
Socio-cognitive Optimization of Time-delay Control
Problems using Evolutionary Metaheuristics

Piotr Kipiński, Hubert Guzowski, Aleksandra Urbańczyk, Maciej Smołka,
Marek Kisiel-Dorohinicki and Aleksander Byrski

Institute of Computer Science, AGH University of Science and Technology, Krakow, Poland
{kipinski,guzowski}@student.agh.edu.pl, {aurbanczyk,smolka,doroh,olekb}@agh.edu.pl

Zuzana Kominkova Oplatkova, Roman Senkerik, Libor Pekar, Radek Matusu, Frantisek Gazdos
Faculty of Applied Informatics, Tomas Bata University in Zlı́n, Czech Republic

{oplatkova,senkerik,pekar,rmatusu,gazdos}@utb.cz

Abstract—Metaheuristics are universal optimization algo-
rithms which should be used for solving difficult problems,
unsolvable by classic approaches. In this paper we aim at
constructing novel socio-cognitive metaheuristic based on castes,
and apply several versions of this algorithm to optimization of
time-delay system model. Besides giving the background and the
details of the proposed algorithms we apply them to optimization
of selected variants of the problem and discuss the results.

Index Terms—hybrid metaheuristics, evolutionary computing,
socio-cognitive computing

I. INTRODUCTION

Evolutionary metaheuristics proved to be universal global
optimization algorithms. This claim is supported not only
by textbooks and experimental research (e.g. [1], [2]) but
also by extensive theoretical works (e.g. [3]) showing such
algorithms as not only efficient and efficacious algorithms, but
also easy-to-understand nature-inspired algorithms stemming
from Darwin and of course Holland works [4].

Following works of Talbi [5] and considering famous No
free lunch theorem [6], we are convinced it is beneficial to
seek new algorithms which may be applicable to different
new problems better than other ones. For example solving
transport problems with Ant Colony Optimization may be as
good as with Evolutionary Algorithms, however it is much
more natural because of the inherent structure of the ACO
(representation in a form of pheromone table is more feasible
for transport problems than the genotype-based one).

Providing we do not forget about seminal work of Sorensen
[7], we can propose novel hybrid algorithms and explore their
applicability to different problems. In this paper we focus on
time-delay systems, a problem stemming from the area of
automatics (cf. e.g. [8]), applying evolutionary algorithm for
solving the task of optimizing its parameters, comparing the
results with a recently proposed hybrid evolutionary algorithm,
constructed based on psychological inspirations.

Socio-cognitive algorithms [9] are inspired by the works
of Albert Bandura, a famous Canadian/US psychologist, in

The research presented in this paper was partially supported by: NCN
project no: 2020/39/I/ST7/02285, NCN project: no:2019/35/O/ST6/00570,
Polish Ministry of Education and Science funds assigned to AGH University
of Science and Technology.

particular on his theory of social-cognitive learning, assuming
that we not only learn from our experiences, but we also ob-
serve others. Thus incorporating different methods of getting
inspired by parts of populations of evolutionary algorithms
(e.g. copying in a different way elements of the solutions of
the other parts) lead us to propose different socio-cognitive
hybrid algorithms, in this work we focus on an idea of a
caste-based algorithm, which may be perceived as a concept
related somehow to a parallel evolutionary algorithm [10], with
,,overlapping” islands.

In this paper presents, we focus first on a short review of
evolutionary and hybrid metaheuristics related to this research,
then we present the psychological inspirations leading to
socio-cognitive hybrids, then we show the definition of the
problem being solved and the idea of the proposed algorithm,
finally we show the experimental results and conclude the
paper.

II. METAHEURISTICS INSPIRED BY EVOLUTION

A variety of methods can be employed for solving para-
metric optimization problems. One of the classic approaches
is to traverse downhill the cost functions landscape in it-
erative steps. This can be achieved by calculating the cost
functions local gradient and choosing the next calculation
point accordingly. This approach is implemented among others
by the conjugate gradient method, BFGS algorithm, and its
variant L-BFGS-B [11]. However, when the function values
are uncertain, subject to noise, or otherwise non-smooth, the
derivative-free algorithms have to be used. One of the best
known among them is the Nelder Mead method which utilizes
comparisons of values at vertices of a simplex [12].

