk ∈P

cost(pk )

=
∑
pk ∈P

∑
vi ∈Dk

(
dki +w

k
i +

∑
vj ∈Dk

xki jci j
)
,

(2)

Figure 2: An example of a route with a congested loading
area. At the time vehicle hk arrived at vi , the area was at its
full capacity and thus hk was placed in a waiting queue.
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where xki j is a decision variable introduced in Definition 2.3, and each
route pk ∈ P visits all of the planned nodes vi ∈ Dk starting at node
vks and time tks .

If the loading areas had unlimited capacities (and consequently
no waiting queues), a relaxed variant of the proposed optimization
problem can be reduced to a set of separate NP-complete HPPs [12].
The optimal solution, in this case, consists of a set of the shortest
travel routes computed individually for each route query. In real
life, deliverers tend to seek such routes in order to minimize their
total travel time. However, in Section 4 we will show that such
approach in busy freight networks often leads to congestions and
waitings at the delivery areas which additionally increases duration
of delivery routes. Therefore, in this paper we show that in dense
urban environments delivery routes should be planned collectively
in advance with fair respect to all deliverers in the system.

3 THE PROPOSED SOLUTION
We first introduce the concept of solution representation and pro-
pose an efficient algorithm to compute the objective function values
(i.e., the total time cost of a solution). We then present the construc-
tion and improvement/search phases of the proposed solution.

3.1 Solution representation and objective
function computation

A solution in our algorithm is represented as a combination of
permutations of nodes in each path pk ∈ P . Therefore, a sin-
gle path pk ∈ P is represented as an ordered set (i.e., tuple) of
nodes from delivery location list Dk . For example, a solution P =
{p1,p2,p3} where D1 = {v1,v2,v3,v4,v5}, D2 = {v2,v4,v6,v8},
D3 = {v1,v5,v6,v7,v9}, v1s = v3s = v1, and v2s = v2, is represented
as a combination of ordered sets, i.e.,

P =


p1 = (v1,v5,v3,v4,v2),
p2 = (v2,v6,v8,v4),
p3 = (v1,v7,v9,v5,v6)

 . (3)

From the introduced representation we can compute the objec-
tive function value. As duration of delivery differs from vehicle to
vehicle, and from node to node, finding the order in which vehicles
leave the waiting queues is not obvious. Therefore, we introduce
the concept of events and develop a computationally inexpensive
algorithm to compute the objective function values.

The proposed algorithm tracks arrivals and departures at/from
loading areas. In Algorithm 1, each such event is modelled as a
tuple containing the type of the event (arrival or departure), cor-
responding node and route, and the scheduled time. For example,
tuple (Arrival ,pk ,vi , tki ) represents arrival at node vi in route pk
scheduled at time tki . Similarly, tuple (Departure,pk ,vi , zki ) rep-
resents departure from node vi in route pk scheduled at time zki .
Notice that we use a different notation for a scheduled arrival time
(tki ) and departure time (zki ). This is due to the fact that these times
are correlated, meaning that one can be computed as a result of the
other by knowing estimated waiting time, delivery duration and
travel cost. We formally define the arrival and departure times, and
discuss their relationship in Remark 3.1.

Definition 3.1 (Arrival/Departure time). Arrival time tki is
the time at which vehicle hk is scheduled to arrive at node vi in path

ALGORITHM 1: Objective function computation
Input: Solution P = {p1, ..., pM }
Output: Objective function value, i.e., total time cost

1 Procedure ComputeCost(P )
2 departures[vi ]← [�], ∀vi ∈ V
3 cost[pk ]← 0, ∀pk ∈ P
4 T ← [�]
5 forall pk ∈ P do
6 T .enqueue(Arr ival, pk , vks , tks )
7 end
8 while T not empty do
9 e ← T .dequeue()

10 Let vi represent the node assigned to event e
11 Let pk represent the route assigned to event e
12 if event e is an arrival then
13 Let tki represent the scheduled time of event e
14 if departures[vi ].length < li then
15 zki ← tki + d

k
i

16 else
17 b ← departures[vi ].length - li
18 zbi ← departures[vi ].get(b)
19 zki ← zbi + d

k
i

20 cost[pk ]← cost[pk ]+zki − tki
21 end
22 departures[vi ].add(zki )
23 T .enqueue(Depar ture, pk , vki , z

k
i )

24 else if event e is a departure then
25 Let zki represent the scheduled time of event e
26 departures[vi ].remove(zki )
27 if vi is not the last node in pk then
28 Let vj represent vi ’s successor in pk
29 tkj ← zki + ci j
30 cost[pk ]← cost[pk ]+ci j
31 T .enqueue(Arr ival, pk , vj , tkj )
32 end
33 end
34 end
35 return

∑
pk ∈P

cost[pk ]

pk . Departure time zki is the time at which vehicle hk is scheduled to
departure from node vi in path pk .

