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Abstract 

This paper proposes a decentralized cooperation protocol 
jor  an object-sorting task in a distributed robotic system. 
The multiple agents are based on a homogeneous agent 
architecture that consists of search, nrotion. and conitnu- 
nication modules coordinated through a global state. Ad- 
vantages of the system architecture are simplicity, intra- 
agent distributed control, no explicit inter-agent control 
and flexibility. The protocol encourages the agents to 
help each other in order to facilitate overall task 
achievement. Simulation results showed that 1)The proto- 
col is stable and reliable under a spectrum of workload. 
?)The execution time increases linearly with the number 
of objects. 3)lncreasing the number of agents can sign/$- 
cantly decrease the waiting time and improve the per- 
formance. 

1: Introduction 

A multi-agent robotic system uses multiple robots to 
solve problems by having them work in parallel. Situ- 
ations found in space exploration, undersea construction, 
nuclear waste management, explosives detection and 
many others ofien require a multi-agent system that can 
achieve a common task by coordinating their behaviors. 
Typical application tasks include retrieval, simple con- 
struction, routine cleaning and finishing, etc. 

Much research on multi-agent robotic system has be- 
gun to emerge. Fikuda's CEBOT systern[7] demonstrated 
the self-organizing behavior of a group of heterogeneous 
robotic agents. Beni and Hackwood's research on swarm 
robotics demonstrated large scale cooperation in siniula- 
tion[8]. Brooks et a1.[5] developed the lunar base con- 
struction robots by using a set of reactive rules. Mataric[9] 
also studied task performance in a group of mobile robots 
based on the subsumption architecture[6]. Arkin has 
demonstrated that moperation between robotic agents is 
possible even in the absence of conununication[2]. It 
simplifies the design of an agent because there is no 

communication between agents. On the other hand, it 
may be ineficient due to the lack of communication. 
Arkin et a1.[3,4] assessed the impact on performance of a 
society of robots in a foraging and retrieval task when 
simple communication was introduced. 

This paper is motivated from the work by Arkin et 
a1.[2, 3, 41. Section 2 outlines their original work and dis- 
cusses several improvements. The object-sorting task is 
introduced in Section 3, and the system assumptions are 
described in Section 4. Section 5 proposes the system ar- 
chitecture and cooperation protocol, followed by the 
simulation results in  Section 6. 

2: Motivation 

The work by Arkin et al.[?] is based on the foraging 
and retrieval behavior of the ants. By using the AURA ar- 
cliitecture(Aiitonornous Robot Architecture)[ 11, the agent 
searches randonily for targets and moves them to the base 
location without communication. If two agents are mov- 
ing the same target, the moving speed is doubled. Their 
work also proposed a limited communication scheme by 
using a shared memory. The current state and coordinates 
of any agent that is moving a target will be recorded at 
every time step. Such information enables an foraging 
agent to locate and help out the nearest busy agent, thus 
improving the overall performance. 

This paper addresses the following problems in their 
work. 
0 The termination condition is not well-defined. The 

agents are not guaranteed to search the entire area by 
using random search approach. 

0 An agent is assumed to be able to move any kind of 
target and the speed is proportional to the number of 
moving agents. More realistically. a target may need 
more than one agent to move it. 

0 Recording the states and coordinates of the agents at 
every step may cause a large overhead and communi- 
cation congestion. 

It is therefore necessary to have a cooperation protocol 
that allows inultiple agents to help each other in the 
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problem solving process. The protocol should include the 
following dimensions: 
1) A communication architecture that an agent can 

communicate with the other agents to request for help 
or to offer help. 

2) A when-help strategy that determines when to help the 
other agents. 

3) A select-help strategy that determines which agent 
needs help most. When an agent can help the others, 
maybe many agents need help. 

4) A load-balancing strategy that balances the system 
load among all the agents. 

5 )  A blocked-fee strategy to detect or prevent the system 
from blocked. When all the agents need help, the 
system is blocked. The blocked-free strategy prevents 
the system from blocked, or detects and breaks down 
the blocked state. 