Methods based on downhill traversal can yield a good re-
duction in cost function value using a relatively small amount
of evaluations but have limited ability to explore multiple
local optimas. Therefore more complex problems that can be
highly multimodal require using so-called global optimization
methods. Those methods use varied stochastic operations to
achieve a better exploration of the functions landscape. Some
of the most popular among those methods are swarm and
evolutionary algorithms.

ar
X

iv
:2

21
0.

12
87

2v
1

 [
cs

.N
E

]
 2

3
O

ct
 2

02
2

Classic evolutionary algorithm is a metaheuristic that mim-
ics the processes of natural evolution [13]. It operates in a loop
on a population of individuals (represented by genotypes) who
are subjected to the processes of mutation, crossover reproduc-
tion, and selection. In order to reach better performance, this
standard version of the algorithm is a constant subject of mod-
ifications. It is usually done either through bringing novelty on
the base of standard EA parameters or through hybridising EA
with different heuristic or metaheuristic algorithms [14].

Some of the state-of-the-art optimization methods utilizing
the concept of evolution are variants of differential evolution
[15] and the CMA evolution strategy [16].

One group of algorithms that are relevant to our research
are distributed EAs, such as a model of island EA [17].
The idea behind that concept is to divide the population of
individuals into subpopulations, let them evolve in parallel
and occasionally exchange members. The difference between
and island model and caste model incorporated here lays in
the exchange of genotype between subpopulations. Between
islands occurs a migration of specific individuals who then
become members of different island. In our algorithms we
decided to use other operators to influence populations. It is
either a crossover operator (A) child and a specially designed
socio-cognitive mutation operator that allows learning from
individuals of different caste (B). Both of them, as well as
our third idea of TOPSIS-like mutation (C) are part of a
trend of socio-cognitive computing. The idea inspired by the
work of Bandura [18] has already been a successful source of
hybrid and modified algorithms of Ant Colony Optimisation
[19], Particle Swarm Optimisation [20] but also for Evolution
Strategies [21]. Especially the last one position is worth
mentioning, not only because it is also based on an algorithm
from an evolutionary family, but because a similar to the
TOPSIS, however more primitive mechanism of learning to
avoid the worst solutions was incorporated there.

III. TIME-DELAY OPTIMIZATION PROBLEM

The considered time-delay identification problem [8] is
governed by a model function Gm : C→ C, namely

Gm,p(s) =
b0 + b0,τe

−τ0s

s3 + a2s2 + a1s+ a0 + a0,θe−θs
e−τs. (1)

Parameters of such a model form a 9-dimensional real vector

p = [b0, b0,τ , τ0, τ, a2, a1, a0, a0,θ, θ] . (2)

As usual, we assume that some of the parameters are related
due to the static gain, i.e.

k =
b0 + b0,τ
a0 + a0,θ

, (3)

where the value of k is well known (or estimated). In our
case we used the value k = 0.0322. To achieve appropri-
ate properties of solutions (such as stability, feasibility, and

minimum-phase conditions) we use the following constraints
[22]:

τ0 > 0, τ > 0, θ > 0,

a2 > 0, a1 > 0, a0 + a0,θ > 0,

a2a1 > a0,

a2a1 > a0 + a0,θ,
a0,θ√

(a0 − a2ω2)2 + ω2(a1 − ω2)2
< 1, ∀ω > 0,

|b0| > |b0,τ |,
a0 6= 0, a0,θ 6= 0, b0,τ 6= 0.

(4)

Our main task is to find such parameter values that

Gm,p(jωi) = Ai + jBi (5)

for some ω1, . . . , ωn and some measured values of A1, . . . , An
and B1, . . . , Bn, where j is the imaginary unit (j2 = −1).

To solve (5) using optimization methods we reformulate it
using the classical least-square approach. It consists in the
construction of a cost (or loss) function, which in our case
reads

C(p) =
n∑
i=1

[
(ReGm,p(jωi)−Ai)2

+ (ImGm,p(jωi)−Bi)2
]

(6)

This way we obtain the final version of our main problem,
which is to find such parameter values p∗ that

C(p∗) = min
p∈D
C(p), (7)

where D is the set of all p ∈ R9 satisfying (3) and (4).

IV. CASTE-BASED ALGORITHM

The name of the algorithm comes from the phenomenon of
castes – closed social strata to which affiliation is hereditary
[23]. Castes have existed and exist in different societies, but
are especially characteristic of Indian society, where the caste
system is perpetuated by the traditional taboos of Hinduism.