Remark 3.1 (Correlation between arrival and departure
time). Since vehicles depart from loading areas after finishing their
deliveries, departure time zki can be computed from arrival time tki
by adding waiting timewk

i and delivery duration dki . Formally,

zki = tki +w
k
i + d

k
i . (4)

On the other hand, arrival time tki can be computed from departure
time zkj from vi ’s predecessor vj , by adding travel cost c ji , i.e.,

tki = zkj + c ji . (5)

Before we discuss Algorithm 1 in details, we need to introduce
the concept of event queue, which is a priority queue to store and
process arrival and departure events.

Definition 3.2 (Eventqeue). Event queueT is a priority queue
containing arrival and departure events sorted by their scheduled times
in ascending order. The queue is implemented as an array indexed
by priority, where each array cell contains an event with a scheduled
time as priority. By convention, we call the queue insert operation
enqueue and the remove operation dequeue.

Algorithm 1 uses the event queue as a buffer where scheduled
events wait to be processed one by one. In other words, until event
queue T is emptied, at each iteration, the algorithm will remove

3



and process the earliest scheduled event from T (lines 8-34). If the
currently being processed event (e) is an arrival at node vi in route
pk , the algorithm computes departure time zki using (4), and inserts
a new departure event into event queue T (lines 13-23). However,
in order to compute a new departure time zki we need to know
the exact time at which delivery area vi becomes available for
vehicle hk . For that purpose, for each node vi ∈ V we keep a list of
departure times scheduled for the events contained in T that still
need to be processed (departures[vi] ∀vi ∈ V ). If the size of list
departures[vi] is larger than node vi ’s capacity li , then vehicle
hk will be placed in the waiting queue. In this case, we compute the
size of the waiting queue b (line 17) and retrieve the b-th earliest
departure time zbi at which loading area vi will become available
for vehicle hk from departures[vi] (line 18). zki is then computed
from zbi by adding delivery durationdki (line 19). In line 20, time cost
cost[pk] is increased by waiting time wk

i and delivery duration
dki computed as the time difference between tki and zki . However, if
event e is a departure from nodevi in route pk andvi is not the last
node in pk , the algorithm computes arrival time tkj atvi ’s successor
vj using (5), and inserts a new arrival event into event queue T
(lines 25-32). Time cost cost[pk] is then increased by travel cost
ci j in line 30. Finally, the total time cost of solution P is computed in
line 35 by the summarizing time costs across all the routes pk ∈ P .
The event queue is initialized at the beginning of Algorithm 1 in
lines 4-7. For each route pk ∈ P , the arrival at the initial node vks is
scheduled at delivery start time tks and added to event queue T .

Remark 3.2 (Time complexity of Algorithm 1). We assume
that the event queue is implemented using a heap and the departure
lists using self-balancing binary search trees. This means that an event
can be enqueued and dequeued in O(loд(n)), with n being the total
number of events, and, similarly, a departure time can be inserted,
removed and searched for in O(loд(n)). Since Algorithm 1 needs to
process two events (i.e., arrival and departure) for each node visited
in P , its total time complexity is O(n loд(n)).

3.2 Construction phase
In the construction phase of the proposed solution, we build an
initial solution P0 in a greedy fashion. Here, we focus only on travel
time and aim to minimize it for each individual route pk ∈ P . In
other words, we seek for near-optimal solutions to a set of HPPs.
Greedy algorithms have the advantage of being fast and easy to
implement. However, since the purpose of the initial solution is to
position the search in a promising area of the solution space, a com-
pletely greedy algorithm can be expected to miss some potentially
valuable areas. Therefore, in the construction phase we combine
greediness and randomness using GRASP [10].

To obtain variability in the candidate set of greedy solutions,
GRASP keeps the best-ranked solution elements in a restricted can-
didate list (RCL) from where some of them are randomly chosen
when building up the solution. Usually, the size of RCL, α , is used
as a parameter to control the balance between greediness and ran-
domness. In othr words, when α is small, the algorithm becomes
greedier, but when α is large, the algorithm becomes more ran-
dom. We refer the interested reader to [23] for a more extensive
description of GRASP.