3: The object-sorting task 

This section fomially defines the object-sorting task. 
Let O={o ],..., oM} be a set of objects that is randomly 
distributed in a bounded area A .  Every object, o,=(/i,di,ni), 
is associated with an initial location l i ,  a destination loca- 
tion dj. and the number nj of agents for moving it. The 
destination location dj specifies the location to which the 
object should be moved. An object can only be moved if 
there are at least ni agents available to move it. Therefore, 
an object-sorting task cab be completed only if the total 
number of agents N is larger than or equal to the masinial 
number nmax of agents to move any object. The agents 
must search for the objects and move them to their 
destinations as specified. When all the objects have been 
moved to their destinations, the task is finished. 

For load-balancing consideration, this paper uses a 
uniform distribution model with a cooperation protocol to 
do the task. The agents, R={rI ,... rN}. are uniformly dis- 
tributed into the areaA={al ,...,aN}, and each agent ri has 
its duty subarea ai. The agents search for the objects in 
their subareas and move them to the destinations. When 
an agent finds an object requiring more than one agent to 
move it, the agent must call for help froin the other agents 
in order to move the object. In our system, the agent will 
broadcast a help message and follow a protocol to com- 
municate with the other agents for the help. When all the 
agents have finished their subtasks, the object-sorting task 
is finished. 

4: Assumptions 

The system assumptions are the following: 
1. The agents in our system are mobile robots and they 

are homogeneous. 

2. The agents have no prior knowledge about the 
environment. They know the environment around 
them only after they have detected it. 

3. The agents can communicate with the others by a 
broadcast channel or a point-to-point channel. 

4. Every agent is autonomous and has the basic 
capabilities: 
0 object identification. It can identify the other 

agents, the obstacles, and the target objects. 
0 navigation and obstacle avoidance. It can move 

from one location to a specified location. 
0 object movement. It can move the object alone or 

with the other agents. 
S .  The objects are stationary. 

5: Overview of cooperation architecture 

In our system, the architecture of each agent is as 
showed in Fig. I .  The search module, communication 
module and motion module are all finite state automata. 
They share the global state information and change the 
state inforillation according to their state functions. Its 
state transition diagram is as showed in Fig. 2, and the 
state diagrams of each module are showed in Fig. 3. 

Global state information 

Fig. 1: Agent architecture 

5.1: Search module 

The search module searches for the objets and 
identifies their destinations and required number of 
agents. An object is a small object if it can be moved by 
an agent alone. An object is a large object if it requires 
more than one agents to move it. 

An agent broadcasts a help message when it finds a 
large object and we call it the helped agent. The other 
agents coining to help the helped agent are called the 
helping agent. The search module searches for the objects 
and identifies their destinations in the SEAR('HING state 
It changes the state to MOIdN(i if the object is small, or 
to WAITING and broadcasts a help message if the object 
is large. 



Because the agents are independent, they don’t know 
in which situation the others are. When an agent has 
completely searched its subarea, it does not mean the 
system task is done. It is necessary to have a protocol to 
let the agents know when the task is done. This will be 
described in Section 5.3. 

I m m  

v -  
Fig. 2: State transition diagram 

sub m rm 

Fig. 3: State diagrams of the modules 

5.2: Motion module 

The motion module consists of the motion function 
and the object movement function. The object niovement 
function perfornis the action that moves an object alone or 
with other agents. The motion function perfornis the 
capability of moving to goal. 

The motion module moves an object to its destination 
in the MOVING state, and changes the state to 
RETIJMING after having moved the object to its 
destination. When in RETURNING state, the agent 
returns to its subarea and the motion module changes the 
state to SEARCHING when reaches the goal location. A 
helping agent in HELPING state is moving to the helped 
agent and will change the state to MUITING when it 
reaches the helped agent. If there are enougli agents to 
move the objects, the agents in WAITING state will 
change the state to MOVING. 

