
A Decentralized Cooperation Protocol for Autonomous Robotic Agents

Fang-Chang Lin and Jane Yung-jen Hsu
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.
{ fclin,yjhsu } @robot.csie.ntu. edu. tw

Abstract

This paper proposes a decentralized cooperation protocol
jor an object-sorting task in a distributed robotic system.
The multiple agents are based on a homogeneous agent
architecture that consists of search, nrotion. and conitnu-
nication modules coordinated through a global state. Ad-
vantages of the system architecture are simplicity, intra-
agent distributed control, no explicit inter-agent control
and flexibility. The protocol encourages the agents to
help each other in order to facilitate overall task
achievement. Simulation results showed that 1)The proto-
col is stable and reliable under a spectrum of workload.
?)The execution time increases linearly with the number
of objects. 3)lncreasing the number of agents can sign/$-
cantly decrease the waiting time and improve the per-
formance.

1: Introduction

A multi-agent robotic system uses multiple robots to
solve problems by having them work in parallel. Situ-
ations found in space exploration, undersea construction,
nuclear waste management, explosives detection and
many others ofien require a multi-agent system that can
achieve a common task by coordinating their behaviors.
Typical application tasks include retrieval, simple con-
struction, routine cleaning and finishing, etc.

Much research on multi-agent robotic system has be-
gun to emerge. Fikuda's CEBOT systern[7] demonstrated
the self-organizing behavior of a group of heterogeneous
robotic agents. Beni and Hackwood's research on swarm
robotics demonstrated large scale cooperation in siniula-
tion[8]. Brooks et a1.[5] developed the lunar base con-
struction robots by using a set of reactive rules. Mataric[9]
also studied task performance in a group of mobile robots
based on the subsumption architecture[6]. Arkin has
demonstrated that moperation between robotic agents is
possible even in the absence of conununication[2]. It
simplifies the design of an agent because there is no

communication between agents. On the other hand, it
may be ineficient due to the lack of communication.
Arkin et a1.[3,4] assessed the impact on performance of a
society of robots in a foraging and retrieval task when
simple communication was introduced.

This paper is motivated from the work by Arkin et
a1.[2, 3, 41. Section 2 outlines their original work and dis-
cusses several improvements. The object-sorting task is
introduced in Section 3, and the system assumptions are
described in Section 4. Section 5 proposes the system ar-
chitecture and cooperation protocol, followed by the
simulation results in Section 6.

2: Motivation

The work by Arkin et al.[?] is based on the foraging
and retrieval behavior of the ants. By using the AURA ar-
cliitecture(Aiitonornous Robot Architecture)[11, the agent
searches randonily for targets and moves them to the base
location without communication. If two agents are mov-
ing the same target, the moving speed is doubled. Their
work also proposed a limited communication scheme by
using a shared memory. The current state and coordinates
of any agent that is moving a target will be recorded at
every time step. Such information enables an foraging
agent to locate and help out the nearest busy agent, thus
improving the overall performance.

This paper addresses the following problems in their
work.
0 The termination condition is not well-defined. The

agents are not guaranteed to search the entire area by
using random search approach.

0 An agent is assumed to be able to move any kind of
target and the speed is proportional to the number of
moving agents. More realistically. a target may need
more than one agent to move it.

0 Recording the states and coordinates of the agents at
every step may cause a large overhead and communi-
cation congestion.

It is therefore necessary to have a cooperation protocol
that allows inultiple agents to help each other in the

0-8186-7087-8/95 $4.00 Q 1995 IEEE
420

problem solving process. The protocol should include the
following dimensions:
1) A communication architecture that an agent can

communicate with the other agents to request for help
or to offer help.

2) A when-help strategy that determines when to help the
other agents.

3) A select-help strategy that determines which agent
needs help most. When an agent can help the others,
maybe many agents need help.

4) A load-balancing strategy that balances the system
load among all the agents.

5) A blocked-fee strategy to detect or prevent the system
from blocked. When all the agents need help, the
system is blocked. The blocked-free strategy prevents
the system from blocked, or detects and breaks down
the blocked state.