ALGORITHM 2: The construction of initial solution
Input: Route query set Q = {q1, ..., qM }
Output: Initial solution P0 = {p1, ..., pM }

1 Procedure ConstructRandomSolution(Q )
2 P0 ← �
3 forall qk ∈ Q do
4 pk ← (vks )
5 vr ← vks
6 Vu ← Dk \ vr
7 while Vu not empty do
8 α ← ⌈αд · |Vu | ⌉
9 RCL ← α nodes from Vu closest to vr

10 vr ← random node from RCL
11 pk .add(vr )
12 Vu ← Vu \ vr
13 end
14 P0 ← P0 ∪ {pk }
15 end
16 return P0

The GRASP’s concept of RCL can be translated into many com-
binatorial optimization problems. In order to obtain semi-greedy
solutions to HPPs, we implement RCL using the distance matrix
containing pre-calculated travel costs between each pair of load-
ing areas (vi ,vj ) ∈ V

>
V . For each path pk ∈ P , starting from

initial node vks , RCL is populated with the α closest loading areas,
i.e. nodes, using the pre-computed distance matrix. Afterwards, a
random node vr is chosen from the current RCL. Now, a new RCL
is populated with the α nodes closest to vr , omitting any node that
has been already selected in the previous iterations. If the number
of unselected nodes is fewer than α then the size of current RCL
is decreased. Therefore, instead of using the fixed size of RCL, we
introduce a greediness factor αд which represents the percentage of
unselected nodes that can populate RCL. We then dynamically com-
pute the size of RCL as α = ⌈αд · |Vu |⌉ whereVu represents a set of
unselected nodes. Finally, the complete GRASP-based construction
of the initial solution is detailed in the Algorithm 2.

3.3 Improvement/Search phase
In the improvement/search phase, we adapt a Variable Neighbor-
hood Search (VNS) based approach [15, 21] to further improve the
previously generated initial solution. We search the solution space
with a systematic change of neighborhood, by both descending to
local optima and escaping from valleys which contain them.

The basic scheme of VNS is given in Algorithm 3. At the ini-
tialization of the algorithm, a set of neighborhood structures Nk
(k = 1, ...,kmax ) has to be defined for the solution space S (line 1).

ALGORITHM 3: The basic VNS metaheuristic
1 Define neighborhood structures Nk (k = 1, ..., kmax )
2 Generate initial solution s ∈ S
3 Choose a stopping condition
4 while stopping condition is not met do
5 k ← 1
6 while k ≤ kmax do
7 s ′ ← Perturbate(s ); s ′ ∈ Nk (s)
8 s ′′ ← LocalSearch(s ′); s ′′ ∈ S
9 if Score(s ′′) > Score(s ) then

10 s ← s ′′
11 k ← 1
12 else
13 k ← k + 1
14 end
15 end
16 end
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In other words, for each solution, s ∈ S , Nk (s) represents a set of
neighbor solutions. In most implementations of VNS, successive
neighborhoods Nk are nested, i.e., N1(s) ⊂ N2(s) ⊂ ... ⊂ Nkmax (s).
After the initialization, starting from the initial solution s and the
first neighborhood structure N1(s), the algorithm systematically
explores solution space S by moving within chosen neighborhood
structures. At each iteration, the Perturbate procedure (sometimes
called Shake procedure) randomly selects a new solution s ′ within
the current neighborhood Nk (s) (line 7). Then, a descent from s ′

is done by the LocalSearch routine which leads to a new local op-
timum s ′′ (line 8). At this point, the new solution s ′′ is compared
with the current solution s (line 9). If s ′′ is better than s , the algo-
rithm re-centers the search around s ′′ by replacing s with s ′′ (line
10), and starts all over from the first neighborhood structure N1(s)
(line 11). If s ′′ is not better than s , the algorithm moves to the next
neighborhood structure (line 13) and selects a new random solution
from Nk+1(s). The algorithm iterates until a predefined termination
condition is met. An example of the termination condition could
be a number of iterations until the solution has not been improved.
The choice of neighborhood structures, as well as the implemen-
tation of local search and perturbation, affect the performance of
VNS. Therefore, we introduce our design of VNS. We first define
the local search moves employed to build solution neighborhoods.