The idea of caste in evolutionary algorithms mimics the
caste-divided societies by implementing the division of society
according to various criteria. The castes introduce a partial
division into the population of individuals. One effect of
the introduction of castes is limiting of the possibility of
reproduction to the caste of the individuals, and of course
producing the offspring belonging to the same caste. Such an
algorithm would only copy most of the ideas of the parallel
evolutionary algorithms (and in fact, those two approaches can
be compared), however in the case of caste-based algorithms
those subpopulation (castes) overlap, as indeed, there exists a
possibility of reproduction between the individuals belonging
to different castes.

A. Overlapping caste-based algorithm

The castes being a result of a breakdown of the initial
population are of the same size. There exists a parameterized
probability of choosing the parent from another caste. As it
was mentioned the membership of the caste is transferred to
the next population, and when the individual has parents from
two different castes, the membership is decided randomly.

The main steps of the caste-based algorithm are quite
similar to the classic evolutionary one [1], however of course
dedicated steps related to caste-based processing are added or
modified:

1) The population of individuals is randomly initialized.
2) Castes are assigned to the individuals.
3) For each of castes:

a) Selection.
b) Crossover and mutation, there exists a probability

of crossing-over with the individuals from different
castes.

4) Evaluation is executed for all individuals.
5) Back to point 3 unless the stopping condition is met.

Caste-based algorithm is implemented in 2 variations – ran-
dom caste assignment and elitist caste assignment. In the
former case, all the castes are assigned randomly, while in
the latter, castes are assigned according to individual’s fitness
value. The best individuals are assigned together to the caste
no 1, a little bit worse to the caste no 2, and so on.

B. Separated caste-based algorithm

Separated caste-based algorithm is a modification of the
proposed basic algorithm. The main difference is that every
caste is developing completely independently, so a certain
means of relation among the castes must be introduced,
otherwise it would be actually a sequential run of a number
of evolutionary algorithms. To introduce certain information
sharing, we propose a dedicated learning operator (fitting in
the framework of the social-cognitive learning by Bandura).

The main idea of the algorithm is that the individuals are
learning from higher castes by copying certain genotypes of
the individuals. Higher castes have better fitness, and the po-
sition of castes is updated throughout the run (so this relation
of having higher or lower fitness affects the order of the
castes). The algorithm steps are similar to the ones described
in the previous section, however the learning operator and the
reassignment of the castes are added to the main course of the
algorithm.

The whole algorithm looks now as follows:
1) The population of individuals is randomly initialized.
2) Castes are assigned to the individuals.
3) For each of castes:

a) Selection.
b) Crossover and mutation, there exists a probability

of crossing-over with the individuals from different
castes.

c) For each of the individual:

i) Learning from other individuals (from other
castes) with certain probability. If this condi-
tion is true, the genes are copied, again with
dedicated, certain probability.

4) Evaluation is executed for all individuals.
5) Reassigning the order of castes when certain interval is

reached.
6) Back to point 3 unless the stopping condition is met.

C. TOPSIS evolutionary algorithm

Additional method fitting in the class of socio-cognitive
learning methods we used is TOPSIS. The Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) is a
multi-criteria decision analysis method, which was originally
developed by Ching-Lai Hwang and Yoon in 1981 [24] with
further developments by Yoon in 1987, [25]and Hwang, Lai
and Liu in 1993. [26] TOPSIS is based on the concept that the
chosen alternative should have the shortest geometric distance
from the positive ideal solution (PIS) [27] and the longest
geometric distance from the negative ideal solution (NIS) [27].

We implemented this idea in our algorithm by implementing
,,gravity/anti-gravity mutation” which is executed on popula-
tion. Individuals have a chance to be pulled towards the best
solution/point and pushed away from the worst solution/point.
This point is calculated as a weighted average (4 variants)
of X best/worst individuals. The probability, strength of in-
fluence and the number of the best and worst individuals are
determined by dedicated parameters:
• p: float [0, 1] - chance for executing TOPSIS mutation

(pulling and/or pushing),
• t best: float [0, 1] - strength of pull towards the attraction

point,
• t worst: float [0, 1] - strength of repulsion from the

repulsion point,
• best individuals count: int [1, population size] - used

to calculate the point of attraction,
• worst individuals count: int [1, population size] - used

to calculate the point of repulsion.
Algorithm characteristics:
• Keeping best individuals count best individuals from the

population and worst individuals count worst individuals
from the population to calculate the point of attrac-
tion/repulsion.