3: The object-sorting task

This section fomially defines the object-sorting task.
Let O={o],..., oM} be a set of objects that is randomly
distributed in a bounded area A . Every object, o,=(/i,di,ni),
is associated with an initial location l i , a destination loca-
tion dj. and the number nj of agents for moving it. The
destination location dj specifies the location to which the
object should be moved. An object can only be moved if
there are at least ni agents available to move it. Therefore,
an object-sorting task cab be completed only if the total
number of agents N is larger than or equal to the masinial
number nmax of agents to move any object. The agents
must search for the objects and move them to their
destinations as specified. When all the objects have been
moved to their destinations, the task is finished.

For load-balancing consideration, this paper uses a
uniform distribution model with a cooperation protocol to
do the task. The agents, R={rI ,... rN}. are uniformly dis-
tributed into the areaA={al ,...,aN}, and each agent ri has
its duty subarea ai. The agents search for the objects in
their subareas and move them to the destinations. When
an agent finds an object requiring more than one agent to
move it, the agent must call for help froin the other agents
in order to move the object. In our system, the agent will
broadcast a help message and follow a protocol to com-
municate with the other agents for the help. When all the
agents have finished their subtasks, the object-sorting task
is finished.

4: Assumptions

The system assumptions are the following:
1. The agents in our system are mobile robots and they

are homogeneous.

2. The agents have no prior knowledge about the
environment. They know the environment around
them only after they have detected it.

3. The agents can communicate with the others by a
broadcast channel or a point-to-point channel.

4. Every agent is autonomous and has the basic
capabilities:
0 object identification. It can identify the other

agents, the obstacles, and the target objects.
0 navigation and obstacle avoidance. It can move

from one location to a specified location.
0 object movement. It can move the object alone or

with the other agents.
S . The objects are stationary.

5: Overview of cooperation architecture

In our system, the architecture of each agent is as
showed in Fig. I . The search module, communication
module and motion module are all finite state automata.
They share the global state information and change the
state inforillation according to their state functions. Its
state transition diagram is as showed in Fig. 2, and the
state diagrams of each module are showed in Fig. 3.

Global state information

Fig. 1: Agent architecture

5.1: Search module

The search module searches for the objets and
identifies their destinations and required number of
agents. An object is a small object if it can be moved by
an agent alone. An object is a large object if it requires
more than one agents to move it.

An agent broadcasts a help message when it finds a
large object and we call it the helped agent. The other
agents coining to help the helped agent are called the
helping agent. The search module searches for the objects
and identifies their destinations in the SEAR('HING state
It changes the state to MOIdN(i if the object is small, or
to WAITING and broadcasts a help message if the object
is large.

Because the agents are independent, they don’t know
in which situation the others are. When an agent has
completely searched its subarea, it does not mean the
system task is done. It is necessary to have a protocol to
let the agents know when the task is done. This will be
described in Section 5.3.

I m m

v -
Fig. 2: State transition diagram

sub m rm

Fig. 3: State diagrams of the modules

5.2: Motion module

The motion module consists of the motion function
and the object movement function. The object niovement
function perfornis the action that moves an object alone or
with other agents. The motion function perfornis the
capability of moving to goal.

The motion module moves an object to its destination
in the MOVING state, and changes the state to
RETIJMING after having moved the object to its
destination. When in RETURNING state, the agent
returns to its subarea and the motion module changes the
state to SEARCHING when reaches the goal location. A
helping agent in HELPING state is moving to the helped
agent and will change the state to MUITING when it
reaches the helped agent. If there are enougli agents to
move the objects, the agents in WAITING state will
change the state to MOVING.

After an agent has finished its subtask, it enters IDLE
state and returns to its base location. The agent will be in
I-HELPING when it is moving to the helped agent, and
will change the state to I-WAITING when it reaches the
helped agent. If there are enough agents to move the
objects, the agent in I-WAITING state Will change the
state to /-MOVING. When it has moved the object to the
destination, the agent comes info I-RETURNING, then the
state is changed to IDLE when it has returned to its base
location.

5.3: Strategies of cooperation protocol

Most of the cooperation protocol is embedded in the
communication module. Before describing the module, we
focus on the strategies of the protocol.