Search moves. We use two local search moves with combining:
shift and 2-opt. We aim to minimize waiting cost with one of them
and try to minimize travel cost with the other. First, the shift move
generates a neighbor solution by relocating (i.e., rescheduling) a
single visit within one of the solution’s routes. For example, in
Figure 3a, a new route p′k is created from route pk by shifting visit
to node vi two positions to the right (after visit to node vi+2). Here,
the newly created route p′k is part of a new neighbor solution P ′.
Notice that we denote by (vi ,pk ) a visit to node vi in route pk .
The shift move can be efficiently applied to reduce waiting times at
congested nodes (i.e., loading areas). We can reschedule costly visits
to less busy times by simply shifting them using the introduced
move. The 2-opt move, on the other hand, aims at reducing the
travel time between selected nodes. 2-opt was originally proposed
for solving the traveling salesman problem (TSP) [8], but has been
successfully applied in many other route optimization problems.
The main idea behind the 2-opt move in our solution is to reduce
the total travel time by detecting and then reordering non-optimal
parts of a solution where its routes cross over themselves. 2-opt
move removes two edges from a route, and reconnects the two new
created sub-routes. For example, in Figure 3b, 2-opt removes edges
e(i−2)(i−1) and e(i+1)(i+2) and reconnects the route with a pair of
new edges e(i−2)(i+1) and e(i−1)(i+2). Note also that 2-opt reverses a
segment of the route between the exchanged edges.

Neighborhood structures and local search. Using the two-
layer search moves together, we can reduce both waiting and travel
time of a solution. Therefore, we use them both to move from one
solution to another in the search for local optimum. This means
that the neighborhood of a solution s is composed of all solutions
that can be obtained by applying one shift and one 2-opt move
to solution s . However, such neighborhood is far too large to be
completely explored at each iteration of VNS. For example, for a

Figure 3: Local search moves: (a) shift and (b) 2opt

single route with n nodes, we can reschedule (i.e., shift) visits to
n − 1 nodes at n − 2 different positions in route s , yielding the
total of (n − 1)(n − 2) possible shift moves. On the other hand, we
can exchange n(n − 3)/2 different pairs of edges in the 2-opt move.
Finally, this means that by applying the search moves to only one
of the solution’s route, we can obtain a total of n(n − 1)(n − 2)(n −
3)/2 different neighbor solutions. This is why in the local search
procedure we choose to restrict the size of neighborhood in the
following way. Since the goal of shift move is to reduce the total
waiting time of a solution, we select randomk visits with the longest
waiting times, and consider only shift moves that reschedule the
selected visits. Here, we again employ the concept of RCL and

ALGORITHM 4: Local search
Input: Random solution Pr , VNS depth k
Output: Improved solution P

1 Procedure LocalSearch(Pr ,k )
2 P ← Pr
3 while P is improved do
4 Pc ← bestShift(P ,k )
5 Pc ← best2Opt(Pc ,k )
6 if f (Pc ) < f (P ) then
7 P ← Pc
8 end
9 end

10 return P
Input: Input solution Pr , VNS depth k
Output: Improved solution P

1 Procedure bestShift(Pr ,k )
2 α ← random size of RCL
3 RCL ← α visits with the highest waiting time
4 RCLk ← k random visits from RCL
5 P ← Pr
6 foreach (vi , pk ) ∈ RCLk do
7 foreach possible shift lengthm do
8 Pc ← shift(vi ,pk ,m)
9 if f (Pc ) < f (P ) then

10 P ← Pc
11 end
12 end
13 end
14 return P

Input: Input solution Pr , VNS depth k
Output: Improved solution P

1 Procedure best2Opt(Pr ,k )
2 α ← random size of RCL
3 RCL ← α traversed edge pairs with the highest travel cost
4 RCLk ← k random edge pairs from RCL
5 P ← Pr
6 foreach (edge pair (ei j , emn ), pk ) ∈ RCLk do
7 Pc ← 2opt(pk ,ei j ,emn )
8 if f (Pc ) < f (P ) then
9 P ← Pc

10 end
11 end
12 return P
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randomly select k visits from the list of visits sorted by waiting
times. From the reduced neighborhood, we then choose a solution
with the lowest total time cost (i.e., objective function value). This
approach is outlined in the bestShift procedure of Algorithm 4.

Since the goal of 2-opt is to reduce the total travel time of a
solution, we randomly select k edge pairs from RCL among the
traversed edges with the highest relative travel cost. The relative
cost is computed by the relative distance between the current edge
cost and the cost of the shortest incoming edge to the directed
node. We avoid to select the edges with the largest cost directly
because for a node, all incoming edges may have large costs. In
that case, the incoming edge with a large cost is less likely to
indicate it is suboptimal. After selecting, we construct new solutions
by applying 2-opt moves to the selected edge pairs only in the
selected routes. Again, a solution with the lowest time cost is chosen
from the reduced neighborhood. The approach is outlined in the
best2Opt procedure of Algorithm 4. Also in Algorithm 4, the local
search procedure is executed until a local optimum of the current
neighborhood is encountered, i.e., until current solution P cannot be
improved with the employed local search moves. Finally, notice that
the size of a neighborhood depends on the current depth of VNS, k .
This necessarily means that employed neighborhood structures Nk
are nested, which helps VNS to avoid being trapped in local optima
by a systematic change of neighborhood.