After an agent has finished its subtask, it enters IDLE 
state and returns to its base location. The agent will be in 
I-HELPING when it is moving to the helped agent, and 
will change the state to I-WAITING when it reaches the 
helped agent. If there are enough agents to move the 
objects, the agent in I-WAITING state Will change the 
state to /-MOVING. When it has moved the object to the 
destination, the agent comes info I-RETURNING, then the 
state is changed to IDLE when it has returned to its base 
location. 

5.3: Strategies of cooperation protocol 

Most of the cooperation protocol is embedded in the 
communication module. Before describing the module, we 
focus on the strategies of the protocol. 

The when-help strategy is based on the principle that 
an agent will help the others when it is not busy. Tlmt is, 
an agent niay accept a help message only when it is in 
SEARCHING, (I-)RETURNING or IDLE states, otherwise 
the message is queued for later processing. 

The select-help strategy is designed by the rule that an 
agent select the nearest to offer help. An agent that 
responds to a hefp message is called a will-help agent. 

The load-balancing strategy is considered in two parts. 
One part is the equal partition of the area and the uniform 
distribution of the agents. Another part is the negotiation 
process for establishing cooperation, especially the 
selection from the will-help agents. When an agent needs 
help from n agents, there may be 111 will-help agents such 
that m is greater than n.  The loud-balancing strategy 
enables the agent to select the first n nearest agents and 
send an accept message to each of them. The other will- 
help agents will be rejected by reject messages. 

The blocked-free strategy is designed by the following 
algorithm. First, the agents in (I-) WAITING state detect 
the blocked situation by checking a timeout event, then 
they broadcast blocked niessage to exchange their state 
information and break down the blocked situation by 
comparing their priorities. The lower priority agents will 
exit their (I-) WAITING state by entering (WHELPING 
state and go to help the highest priority agent. After the 
lower priority agents return to their subarea, they can 
continue their suspended task. According to Theorem 1, 
the timeout event occurs when the agent stays in 
(I-) W4lTlhG state for 2(N- l )MR” long. 

An additional problenl is task termination condition. 
When an agent has completely searched its subarea, it 
broadcasts a sub-fin message and come into Sub-FINISH 
state. Any other agent whose subtask is not finished will 
reply a busy message to the sub-finish agent. If the agent 
in Sub-FINISH receives a busy message, it enters into 
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IDLE state, otherwise, it means all the subtasks are 
finished and the agent broadcasts an afl-Jnish message. 
All the IDLE agents come into FINISH state after 
receiving the finish message and the system task is 
finished. 

Theorem 1. Let N be the number of agents, and M7T be 
the maximum travel time between any two locations in the 
bounded area. When an agent stays in (I-)WAITING state 
for Z(N-I)MIT, the system is blocked. 
proofi 

Consider the situation that there is only one large 
object found at a time. The system will not be blocked 
according to the when-help strategy. If the system would 
become blocked in the fiiture, there must exist at least two 
large objects found at the same time. 

Let Lt={oi(oi E 0, ?ER, s.t. o,  was found by r,  at time 
t}be a set of large objects found at time t. And W't,u={ol o 
E L ,  some agent is in WAITING or I-WAITIN(; state at 
time t+u due to o } ,  so Wt,o=L, For simplicity, Wr,u is 
referred to as Wu in the following discussion. Let 

MOVE={rER, r's state is MOVING or I-MWING} 
HELP={ r ER, r's state is HELPING or I-HELPING} 
WAIT={r€R, r's state is WAITING or I-K4ITING} 
AVAIL={r ER, r's state is SEAR('HING or 

RETZJWING or I-RETURNING or IDLE} 
If the system would not become blocked, not all of 
AVAIL, MOVE, and HELP sets are empty. Given I WIJ>O, 
we consider the agents in these three sets. 
1)HELP set: 

When an agent in HELP set reaches the object, either it 
enters MOVE set if there are enough agents to move the 
object or enters WAIT set. Because an agent stays i n  

HELP state no more than one MTT, the maximum time 
for these agents to reach and move an object in  Wl, is 
one h47T. 