The when-help strategy is based on the principle that
an agent will help the others when it is not busy. Tlmt is,
an agent niay accept a help message only when it is in
SEARCHING, (I-)RETURNING or IDLE states, otherwise
the message is queued for later processing.

The select-help strategy is designed by the rule that an
agent select the nearest to offer help. An agent that
responds to a hefp message is called a will-help agent.

The load-balancing strategy is considered in two parts.
One part is the equal partition of the area and the uniform
distribution of the agents. Another part is the negotiation
process for establishing cooperation, especially the
selection from the will-help agents. When an agent needs
help from n agents, there may be 111 will-help agents such
that m is greater than n. The loud-balancing strategy
enables the agent to select the first n nearest agents and
send an accept message to each of them. The other will-
help agents will be rejected by reject messages.

The blocked-free strategy is designed by the following
algorithm. First, the agents in (I-) WAITING state detect
the blocked situation by checking a timeout event, then
they broadcast blocked niessage to exchange their state
information and break down the blocked situation by
comparing their priorities. The lower priority agents will
exit their (I-) WAITING state by entering (WHELPING
state and go to help the highest priority agent. After the
lower priority agents return to their subarea, they can
continue their suspended task. According to Theorem 1,
the timeout event occurs when the agent stays in
(I-) W4lTlhG state for 2(N- l)MR” long.

An additional problenl is task termination condition.
When an agent has completely searched its subarea, it
broadcasts a sub-fin message and come into Sub-FINISH
state. Any other agent whose subtask is not finished will
reply a busy message to the sub-finish agent. If the agent
in Sub-FINISH receives a busy message, it enters into

422

IDLE state, otherwise, it means all the subtasks are
finished and the agent broadcasts an afl-Jnish message.
All the IDLE agents come into FINISH state after
receiving the finish message and the system task is
finished.

Theorem 1. Let N be the number of agents, and M7T be
the maximum travel time between any two locations in the
bounded area. When an agent stays in (I-)WAITING state
for Z(N-I)MIT, the system is blocked.
proofi

Consider the situation that there is only one large
object found at a time. The system will not be blocked
according to the when-help strategy. If the system would
become blocked in the fiiture, there must exist at least two
large objects found at the same time.

Let Lt={oi(oi E 0, ?ER, s.t. o, was found by r, at time
t}be a set of large objects found at time t. And W't,u={ol o
E L , some agent is in WAITING or I-WAITIN(; state at
time t+u due to o } , so Wt,o=L, For simplicity, Wr,u is
referred to as Wu in the following discussion. Let

MOVE={rER, r's state is MOVING or I-MWING}
HELP={ r ER, r's state is HELPING or I-HELPING}
WAIT={r€R, r's state is WAITING or I-K4ITING}
AVAIL={r ER, r's state is SEAR('HING or

RETZJWING or I-RETURNING or IDLE}
If the system would not become blocked, not all of
AVAIL, MOVE, and HELP sets are empty. Given I WIJ>O,
we consider the agents in these three sets.
1)HELP set:

When an agent in HELP set reaches the object, either it
enters MOVE set if there are enough agents to move the
object or enters WAIT set. Because an agent stays i n

HELP state no more than one MTT, the maximum time
for these agents to reach and move an object in Wl, is
one h47T.

2)AVAIL set:
Every agent in the set is a will-help agent. If the agents
in AVAIL are accepted by the agents requiring help,
they enter HELP set. So the maximum time for these
agents to reach and move an object in Wl, is one Am.

Because an agent stays in MOVE and enters AVAIL set
no more than one MTT. After that, they enter HELP set
immediately if there is any agent requiring help. So the
maximum time for these agents to reach and move an
object in W,, is 2MTT.

So the maximum time for the agents not in WAIT to
reach and move an object in W,, is 2hl7T. On the other
hand, they all enter WAIT set if they cannot move any
object in W,, in W. That is. the system is blocked if

3)MOVE set:

I~t;+2MTT(= IW,,l.

If the system is not blocked, at least one large object
will be moved for every 2MTT. It takes at most 2(N-
1)MTT to reduce every object in WO.

So if an agent stays in (I-)WAITING state for 2(N-
l)MTT, all the agents must be in (I-)WAITING state and
the system is blocked.