Perturbation. As we previously discussed, it is important for
VNS implementations to balance intensification (i.e., local search)
and diversification (i.e., perturbation) during the search process to
allow escaping from local optima. In our implementation of VNS, we
perturbate solutions by shuffling a certain percentage of their routes,
based on the current depth of VNS, k . More precisely, we randomly
select ⌈M/k⌉ routes to be shuffled, where M represents the total
number of routes in the solution. Thereafter, the selected routes are
shuffled by randomly rescheduling the visits using the shift move.
Since our implementation of perturbation is straightforward, we
omit the algorithm pseudo code to save space.

ALGORITHM 5: Overall Approach
Input: Route query set Q , maximum number of successive iterations without

improvementmaxI ter , maximum number of neighborhood degree kmax
Output: Optimal solution P

1 Procedure FindSolution(Q ,maxI ter ,kmax )
2 iter ← 0
3 best ← ConstructRandomSolution(Q )
4 while iter < maxI ter do
5 iter ← iter + 1
6

} Construction
phase (GRASP)P ← ConstructRandomSolution(Q )

7 k ← 1
8 while k ≤ kmax do
9 Pr ← Perturbate(P ,k )

10 Pc ← LocalSearch(Pr ,k )
11 if f (Pc ) < f (P ) then
12 P ← Pc
13


Improvement
phase (GRASP+VNS)k ← 1

14 iter ← 0
15 else
16 k ← k + 1
17 end
18 end
19 if f (P ) < f (best ) then
20 best ← P
21 end
22 end
23 return best

The overall approach which combines the construction and im-
provement phases is outlined in Algorithm 5.

4 EXPERIMENTAL EVALUATION
We conducted extensive experiments on real-world data collected
across Barcelona’s urban freight transport network.We first present
experiments on synthetic data to illustrate the trade-offs and pa-
rameters involved in the accuracy of the proposed solution. We
then present the analysis and results on Barcelona data that provide
useful insights and show practical applicability of our solution.

4.1 Experiments on Synthetic Data
Experimental Setup. We randomly generated 50 test instances,

each composed of 5, 10, 15, 20 or 25 concurrent route queries (see
Definition 2.2). In order to increase solving complexity, we pro-
voked more congestions by limiting the capacity of each area (li )
to only one parking space. While at first this dataset may seem
insufficiently large, notice that the formulated test instances are
NP-hard problems and as such are computationally extremely ex-
pensive. Nevertheless, we need to solve them to optimality in order
to evaluate the accuracy of our approach. Therefore, we developed
an integer programming model for the problem under study and
solved them using IBM’s commercial solver CPLEX Optimizer. The
computation was limited to 6 hours and 220 GB of memory per test
instance, and thus computing the optimal solutions for all 50 test
instances lasted more than 12 days in total on a machine with 2.40
GHz Intel® Xeon® E5-2630 processor and 265 GB of RAM.

Finally, we assess the quality of our approach with the accuracy
measure defined as follows,

accuracy(P ,Q) =
∑
p∈Popt cost(p)∑
pk ∈P cost(pk )

, (6)

where P and Popt are sets of solution routes for the route queries
in Q , obtained by our algorithm and CPLEX solver, respectively.

In addition to the above comparison, we also compute the accu-
racy of the solutions composed of individually optimal routes with
the shortest travel times. The aim of such comparison is to validate
our hypothesis that, in urban transport networks with limited park-
ing facilities, delivery routes should be planned collectively, rather
than individually, and thus to efficiently balance waiting and travel
cost. In the rest of this section, we refer to the individually optimal
solutions as HPP, and to the solutions obtained with the proposed
Multi-Vehicle Route Planner as MVRP.