2)AVAIL set: 
Every agent in the set is a will-help agent. If the agents 
in AVAIL are accepted by the agents requiring help, 
they enter HELP set. So the maximum time for these 
agents to reach and move an object in Wl, is one Am. 

Because an agent stays in MOVE and enters AVAIL set 
no more than one MTT. After that, they enter HELP set 
immediately if there is any agent requiring help. So the 
maximum time for these agents to reach and move an 
object in W,, is 2MTT. 

So the maximum time for the agents not in WAIT to 
reach and move an object in W,, is 2hl7T. On the other 
hand, they all enter WAIT set if they cannot move any 
object in W,, in W. That is. the system is blocked if 

3)MOVE set: 

I~t;+2MTT( = IW,,l. 

If the system is not blocked, at least one large object 
will be moved for every 2MTT. It takes at most 2(N- 
1)MTT to reduce every object in WO. 

So if an agent stays in (I-)WAITING state for 2(N- 
l)MTT, all the agents must be in (I-)WAITING state and 
the system is blocked. 

5.4: Communication module 

The communication module performs the communica- 
tion function and follows the protocol in order to 
cooperate with the others. It receives the messages sent by 
the other agents and replies them if necessary. 

When receiving a help message in SEARCHING or 
RETIJRNING states, the comin. module replies a will-help 
message and changes its state to .%REPLY or R-REPLY. If 
the helped agent accepts the will-help message, it sends 
an accept message to the helping agent, otherwise, it 
sends a reject message to reject the help. When receiving 
an accept message, the communication module changes 
the state to HELPING. When receiving a reject message, 
the communication module returns to its previous state. 
The helping messages mechanism looks like the Contract 
Net Protocol( IO], however, it is designed for simplicity 
and effectiveness. 

An agent in IDLE state stays in  its base location and 
waits for help message in order to help the others. The 
help mechanism is the same as described above. 

5.5: Advantages 

The advantages of the architecture are discussed as the 
following: 

,Siiiip/icip. The global state fiinction is very complex. 
Comparing with a central module controlling all the 
state transition, the architecture is more simple ,clear 
and fast to impleinent it. 

e Intra-ngent distributecl control. Functional separation 
for each agent makes the intra-agent distributed 
control. All state transitions are distributed into the 
modules and a single transition is done only by one 
module. The modules ciln run concurrently or 
simultaneously based on multiprocessor or 
uniprocessor. The commiinication between modules is 
through the shared global state information. 

e No explicit inter-agent control. An agent commu- 
nicates with the other agents through the 
communication system. The inter-agent control can be 
designed for different purpose. It may be central 
control if the agents are organized into a hierarchical 
organization. On the other hand. i t  is distributed 
control if every agents is independent. 
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0 Flexibility. It is ease to add a new functional module 
to the agent architecture. The architecture can be 
extended to handle other function if the corresponding 
module is included. 

N 1 2 1 4 1 8  10 20 30 
Partition 1x1 lx212x2)4x2 5x2 5x4 6x5 

6: Simulation 

40 50 
8x5 10x5 

The object-sorting task was simulated in a multi- 
strategy simulator developed on Sun workstation and with 
graphic user interface showing the task execution process. 
The simulator is a testbed for testing different strategies 
of the cooperation protocol on the object-sorting task. 

I-+ 4 loo 100 loo 100 100 

0 . . . .  

Object I Base Location I 
Fig. 4: The simulation map for 5x2 partition 

6.1: Simulation Environment 

The task is performed on a bounded area which is 
equally partitioned into the subareas, and each subarea is 
assigned to an agent by the load-balancing strategy. The 
area is represented in a two-dimensional coordinate 
system, e.g. 500x 200. The partition of the area is 
represented by a m x n notation, ni in x-axis direction and 
n in y-axis direction. For example, 5 x 2 partition means 
that the area is equally partitioned into 5 subparts in x- 
axis direction and 2 subparts in y-axis direction, as shown 
in Fig. 4. In the experiment, the area is SOOx 200 and 
partitioned into different size under different number of 
agents. Fig. 4 shows the map used in the simulation for 
N=10 agents. The partitions for different number of 
agents N used in the experiment are shown in Table 1. 