5.4: Communication module

The communication module performs the communica-
tion function and follows the protocol in order to
cooperate with the others. It receives the messages sent by
the other agents and replies them if necessary.

When receiving a help message in SEARCHING or
RETIJRNING states, the comin. module replies a will-help
message and changes its state to .%REPLY or R-REPLY. If
the helped agent accepts the will-help message, it sends
an accept message to the helping agent, otherwise, it
sends a reject message to reject the help. When receiving
an accept message, the communication module changes
the state to HELPING. When receiving a reject message,
the communication module returns to its previous state.
The helping messages mechanism looks like the Contract
Net Protocol(IO], however, it is designed for simplicity
and effectiveness.

An agent in IDLE state stays in its base location and
waits for help message in order to help the others. The
help mechanism is the same as described above.

5.5: Advantages

The advantages of the architecture are discussed as the
following:

,Siiiip/icip. The global state fiinction is very complex.
Comparing with a central module controlling all the
state transition, the architecture is more simple ,clear
and fast to impleinent it.

e Intra-ngent distributecl control. Functional separation
for each agent makes the intra-agent distributed
control. All state transitions are distributed into the
modules and a single transition is done only by one
module. The modules ciln run concurrently or
simultaneously based on multiprocessor or
uniprocessor. The commiinication between modules is
through the shared global state information.

e No explicit inter-agent control. An agent commu-
nicates with the other agents through the
communication system. The inter-agent control can be
designed for different purpose. It may be central
control if the agents are organized into a hierarchical
organization. On the other hand. i t is distributed
control if every agents is independent.

423

0 Flexibility. It is ease to add a new functional module
to the agent architecture. The architecture can be
extended to handle other function if the corresponding
module is included.

N 1 2 1 4 1 8 10 20 30
Partition 1x1 lx212x2)4x2 5x2 5x4 6x5

6: Simulation

40 50
8x5 10x5

The object-sorting task was simulated in a multi-
strategy simulator developed on Sun workstation and with
graphic user interface showing the task execution process.
The simulator is a testbed for testing different strategies
of the cooperation protocol on the object-sorting task.

I-+ 4 loo 100 loo 100 100

0

Object I Base Location I
Fig. 4: The simulation map for 5x2 partition

6.1: Simulation Environment

The task is performed on a bounded area which is
equally partitioned into the subareas, and each subarea is
assigned to an agent by the load-balancing strategy. The
area is represented in a two-dimensional coordinate
system, e.g. 500x 200. The partition of the area is
represented by a m x n notation, ni in x-axis direction and
n in y-axis direction. For example, 5 x 2 partition means
that the area is equally partitioned into 5 subparts in x-
axis direction and 2 subparts in y-axis direction, as shown
in Fig. 4. In the experiment, the area is SOOx 200 and
partitioned into different size under different number of
agents. Fig. 4 shows the map used in the simulation for
N=10 agents. The partitions for different number of
agents N used in the experiment are shown in Table 1.

Table 1: Partition and the number of agents

The agent searches for the objects in its subarea and
move the objects to their destinations. The following code
fragment describes the actions performed by the agent at
each time step.

for each agent i ,
do the search module of agent i ;
do the motion module of agent i ;
do the comm. module of agent i .

When all the agents has completely searched their
subareas, the task i s finished.

Fig: 5: Move directions Fig. 6: Sensor ranges

The area is a grid area, and the agents can only move
to one of the four locations from a location in a time unit
as the figure 5. The agents can sense the objects located in
the grids adjacent to the agents as the figure 6. The agents
may use any exhaustive search method to search their
subarea. In this experiment, the row-major order method
was used. They start search from the initial location, the
(0,I) location of their subarea, to the right side boundary,
and search the first three rows which are under the sensor
range. When they have reached the right side boundary,
they search the second three rows and change the search
direction from right to left. When they has reached the
left side boundary, they change the search direction from
left to right and start searching the next three rows. The
search repeats until the subarea has been searched.