Results. Figure 4 plots (a) the accuracy and (b) running time
of MVRP iterations for different number of nested neighborhood
structures kmax (see section 3.3). Figure 4a shows that the proposed
algorithm is able to obtain high quality solutions (> 90% accuracy)
in less than 50 iterations. It is also interesting to notice that with
the smaller number of neighborhood structures (e.g., kmax = 5),
MVRP is able to quickly find good solutions, but it is unable to find
the optimal one in 300 iterations for particular example. This is
due to very frequent change of search neighborhoods, which are
sometimes left insufficiently examined. In Figure 4a, this can be
observed as successive steps (i.e., jumps) in accuracy line plot. On
the other hand, larger number of neighborhood structures (e.g.,
kmax = 20), allows MRVP deeper to explore promising search
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areas and thus to find the optimal solution (in this particular case).
However, as shown in Figure 4b this comes at an expense of longer
computation time. For example, running 300 iterations took 748
ms with kmax = 5, while with kmax = 20 took twice as much
(1,667 ms). Obviously, as we increase the maximum number of
nested neighborhood structures, the iterations become longer as
the algorithm needs to descend into deeper search areas. Finally,
notice from Figure 4 that we are in general able to find high quality
solutions in less than 1.5 seconds for synthetic test instances.

In Figure 5 we plot the accuracy of MVRP and HPP approach for
test instances of different sizes (i.e., number of route queries). As
shown in the figure, the accuracy of the solutions with individually
optimal routes (HPP) is significantly lower than the accuracy of the
solutions obtained by MVRP. For smaller test instances with 5 route
queries, HPP approach yields relatively good solutions with ∼ 96%
accuracy. However, as we increase the number of route queries, the
accuracy drops to∼ 88%. Notice here that as we increase the number
of concurrent route queries, we also increase the possibility for
congestions and longer waiting times at loading areas. Obviously,
for larger test instances, HPP approach fails to avoid congestions
and reduce waiting times. On the other hand, MVRP can find high
quality solutions, even for more complex test instances with 10 and
more route queries. Further, as we increase the search depth (kmax )
and iteration limit maxIter (see Algorithm 5), we can obtain even
better solutions, however, at an expense of longer computation
time, as previously explained.

4.2 Experiments on Real-world Data
Experimental setup. We collected real-world data for areaDUM

via the mobile parking management system that was specifically
developed for freight deliverers in the city of Barcelona [22]. It is
crowdsourced from citizens and deliverers that reflects the usage of
the urban freight infrastructure. The data consists 3,704,034 parking
check-ins by 49,172 users, i.e., deliverers, in 2,038 loading areas with
the total of 8,707 parking spaces, over the period between January
1st, 2016 and July 15th, 2016. Each check-in consists of the ID of
the deliverer who made the check-in, her vehicle’s plate number
(anonymized), the loading area to which the check-in was made, ge-
ographic coordinates, and a timestamp. Using the areaDUM dataset,
one can discover the actual routes taken by deliverers during the

Figure 4: Accuracy improvement with respect to number of
iterations (a) and computation time (b)

Figure 5: Accuracy improvement over whole synthetic
dataset with different setups

course of their work. We inferred the sequences in which the load-
ing areas were visited by grouping check-ins made in the same
day by the same deliverer. However, the loading areas are often
occupied by construction operators and casual deliverers who usu-
ally perform only few stops per day [18]. Therefore, we filtered out
shorter routes and focused only on those with four or more stops.
This way, we obtained the total of 181,454 routes. Further, in order
to estimate durations of the deliveries performed at each stop, we
needed to find typical travel times between each pair of loading ar-
eas in Barcelona’s urban transport network. Here, we assumed that
deliverers act economically and usually take the shortest path be-
tween loading areas. Therefore, we employed Open Source Routing
Machine (OSRM)2 with Barcelona’s road network to compute the
shortest travel times between each pair of loading areas. Thereafter,
we estimated delivery durations asdki = (t

k
i+1−t

k
i )−ci,i+1 where t

k
i

and tki+1 are arrival times at loading area vi and vi+1, respectively,
and ci,i+1 is the travel time at the shortest path between them.

Finally, we generated 10,000 test instances by sub-setting the
discovered delivery routes. The complexity of the instances varies
in terms of the number of routes, i.e., route queries, and similarities
between them. 1,000 test instances were generated for 10 different
problem sizes (with 10, 20, 30, ..., and 100 route queries). Obviously,
in instances with highly similar route queries, i.e., with frequent
mutual stops, congestions at the delivery areas occur more often
and, thus, are harder to avoid. We solved all of the instances using
the proposed solution, and then compared the obtained solution
routes with the real-world routes traversed by actual deliverers
in the city of Barcelona, as well as with the individually optimal
routes computed with CPLEX using the HPP formulation.