• Points of attraction and repulsion can be calculated in
different ways (multiple variations).

• Pulling to the point of attraction with the strength of
t best (where value of 1 would mean to transport the
individual straight to this point).

• Analogically as above with repulsion point.
• This gravity effect is implemented as a mutation and is

run on roughly p * population size individuals.

V. EXPERIMENTAL RESULTS

In order to check the efficacy and efficiency of the proposed
algorithms we have conducted a series of experiments using

TABLE I: Observation data

i ωi Ai Bi

1 0.0002 0.03238 −0.00284
2 0.0003 0.03213 −0.00424
3 0.0005 0.03137 −0.00694
4 0.0008 0.02962 −0.01063
5 0.001 0.02813 −0.01278
6 0.0012 0.02645 −0.01465
7 0.0015 0.02371 −0.01692
8 0.0018 0.02087 −0.01857
9 0.002 0.01899 −0.01936

10 0.003 0.01063 −0.02054
11 0.005 0.00057 −0.01713
12 0.008 −0.00540 −0.01110
13 0.01 −0.00704 −0.00795
14 0.011 −0.00757 −0.00658
15 0.012 −0.00795 −0.00531
16 0.014 −0.00843 −0.00296
17 0.016 −0.00860 −0.00074
18 0.018 −0.00846 0.00147
19 0.02 −0.00795 0.00377
20 0.025 −0.00346 0.00982

Python 3.10.5, JMetalPy 1.5.5, and Matplotlib 3.5.3 for visu-
alisation purposes. The experiments were conducted on a PC:
Windows 10 Education, Intel Core i5 2500k, 4.2Ghz, 8 GB
1333Mhz.

Frequencies with corresponding observed physical values
used to fit the model are shown in Tab. I.

Our aim was to compare the proposed socio-cognitive
metaheuristic with a classic evolutionary aglorithm [2] imple-
mented in JMetalPy. Moreover, we wanted also to compare
the results of our optimized model with the physical one.
All experiments were run 10 times for 15000 evaluations and
averages were calculated.

The algorithms used in the experiments had the following
parameters. Genetic algorithm’s parameters:
• Population size: 100,
• Offspring population size: 20,
• Mutation: PolynomialMutation(1.0 / 8.0, 20.0),
• Crossover: SBXCrossover(0.9, 20.0),
• Selection: BinaryTournamentSelection.

All these operators are available in JMetalPy (genetic algo-
rithm).

Caste-based algorithm’s parameters:
• number of castes: 3,
• chance for non caste parents: 0.05,
• remaining parameters the same as in evolutionary algo-

rithm.
Separated-caste algorithm’s parameters:
• number of castes: 5,
• assign castes interval: 3000,
• learn from better caste probability: 0.1,
• learn from variable: 0.1,
• remaining parameters the same as in evolutionary algo-

rithm.
TOPSIS algorithm’s parameters:
• p: 0.1,

• t best: 0.1,
• t worst: 0.0,
• best individuals count: 10,
• worst individuals count: 10,
• remaining parameters the same as in Genetic
In Fig. 1 Bode plots [28], showing the dependency of the

amplitude and phase with the frequency were shown, compar-
ing the optimized models obtained with different algorithms,
with the physical ones. It is easy to see that the model
evolved by the classic evolutionary algorithm (using the same
parameters for optimization as for the proposed algorithms) is
significantly farther from the physical model than the socio-
cognitive versions. Comparing the socio-cognitive versions,
the Bode plots of the caste-based algorithm seems to be the
best fit. The separated caste algorithm is the worst, perhaps
the learning relations should be further researched.

In Fig. 2 we can observe the so-called Nyquist plots which
are used for assessing the stability of a system with feedback
[29]. For our interpretation the most important observation is
the fitting of the optimized models with the physical ones.
Similarly to the above-shown Bode plots (Fig. 1) the best
fit models is the one produced by the caste-based algorithm.
It confirms again, that this variant has the highest potential
for application, while the other two socio-cognitive ones
(separated caste-based and TOPSIS-based are to be further
researched), even though they are also better fit than the one
obtained by the classic evolutionary algorithm.