The object is randomly generated for its destination,
initial location, and the number of required agents. This
experiment generates 10 sets of the object for each
number of the objects M using n,,=10. All of the object
sets are nm for N=10,20,30,40, and 50. When the object
sets are applied to N=1.2,4. and 8, then nmax is set to N
and all the n, are proportionally adjusted in order to
accomplish the task.

6.2: Simulation Results

The experiment was run by varying the number of
agents N, and the number of objects M. For a given
number M of objects, the execution time is the average of
the execution time run from the 10 generated object sets
of M. The performance of the proposed cooperation
protocol is evaluated by comparing the execution time
under different number of agents and different number of
objects. The actual execution time performed by the
cooperation protocol is represented by C. The reference
execution time are the estimated upper bound, U, and the
estimated lower bound, L.

The estimated upper bound is the execution time based
on the centralcontrolled model that all the agents work
together to do the task, that is, all the agents go together
to search the area, when find an object, they move the
object to its destination, then return to their previous
location and continue searching. The task is executed as if
there was a very powerful agent to do the task so that it
could move any found object. However, the objects are

424

moved sequentially and centrally. The estimated upper
bound is the search time plus all the object-moving time.

where
U = TS +Cj (TMj + TRj)

U: estimated upper bound.
XS time required to search the entire area.
TMj: time required to move objectj to its destination.
TRj: time required to return to the initial location of

The estimated lower time is the execution time under
the operation model that the other agents are always
available for helping when an agent finds a large object.
The other agents is assumed to be available in the central
point of their subareas. An agent chooses the helping
agents by the load-balancing strategy which chooses the
agents closer to it. The execution time of each agent is its
subarea search time and all the processing time for the
objects located in its subarea. The processing time of the
object j located in the agent i is the wait time for all the
helping agent coming in and the object-moving time for
object j , and the return time from the destination of the
object j to the initial location of j . So, the estimated lower
bound is the maximum time among the execution time of
all the agents.

object j from the destination ofj.

L=Maxi TAi
TA, = TSi + Zj TOij
TOjj = TWjj + TMij + TRjj

where
L: estimated lower bound.
TAi: the total execution time of agent i .
TSj: time for agent i to search its subarea.
Tog: the processing time of object j located in the

subarea of agent i .
TWg: the maximum wait time of object j for all the

helping agents of agent i .
TMo: the time that agent i moves object j to its

destination
TRY: the time that agent i returns from the

destination of objectj to the previous location.

180000 r m
160000 - 140000

.a 120000
3 100000

80000
$ 60000

40000
20000

0
0 50 100 150 200

Number of Objects

Fig. 7: The execution time of N=10

At first, the actual execution time, C, is compared
with two types of estimated execution time, an estimated
lower bound and an upper bound. Fig. 7 shows the
relationship between the execution time and the number
of objects for N=10 agents. Intuitively, as the number of
objects to be moved increases, the execution time, either
estimated or actual, will increase. The upper bound model
always needs the most time to do the task because it
moves the objects sequentially. The cooperation protocol
is stable, even under heavy workload situation, e.g. 200
objects.

I
120000

100000

0 5 0 100

Number of Objects

Fig. 8: The execution time of N< 10

When the workload is light, the performance of the
cooperation protocol approaches the lower bound. The
agents search their subareas simultaneously and move
objects simultaneously if they don't need to wait for the
others. It takes less time to wait for help under light
workload. Under heavy workload, there are more objects
in the area and the agent must take more time to wait for
help. Because every agent is mostly busy, the degree of
concurrence is decreased. This effect will cause the agent
gradually to group together to move the objects. If most of
the objects require a large number of agents to move, the
system behavior will approach the upper bound in which
objects are moved one by one.

Second, the execution time for different number of
agents under the same object sets are compared. Fig. 8
shows the execution time for N=1,2,4,8 and 10. The
workload is proportionally adjusted for any A4 by
adjusting the number of required agents for each object.
When the number of objects increases, the execution time
increases linearly with it for all N. It shows the
cooperation protocol is very stable under different
workloads. When the estimated upper bound and lower
bound are considered again, we find that U, C and L
overlap when N=l. It is very clear that both the upper
bound model and the lower bound model work the same
as the proposed model if there is only one agent to do the
task and nnrm= 1.