2http://project-osrm.org/
Table 1: Route improvement comparison

size REAL vs HPP vs MVRP vs
HPP MVRP REAL MVRP REAL HPP

10 4.1% 4.1% 95.9% 0.4% 95.9% 7.1%
20 1% 0% 99% 4.1% 100% 60.4%
30 0.7% 0% 99.3% 13% 100% 66.7%
40 3.5% 0% 96.5% 15.9% 100% 83.5%
50 1% 0% 99% 9.8% 100% 90.2%
60 5.4% 0% 94.6% 9% 100% 91%
70 0.7% 0% 99.3% 15.4% 100% 84.6%
80 1.1% 0% 98.9% 4.3% 100% 95.7%
90 2.1% 0% 97.9% 16.9% 100% 83.1%
100 3.91% 0% 96.09% 10.03% 100% 89.97%
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Figure 6: Route improvement in terms of average (a-c) and relative (d-f) total, travel, and waiting costs.

Results. Table 1 summarizes the pairwise comparison between
solution routes obtained by our algorithm (MVRP), actual routes
derived from the areaDUM dataset (REAL), and individually optimal
routes (HPP). The comparison was made in terms of the percent-
age of test cases in which one route set is more efficient (i.e., less
time consuming) than another. For instance, for the smallest test
instances (10 route queries), MVRP routes are better than HPP in
7.1% of the cases, while HPP routes are more efficient in only 0.4%
of the cases. In the rest of the cases, MVRP and HPP routes were
equally efficient.

In general, both HPP and MVRP routes were almost always less
time consuming than REAL routes, regardless of the instance size,
i.e., number of route queries. However, in rare occasions, REAL
routes are still better than HPP routes. This was expected, since
in HPP we assume that deliverers act opportunistically and aim at
minimizing the total travel time, which can occasionally lead to
congestions and waiting times at loading areas. On the other hand,
REAL routes were more efficient than MVRP routes in only 4.1% of
the times for the smallest test instance with 10 route queries. It is
also worthwhile to note that MVRP routes were in most cases more
or equally efficient than HPP routes. This can be clearly observed by
comparing the percentages in columns HPP-vs-MVRP and MVRP-
vs-HPP. However, such similarity in performance is only observable
for smaller test instances with fewer route queries, where there is
a low probability for congestions and waitings at loading areas. In
these cases, the most efficient route arrangement is composed of
individually optimal (i.e., shortest in length) routes. For larger test
instances with more than 30 route queries, MVRP routes are in 90%
of test cases more efficient than REAL and HPP routes.

While both arrangements improve over actual routes taken, we
want to observe the extent to which route arrangement provides
superior improvements. We plot the average time cost improve-
ments compared to actual route arrangements inferred from the
areaDUM dataset (REAL routes) in Figure 6. In Figure 6a and d,
we first plot the average overall time cost reduction per route for
different instance sizes in minutes and percentages, respectively.
At the beginning of the curve, HPP and MVRP perform similarly
for smaller test instances with up to 30 route queries. In such cases,
the two methods can reduce the total durations of real-world routes
for up to 4% (5 minutes) in average. However, for larger test in-
stances, the difference between the performance of HPP and MVRP
becomes more observable. This can be seen in the plot as a sep-
aration of the curves for test instances with more than 40 route
queries. For example, for the largest test instances with 100 route
queries, MVRP reduced the average time cost per route by ∼ 11.5%
(18.4 minutes) while HPP performed at the same level as for smaller

instances reduced the cost only for close to 3 % (4 minutes). Such
behavior can be explained by the fact that most of the loading areas
in Barcelona contain around 4 parking spaces, and as such, they
are usually large enough to accommodate vehicles scheduled in
smaller test instances. On the other hand, congestions and waitings
at loading areas are more common in larger test instances, and thus
the HPP approach, which aims only at minimizing the travel costs,
performed significantly worse than MVRP.

Figure 6b-c and e-f separate travel and waiting cost improve-
ments to further investigate the performance of HPP and MVRP.
Figure 6b and c suggest that both methods performed comparably in
terms of travel time reduction for test instances with up to 60 route
queries. For larger test instances this reduction is less significant
for MVRP, since it aims to rearrange routes to minimize waiting
times. This can be clearly observed in Figure 6c and d. In the same
plot, we see that HPP is unable to reduce waiting costs, regardless
of the instance size, which was expected. The two plots show that
MVRP is able to strike a balance between travel and waiting costs,
which directly confirms the effectiveness of the employed shift and
2-opt search moves. Furthermore, the effectiveness of the proposed
solution grows with the number of concurrent route queries, which
makes it especially suitable for routing applications in dense urban
environments.