In Fig. 3 we can observe the dependency of the best fitness
of the subsequent evaluation of the fitness function. In Y-
axis the logarithmic scale was used. It is apparent that all the
proposed metaheuristics turned out to be better in the observed
cases, although they do not completely dominate the classic
evolutionary algorithm.

In Fig. 4 we can see fitness comparison between all algo-
rithms. Moreover, those visualized results may be checked in
Table II. It is easy to see that all the tested novel algorithms
produced rather comparable results, visibly better than the
classic evolutionary algorithm. If we consider minimum fitness
obtained in all the experiments, the caste-based algorithm
wins, if we think about the repeatability of the results, the
most consistent ones are produced for the separated-caste
algorithm. The improvement of the novel proposed algorithms
is apparent, though they need some more work in order to test
them in a broader sense, using other benchmarks and variants
of parameters.

Algorithm Average Minimum Std
Genetic 4.34e-06 7.72e-07 3.52e-06
Caste 2.26e-06 6.98e-07 7.48e-07

Separated 2.24e-06 8.78e-07 7.88e-07
TOPSIS 3.82e-06 1.14e-06 3.45e-06

TABLE II: Fitness values after 15000 evaluations

VI. CONCLUSION

In this paper we have shown the possibilities of extension
classic evolutionary algorithms by introducing socio-cognitive

(a) Bode plot for classic genetic algorithm (b) Bode plot for caste-based algorithm

(c) Bode plot for separated caste based algorithm (d) Bode plot for TOPSIS algorithm

Fig. 1: Bode plots for genetic algorithm, caste-based algorithm, algorithms with separated castes and TOPSIS – comparing the
optimized models with the physical one.

inspirations, namely caste-based algorithm into evolutionary
one (Michalewicz type). The presented results may be treated
as preliminary ones, although they already show the improve-
ment of the algorithms applied to optimization of a very
specific problem, namely looking for the best parameters
of time-delay system, an important model from the area of
automatics.

We have also applied TOPSIS method in order to improve
the knowledge transmission between the entities which are
to “learn” about the others. Moreover, the caste-based algo-
rithm was presented in two variants, with separated and non-
separated castes.

In future we aim at realization of broader experimental
results employing more variants of the considered problems
and also working-out novel variants of the proposed socio-
cognitive metaheuristics.

ACKNOWLEDGMENTS

The research presented in this paper received partial fund-
ing from the Polish National Science Center Project No.
2020/39/I/ST7/02285 and from the funds assigned to AGH
University of Science and Technology by the Polish Ministry
of Science and Education.

REFERENCES

[1] D. E. Goldberg, Algorytmy genetyczne i ich zastosowania.
Wydawnictwa Naukowo-Techniczne, 1995.

[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Springer, 1996.

[3] M. D. Vose, The simple genetic algorithm: foundations and theory. MIT
press, 1999.

[4] J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal
of the ACM (JACM), vol. 9, no. 3, pp. 297–314, 1962.

[5] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley
& Sons, 2009, vol. 74.

(a) Nyquist plot for classic evolutionary algorithm (b) Nyquist plot for caste-based algorithm

(c) Nyquist plot for separated caste based algorithm (d) Bode plot for TOPSIS algorithm

Fig. 2: Nyquist plots for genetic algorithm, caste-based algorithm, algorithms with separated castes and TOPSIS – comparing
the optimized models with the physical one.

(a) Comparison of caste-based algorithm with genetic one. (b) Comparison of separated-caste based algorithm with genetic one.

(c) Comparison of TOPSIS-based algorithm with genetic one.

Fig. 3: Comparison of dependency between fitness and number of evaluation for evolutionary algorithm, caste-based algorithm,
algorithms with separated castes and TOPSIS.

Fig. 4: Fitness comparison of all algorithms after 15000
evaluations

[6] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE transactions on evolutionary computation, vol. 1,
no. 1, pp. 67–82, 1997.

[7] K. Sörensen, “Metaheuristics—the metaphor exposed,” International
Transactions in Operational Research, vol. 22, no. 1, pp. 3–18, 2015.
[Online]. Available: http://dx.doi.org/10.1111/itor.12001

[8] L. Pekař, “Modeling and identification of a time-delay heat exchanger
plant,” in Advanced Analytic and Control Techniques for Thermal
Systems with Heat Exchangers, L. Pekař, Ed. Academic Press, 2020,
pp. 23–48. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128194225000025

[9] A. Byrski, Socio-cognitive metaheuristic computing. Wydawnictwa
AGH, 2018.