426

Finally, Fig. 9 shows the speedup effect of increasing
the number of agents to do the task. When the generated
object sets are applied to Nz10, the execution time
decreases with the increasing number of agents. It shows
that the protocol can effectively utilize the benefit from
increased agent-power. The speedup is high when N is
changed from 10 to 20. Meanwhile, it is low when N is
changed from 40 to 50, which can be explained from Fig.
10.

t
8oooo .i 60000
4oooo

2 m
0
0 50 100 IS0 200

N=20

N=30

N=40

N=50

Number of Objects

Fig. 9: The execution time for N=10,20,30,40 and 50

m

I
180000
160000
140000
120000

3 100000

i= 60000 -*- L
40000
20000

0 50 100 150 200

Number of Objects

Fig. 10: The execution time of N=50

Fig. 10 shows the U, C and L for N=50 agents under
different number of objects. When comparing Fig. 10
with Fig. 7, it shows that C approaches L for N=50 even
on heavy workload, M=200 objects. It means that the
more agents to do a task, the faster it is finished. Initially
the waiting time is significantly decreased when using
more agents. That is, C approaches to L. If there are
usually enough agents available to help out whenever a
large object is found, the benefit from increasing N will be
a smaller subarea for each agent.

7: Conclusions

In this paper, we focus on the problem of an object-
sorting task in multi-agent robotic system and present the
system architecture of the agent, the global finite
automata and the finite automata of each module, a
decentralized cooperation protocol and the strategies for

doing the object-sorting task. A multi-strategy simulator
is developed as a testbed for testing the Merent
environments and strategies on the cooperation protocol.
The experimental results show that the cooperation
protocol has stable and reliable behavior under different
workloads. Increasing the number of agents will decrease
the waiting time of agents and speedup the execution time.

Using the simulator, further experiments will be
conducted in order to analyze the effects of different
protocols, strategies and object distribution.

8: References

[I] R. C. Arkin, "Motor Schema-Based Mobile Robot Naviga-
tion", Intemational Joumal of Robotics Research, Vol. 8,

[2] R. C. Arkin, "Cooperation without Conununication: Multi-
agent Schema Based Robot Navigation", Joumal of Robotic
Systems, Vol. 9(3), April 1992, pp. 351-364.

131 R. C. Arkin and J. D. Hobbs, "Dunensions of Communica-
tion and Social Organization in Multi-Agent Robotic Sys-
teins", Proc. Sinndation of Aduptive Behavior 92, Honolulu,
HI, Dec. 1992.

[4] R. C. Arkin, T. Balch and E. Nitz, "Communication of
Behavioral State in Multi-agent Retrieval tasks", Proc. of
I993 IEEE Internationul C'orference on Robotics and
Automation, GA, May 1993.

[5] R. A. Brooks, P. Maes, M. Matanc and G. More, " Lunar
Base Coiistniction Robots", IEEE Intemational Workshop
on Itite1ligi:ent Robots and Systems (IROS '90), pp. 389-392,
Tsuchiura, Japan, 1990.

[6] R. A. Brooks, "A Robust Layered Control System For A
Mobile Robot", IEEE Journal of Robotics and Automation,
Vol. RA-2, No. 1, March 1986, pp. 14-23.

171 T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss,
"Structure Decision for Self Organizing Robots Based on
Cell Structure - CEBOT", Proc. of IEEE Intemational
Conference on Robotics and Automation, Scottsdale Arizona,

181 S. Hackwood and S. Beni, "Self-organintion of Sensors for
Swann Intelligence", Proc. of I992 IEEE Intemational
Corij2rence on Robotics and Automation, Nice, pp. 8 19-829,
1992.

[91 M. Mataric, "Minimizing Coinplexity in Controlling a
Mobile Robot Population", Proc. of I992 IEEE
Intemational Conference on Robotics and Automation, Nice,

[lo] R. G. Smith, "The Contract Net Protocol: Hi@i-kvel
Coinmunication and Control in a Distributed Problem
Solver", IEEE Tmrrsuction on Computers, vol. C-29, NO. 12,
Dec. 1980.

NO. 4, AUwst 1989, pp. 92-1 12

pp. 695-700, 1989.

pp. 830-835, 1992.

426