Table 1: Partition and the number of agents 

The agent searches for the objects in its subarea and 
move the objects to their destinations. The following code 
fragment describes the actions performed by the agent at 
each time step. 

for each agent i , 
do the search module of agent i ;  
do the motion module of agent i ;  
do the comm. module of agent i .  

When all the agents has completely searched their 
subareas, the task i s  finished. 

Fig: 5:  Move directions Fig. 6: Sensor ranges 

The area is a grid area, and the agents can only move 
to one of the four locations from a location in a time unit 
as the figure 5.  The agents can sense the objects located in 
the grids adjacent to the agents as the figure 6. The agents 
may use any exhaustive search method to search their 
subarea. In this experiment, the row-major order method 
was used. They start search from the initial location, the 
(0,I) location of their subarea, to the right side boundary, 
and search the first three rows which are under the sensor 
range. When they have reached the right side boundary, 
they search the second three rows and change the search 
direction from right to left. When they has reached the 
left side boundary, they change the search direction from 
left to right and start searching the next three rows. The 
search repeats until the subarea has been searched. 

The object is randomly generated for its destination, 
initial location, and the number of required agents. This 
experiment generates 10 sets of the object for each 
number of the objects M using n,,=10. All of the object 
sets are nm for N=10,20,30,40, and 50. When the object 
sets are applied to N=1.2,4. and 8, then nmax is set to N 
and all the n, are proportionally adjusted in order to 
accomplish the task. 

6.2: Simulation Results 

The experiment was run by varying the number of 
agents N, and the number of objects M. For a given 
number M of objects, the execution time is the average of 
the execution time run from the 10 generated object sets 
of M. The performance of the proposed cooperation 
protocol is evaluated by comparing the execution time 
under different number of agents and different number of 
objects. The actual execution time performed by the 
cooperation protocol is represented by C. The reference 
execution time are the estimated upper bound, U, and the 
estimated lower bound, L. 

The estimated upper bound is the execution time based 
on the centralcontrolled model that all the agents work 
together to do the task, that is, all the agents go together 
to search the area, when find an object, they move the 
object to its destination, then return to their previous 
location and continue searching. The task is executed as if 
there was a very powerful agent to do the task so that it 
could move any found object. However, the objects are 
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moved sequentially and centrally. The estimated upper 
bound is the search time plus all the object-moving time. 

where 
U = TS +Cj (TMj + TRj) 

U: estimated upper bound. 
XS time required to search the entire area. 
TMj: time required to move objectj to its destination. 
TRj: time required to return to the initial location of 

The estimated lower time is the execution time under 
the operation model that the other agents are always 
available for helping when an agent finds a large object. 
The other agents is assumed to be available in the central 
point of their subareas. An agent chooses the helping 
agents by the load-balancing strategy which chooses the 
agents closer to it. The execution time of each agent is its 
subarea search time and all the processing time for the 
objects located in its subarea. The processing time of the 
object j located in the agent i is the wait time for all the 
helping agent coming in and the object-moving time for 
object j ,  and the return time from the destination of the 
object j to the initial location of j .  So, the estimated lower 
bound is the maximum time among the execution time of 
all the agents. 

object j from the destination ofj. 

L=Maxi  TAi 
TA, = TSi + Zj TOij 
TOjj = TWjj + TMij + TRjj 

where 
L: estimated lower bound. 
TAi: the total execution time of agent i .  
TSj: time for agent i to search its subarea. 
Tog:  the processing time of object j located in the 

subarea of agent i .  
TWg: the maximum wait time of object j for all the 

helping agents of agent i .  
TMo: the time that agent i moves object j to its 

destination 
TRY: the time that agent i returns from the 

destination of objectj to the previous location. 