[10] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
Paralleles, Reseaux et Systems Repartis, vol. 10, no. 2, pp. 141–171,
1998.

[11] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[12] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Computer Journal, vol. 7, pp. 308–313, 1965.

[13] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[14] E.-G. Talbi, “A taxonomy of hybrid metaheuristics,” Journal of Heuris-
tics, vol. 8, pp. 541–564, 2002.

[15] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 01 1997.

[16] N. Hansen, “The cma evolution strategy: A tutorial,” 2016. [Online].
Available: https://arxiv.org/abs/1604.00772

[17] D. Sudholt, “Parallel evolutionary algorithms,” in Springer Handbook of
Computational Intelligence. Springer, 2015, pp. 929–959.

[18] A. Bandura, Social foundations of thought and action: a social cognitive
theory. Prentice-Hall, Englewood Cliffs, N.J., 1986.

[19] A. Byrski, E. Świderska, J. Łasisz, M. Kisiel-Dorohinicki, T. Lenaerts,
D. Samson, B. Indurkhya, and A. Nowé, “Socio-cognitively inspired
ant colony optimization,” Journal of Computational Science, vol. 21,
pp. 397–406, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1877750316302198

[20] I. Bugajski, P. Listkiewicz, A. Byrski, M. Kisiel-Dorohinicki,
W. Korczynski, T. Lenaerts, D. Samson, B. Indurkhya, and
A. Nowé, “Enhancing particle swarm optimization with socio-cognitive
inspirations,” Procedia Computer Science, vol. 80, pp. 804–813, 2016,
international Conference on Computational Science 2016, ICCS 2016,
6-8 June 2016, San Diego, California, USA. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050916308456

[21] A. Urbańczyk, B. Nowak, P. Orzechowski, J. H. Moore, M. Kisiel-
Dorohinicki, and A. Byrski, “Socio-cognitive evolution strategies,” in
International Conference on Computational Science. Springer, 2021,
pp. 329–342.

[22] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems,
1st ed. Boston, MA: Birkhäuser, 2003.

[23] S. Bayly, Caste, Society and Politics in India from the Eighteenth
Century to the Modern Age. Cambridge University Press, 2001.

[24] Y. K. Hwang C.L., “Multiple attribute decision making: Methods and
applications.” 1981.

[25] K. Yoon, “A reconciliation among discrete compromise solutions,”
Journal of the Operational Research Society, vol. 38, no. 3, pp.
277–286, 1987. [Online]. Available: https://doi.org/10.1057/jors.1987.44

[26] C.-L. Hwang, Y.-J. Lai, and T.-Y. Liu, “A new approach for
multiple objective decision making,” Computers & Operations
Research, vol. 20, no. 8, pp. 889–899, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/030505489390109V

[27] A. E. Assari A., Mahesh T., “Role of public participation in sustainability
of historical city: usage of topsis method,” Indian Journal of Science and
Technology, vol. 5, no. 3, pp. 2289–2294, 2012.

[28] R. Rao Yarlagadda, Analog and Digital Signals and Systems. Springer,
2010.

[29] A. Pippard, Response & Stability, 1985.

http://dx.doi.org/10.1111/itor.12001
https://www.sciencedirect.com/science/article/pii/B9780128194225000025
https://www.sciencedirect.com/science/article/pii/B9780128194225000025
https://arxiv.org/abs/1604.00772
https://www.sciencedirect.com/science/article/pii/S1877750316302198
https://www.sciencedirect.com/science/article/pii/S1877750316302198
https://www.sciencedirect.com/science/article/pii/S1877050916308456
https://doi.org/10.1057/jors.1987.44
https://www.sciencedirect.com/science/article/pii/030505489390109V

	I Introduction
	II Metaheuristics inspired by evolution
	III Time-delay optimization problem
	IV Caste-based algorithm
	IV-A Overlapping caste-based algorithm
	IV-B Separated caste-based algorithm
	IV-C TOPSIS evolutionary algorithm

	V Experimental results
	VI Conclusion
	References