5 RELATEDWORK
To the best of our knowledge, the new multi-vehicle routing prob-
lem and its urban freight delivery application have not been ad-
dressed before both in research and practice. On the theoretical
side, a minimum-weight Hamiltonian path problem is used to com-
pute individually optimal (i.e., shortest in length) delivery routes,
by assuming that deliverers act economically and try to minimize
the total travel time. Traveling salesman problem (TSP) is a spe-
cial case of Hamiltonian cycle problem defined on edge-weighted
graphs. A variation of TSP, where the initial point does not have
to be revisited at the end of the cycle, is known as Traveling Sales-
man Path Problem (TSPP). A related combinatorial graph problem
is multiple TSP (mTSP) [3]. In mTSP, a set of routes needs to be
determined as to visit all of the planned nodes and minimize the
total cost. Here, each node can be visited exactly once in only one
route, while each route needs to start and end at the same depot.
The problem is composed of both dividing the set of planned visits
among multiple travelers and solving TSP for each of them. Even
though local search methods [4] can be employed to solve mTSP,
various metaheuristics such as genetic algorithms (GA) [25] and
ant colony optimization [19] have been proposed. The proposed
problem assigns each route with its own set of nodes that need to
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be visited. We also introduce the time dependencies between the
routes by assigning capacities constraints to nodes, which, to the
best of our knowledge, have not been considered in the literature.

In a special case of TSP with time windows (TSPTW) [9], each
node needs to be visited within the given time interval [a,b]. Al-
though arriving after b is not acceptable, a vehicle can arrive to
a node before a but it needs to wait until a. Kara et. al. formalize
the problem of minimizing the total tour cost including the wait-
ing times [16]. Here, the arrival to the next node is computed by
summing the travel costs of previously traversed edges and and
waiting times. We also include delivery durations which provides a
more realistic model for the problem.

An VNS method that employs Greedy Randomized Adaptive
Search Procedure (GRASP) was proposed for Traveling Repairman
Problem (TRP), to build initial solutions and thus speed up the
search convergence [24]. The GRASP’s concept of restricted can-
didate list is utilized in our approach to combine randomization
and greediness when selecting the promising search moves in the
local search phase. To build solution neighborhoods at each iter-
ation, we use two local search moves: shift and 2-opt. 2-opt was
originally proposed for TSP [8], but has been successfully in other
route optimization problems. We used 2-opt to minimize the travel
time of routes. On the other hand, the shift move was introduced
to reschedule visits to busy nodes, and thus to avoid congestions
and reduce the waiting times.

All of the beforementioned problems are NP-complete, and thus
different heuristic algorithms have been proposed in the literature.
They can be categorized into three groups: tour construction (e.g.,
nearest-neighborhood, convex-hull), tour improvement (e.g., k-opt,
Or -opt), and metaheuristic-based algorithms (e.g., simulated an-
nealing [20], variable neighborhood search (VNS) [6, 11, 24], tabu
search [5, 13], genetic algorithms [2, 14, 14]). We develop a greedy
randomized constructive approach to build an initial solution before
the actual search process, and improve the search process by posi-
tioning the search in the promising solution space areas. Also our
approach for selecting the right node as well as the shift position
have not been addressed in research nor practice before.

6 CONCLUSION
A new problem formulation and practical solution are presented to
solve the congestion problem in real-world urban freight transport
networks. The analysis and experiments on data collected across
Barcelona’s urban freight transport network confirmed their effec-
tiveness and ability to significantly reduce the average length of
delivery routes. For example, for moderately-sized problems with
only 100 concurrent delivery routes, the proposed system saves
up to 19 minutes per route, which sums up to 1,900 minutes of
idling3 time across all 100 routes. According to [17], 1,900 minutes
of heavy-duty vehicle idling can produce 146.8 kg of CO2 which
can be a significant contribution to overall emission reduction. The
developed solution achieves a more effective urban freight mobility
for 90% of cases compared to both the individually optimal and real
life traces of delivery. The improvement achieved by the proposed
solution grows with the number of concurrent route queries, which
makes it especially suitable in dense urban environments.

3Idling refers to running a vehicle’s engine when the vehicle is not in motion.

Our solution opens a new exciting direction of collective plan-
ning of traffic and urban freight transport, and makes the specific
case of improving transportation with a global optimization task
and fairness to all vehicles in the system. For future work, we plan
to develop an online version of the proposed approach which will
consider the real-time traffic information crowdsourced from deliv-
erers or collected from employed sensors. We also plan to make it
publicly available for use in other cities.
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