180000 r m 
160000 - 140000 

.a 120000 
3 100000 

80000 
$ 60000 

40000 
20000 

0 
0 50 100 150 200 

Number of Objects 

Fig. 7: The execution time of N=10 

At first, the actual execution time, C, is compared 
with two types of estimated execution time, an estimated 
lower bound and an upper bound. Fig. 7 shows the 
relationship between the execution time and the number 
of objects for N=10 agents. Intuitively, as the number of 
objects to be moved increases, the execution time, either 
estimated or actual, will increase. The upper bound model 
always needs the most time to do the task because it 
moves the objects sequentially. The cooperation protocol 
is stable, even under heavy workload situation, e.g. 200 
objects. 

I 
120000 

100000 

0 5 0 100 

Number of Objects 

Fig. 8: The execution time of N< 10 

When the workload is light, the performance of the 
cooperation protocol approaches the lower bound. The 
agents search their subareas simultaneously and move 
objects simultaneously if they don't need to wait for the 
others. It takes less time to wait for help under light 
workload. Under heavy workload, there are more objects 
in the area and the agent must take more time to wait for 
help. Because every agent is mostly busy, the degree of 
concurrence is decreased. This effect will cause the agent 
gradually to group together to move the objects. If most of 
the objects require a large number of agents to move, the 
system behavior will approach the upper bound in which 
objects are moved one by one. 

Second, the execution time for different number of 
agents under the same object sets are compared. Fig. 8 
shows the execution time for N=1,2,4,8 and 10. The 
workload is proportionally adjusted for any A4 by 
adjusting the number of required agents for each object. 
When the number of objects increases, the execution time 
increases linearly with it for all N. It shows the 
cooperation protocol is very stable under different 
workloads. When the estimated upper bound and lower 
bound are considered again, we find that U, C and L 
overlap when N=l. It is very clear that both the upper 
bound model and the lower bound model work the same 
as the proposed model if there is only one agent to do the 
task and nnrm= 1. 
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Finally, Fig. 9 shows the speedup effect of increasing 
the number of agents to do the task. When the generated 
object sets are applied to Nz10, the execution time 
decreases with the increasing number of agents. It shows 
that the protocol can effectively utilize the benefit from 
increased agent-power. The speedup is high when N is 
changed from 10 to 20. Meanwhile, it is low when N is 
changed from 40 to 50, which can be explained from Fig. 
10. 

t 
8oooo .i 60000 
4oooo 

2 m  
0 
0 50 100 IS0 200 

N=20 

N=30 

N=40 

N=50 

Number of Objects 

Fig. 9: The execution time for N=10,20,30,40 and 50 

m 

I 
180000 
160000 
140000 
120000 

3 100000 

i= 60000 -*- L 
40000 
20000 

0 50 100 150 200 

Number of Objects 

Fig. 10: The execution time of N=50 

Fig. 10 shows the U, C and L for N=50 agents under 
different number of objects. When comparing Fig. 10 
with Fig. 7, it shows that C approaches L for N=50 even 
on heavy workload, M=200 objects. It means that the 
more agents to do a task, the faster it is finished. Initially 
the waiting time is significantly decreased when using 
more agents. That is, C approaches to L. If there are 
usually enough agents available to help out whenever a 
large object is found, the benefit from increasing N will be 
a smaller subarea for each agent. 

7: Conclusions 

In this paper, we focus on the problem of an object- 
sorting task in multi-agent robotic system and present the 
system architecture of the agent, the global finite 
automata and the finite automata of each module, a 
decentralized cooperation protocol and the strategies for 

doing the object-sorting task. A multi-strategy simulator 
is developed as a testbed for testing the Merent  
environments and strategies on the cooperation protocol. 
The experimental results show that the cooperation 
protocol has stable and reliable behavior under different 
workloads. Increasing the number of agents will decrease 
the waiting time of agents and speedup the execution time. 

Using the simulator, further experiments will be 
conducted in order to analyze the effects of different 
protocols, strategies and object distribution. 
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